1. Consider an enhancement NMOS transistor with $V_t = 2V$ which conducts a current $i_D = 1mA$ when $v_{GS} = v_{DS} = 3V$. What is the value of i_D for $v_{DS} = 5V$? Calculate the value of the drain-to-source resistance for small v_{DS} and $v_{GS} = 4V$.

2. For a 0.8-μm process technology for which $t_{ox} = 20nm$ and $\mu_n = 650 \ cm^2/V \cdot s$, find C_{ox}, k'_n, and the overdrive voltage V_{OV} required to operate a transistor having $\frac{W}{L} = 20$ in saturation with $I_D = 0.1mA$. What is the minimum value of V_{DS} needed for the device to be in saturation?

3. An NMOS transistor having $V_t = 2V$, $k'_n = 100 \ \mu A/V^2$ and $\frac{W}{L}$ ratio of 20 is operated in the saturation region. Find the required v_{GS} and the minimum required v_{DS} for i_D to be 0.4 mA.

4. An n-channel MOS device is fabricated in a 0.4-μm process having $k'_n = 150\mu A/V^2$ and $V'_A = 40V/\mu m$ of channel length. If $L = 0.8\mu m$ and $W = 16\mu m$, find V_A and λ. If the device is operated with an overdrive voltage of 1V and $V_{DS} = 2V$, what is the value of I_D? Find the value of r_0 at this operating point. If V_{DS} is increased by 2V, what is the corresponding change in I_D?

5. A particular n-channel MOSFET is operated in the triode region with $v_{DS} = 50mV$. The drain current is found to be $45\mu A$ for $v_{GS} = 2V$ and $140\mu A$ for $v_{GS} = 4V$. Find the transistor threshold voltage V_t. If $k'_n = 100\mu A/V^2$, what is the device $\frac{W}{L}$ ratio? For $v_{GS} = 3V$ and $v_{DS} = 0.2mV$, what is the value of the drain current? If the transistor is operated at $v_{GS} = 4V$, at what value of v_{DS} will the drain end of the MOSFET channel just reach the pinch off, and what is the corresponding drain current?