ECE 342: Electronic Circuits Problem Set #5

Summer 2024 Professor Schutt-Aine Due Date: 5pm, Tue, Jul 2nd

Assume the following for all problems: $k'_n = 200 \mu A/V^2$, $V_{tn} = 0.5V$; $k'_p = 100 \mu A/V^2$, $V_{tp} = -0.5V$. Assume $r_{ds} = \infty$ unless otherwise stated.

1. Assume n = 1 for the diodes. Consider the CS amplifier below:

- a) Obtain the DC bias point, i.e., V_G , $V_D = V_O$, and I_D . Assume constant voltage drop model for the diodes with $V_{D(on)} = 0.7V$.
- b) Draw the small-signal model of this circuit.
- c) Determine the small-signal gain $A_v = v_o/v_i$.
- d) If $v_i = 0.005 \sin(w_c t)$, derive an expression for the total output $V_o(t) = V_0 + v_o(t)$.
- e) Repeat part d) but this time in the presence of supply voltage ripple $v_{dd} = 0.001 \sin(w_s t)$.

2. For the CS amplifier below (assume $r_{ds} = \infty$ for part a)-d)):

- a) Calculate I_D and V_O .
- b) Draw the small-signal model of this circuit.
- c) Determine the small-signal gain $A_v = v_o/v_i$.
- d) Determine R_i and R_o of this amplifier.
- e) If the Early voltage $V_A = -15V$, redo parts c) and d).

3. For the circuit below, $V_{DD} = 5V$; $R_1 = 40k\Omega$; $R_2 = 60k\Omega$; $R_D = 2k\Omega$; $R_S = 2k\Omega$; $R_L = 3k\Omega$, $\frac{W}{L} = \frac{40}{1}$ and $r_{ds} = \infty$.

- a) Calculate I_D , V_D , and V_G . Show that the transistor is in saturation.
- b) Draw the small-signal model of this circuit.
- c) Determine the small-signal gain $A_v = v_o/v_i$.
- d) Determine R_i and R_o of this amplifier.
- e) Determine the maximum voltage gain $|A_v|$ you can obtain from this circuit if you are allowed to modify the value of R_D only.