Summer 2024 Professor Schutt-Aine Due Date: 5pm, Tue, July 23, 2024

- 1. The amplifier in the figure below is biased to operate at $g_m = 1 \, mA/V$. Neglecting r_o ,
- a. Find the mid-band gain.
- b. Find the full transfer function with C_s present. Is this circuit low-pass or high-pass?
- c. Find the value of C_s that places f_L at 200 Hz.
- d. With the value of C_s above, find $v_0(t)$. Given that $v_i(t) = V_0 + 10\cos(10^6\pi t)\,mV$ where V_0 is a constant.

2. The NMOS transistor in the discrete CS amplifier circuit shown below is biased to have $g_m = 5 \, mA/V$. Find A_M , f_{p1} , f_{p2} , f_{p3} , and f_L . Let $R_{\text{sig}} = 100\text{k}\Omega$, $R_1 = 47\text{M}\Omega$, $R_2 = 10\text{M}\Omega$, $R_D = 4.7\text{k}\Omega$, $R_S = 2\text{k}\Omega$, $R_L = 10\text{k}\Omega$, $C_G = 0.01\mu\text{F}$, $C_S = 10\mu\text{F}$, $C_D = 0.1\mu\text{F}$

Ignore parasitic capacitances of the transistor and channel-length modulation effect.

- 3. A discrete MOSFET common-source amplifier has $R_G = 1M\Omega$, $g_m = 5mA/V$, $r_o = 100k\Omega$, $R_D = 10k\Omega$, $C_{gs} = 2pF$, and $C_{gd} = 0.4pF$. The amplifier is fed from a voltage source with an internal resistance of 500 $k\Omega$ and is connected to a 10 $k\Omega$ load. Find:
- a) The overall mid-band gain A_M
- b) The upper 3-dB frequency f_H

Refer to Figs a and b for the complete setup and the small signal circuit at high frequency. Note: at high and mid-band frequency, coupling capacitor C_{C1} , C_{C2} , C_S are shorted.

Hint: In part b), find f_H using Miller's theorem then apply open-circuit time constant approach.

- 4. Consider the common-emitter amplifier in the following figure, with $\beta = 100$, $V_A = 100V$, $C_{\pi} = 25 fF$, $C_{\mu} = 10 fF$.
- a) Draw the small-signal model of this circuit. Apply Miller's theorem to split C_{μ} to input and output nodes. Calculate the time constants at the input and output nodes, τ_{in} and τ_{out} .
- b) Based on the time constants from part a), calculate the input and output pole frequencies, f_{in} and f_{out} . What is the dominant pole of this amplifier?

5. The figure below shows the high-frequency equivalent circuit of a CS amplifier with a resistance R_s , connected to S. The purpose of this problem is to show that the value of R_s , can be used to control the gain and bandwidth of the amplifier, specifically to allow the designer to trade gain for increased bandwidth.

- a) Derive an expression for the low-frequency voltage gain (i.e. set C_{gs} and C_{gd} to zero).
- b) To be able to determine ω_H using the open-circuit time-constants method, derive expressions for R_{gs} and R_{gd} (equivalent resistance seen by C_{gs} and C_{gd} , respectively.

- c) Let $R_{sig}=100k\Omega$, $g_m=4mA/V$, $R_L'=5k\Omega$, and $C_{gs}=C_{gd}=1pF$. Use the expressions found in a) and b) to determine the low-frequency gain and the 3-dB frequency f_H for three cases: $R_s=0\Omega$, 100Ω , and 250Ω . In each case, also evaluate the gain-bandwidth product.
- 6. Determine -3dB bandwidth of the circuits shown below. Assume MOS transistors in saturation and BJTs in forward active region with $r_{ds} = \infty$, $r_0 = \infty$. Ignore intrinsic capacitances.

7. Approximate transfer function for the circuits below. Assume MOS transistors operate in saturation with $r_{ds} = \infty$, and BJTs in forward active region with $r_o = \infty$

