1. The amplifier in the figure below is biased to operate at $g_m = 1 \text{mA/V}$. Neglecting r_o, find the midband gain. Find the value of C_s that places f_L at 20 Hz.

![Amplifier Circuit Diagram](image)

2. The NMOS transistor in the discrete CS amplifier circuit shown below is biased to have $g_m = 5 \text{mA/V}$. Find $A_M, f_{p1}, f_{p2}, f_{p3}, \text{and } f_L$.

![CMOS Amplifier Circuit Diagram](image)

Ignore parasitic capacitances of the transistor and assume r_o to be sufficiently large.

Hint: The resistance seen by $C_s = 10 \mu F$ is approximately $2k \Omega \parallel \frac{1}{g_m}$.
3. A discrete MOSFET common-source amplifier has $R_G = 1M\Omega$, $g_m = 5mA/V$, $r_o = 100k\Omega$, $R_D = 10k\Omega$, $C_{gs} = 2pF$, and $C_{gd} = 0.4pF$. The amplifier is fed from a voltage source with an internal resistance of $500k\Omega$ and is connected to a $10k\Omega$ load. Find:

a) The overall midband gain A_M

b) The upper 3-dB frequency f_H

Refer large and small signal circuits to Figs a and b. In Fig a, $C_{c1}, C_{c2}, \text{and } C_5$ are short circuited in mid and high frequency bands.

Hint: In part b), find f_H using Miller’s theorem.
4. The analysis of the high-frequency response of the common-source amplifier is based on the assumption that the resistance of the signal source, R_{sig}, is large and, thus, that its interaction with the input capacitance, C_{in} produces the ‘dominant pole’ that determines the upper 3-dB frequency f_H. In some situations, however, the CS amplifier is fed with a very low R_{sig}. To investigate the high-frequency response of the amplifier in such a case, the figure below shows the equivalent circuit when the CS amplifier is fed with an ideal voltage source V_{sig} having $R_{sig} = 0$. Note that C_L denotes the total capacitance at the output node. By writing a node equation at the output, show that the transfer function V_o/V_{sig} is given by

$$\frac{V_o}{V_{sig}} = -g_m R_L' \frac{1 - s \left(\frac{C_{gd}}{g_m} \right)}{1 + s (C_L + C_{gd}) R_L'}$$

At frequencies $\omega = \left(\frac{g_m}{C_{gd}} \right)$, the s term in the numerator can be neglected. In such case, what is the upper 3-dB frequency resulting?Compute the values of A_M and f_H for the case: $C_{gd} = 0.4 \text{ pF}$, $C_L = 2\text{ pF}$, $g_m = 5mA/V$, and $R_L' = 5k\Omega$.

![Equivalent Circuit Diagram]
5. Consider the common-emitter amplifier in the following figure, with \(\beta = 100, V_A = 100V, C_n = 25fF, C_\mu = 10fF \).

a) Draw the small-signal model of this circuit. Apply Miller’s theorem to split \(C_\mu \) to input and output nodes. Calculate the time constants at the input and output nodes, \(\tau_{in} \) and \(\tau_{out} \).

b) Based on the time constants from part a), calculate the input and output pole frequencies, \(f_{in} \) and \(f_{out} \). What is the dominant pole of this amplifier?