ECE 342 Electronic Circuits

Lecture 2 Large and Small Signal Circuits

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@Illinois.edu

Amplifiers

Definitions

- Used to increase the amplitude of an input signal to a desired level
- This is a fundamental signal processing function
- Must be linear (free of distortion) Shape of signal preserved

 $v_o(t) = Av_i(t)$, where A is the voltage gain

Voltage Gain:
$$A_{v} = \frac{v_{o}}{v_{i}}$$

Power Gain:
$$A_p = \frac{Load\ Power(P_L)}{Input\ Power(P_I)}$$

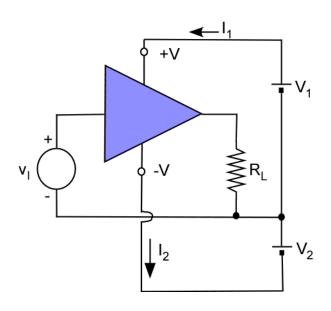
Amplifiers

$$A_p = \frac{v_o i_o}{v_I i_I}$$

Current Gain: $A_i = \frac{i_o}{i_i}$

Note : $A_p = A_v A_i$

Expressing gain in dB (decibels)


Voltage gain in dB = $20\log|A_V|$

Current gain in $dB = 20\log|A_I|$

Power gain in $dB = 10\log|A_P|$

Amplifiers

Since output associated with the signal is larger than the input signal, power must come from DC supply

$$P_{DC} = V_1 I_1 + V_2 I_2$$

$$P_{DC} + P_I = P_L + P_{dissipated}$$

$$\eta = \frac{P_L}{P_{DC}} \times 100 = Power \ Efficiency$$

Problem

An amplifier has ± 10 V power supplies and an input current of 0.1 mA (sine wave) input voltage 1 V peak-to-peak and an output voltage with a peak of 9V. The load impedance is 1 k Ω and the amp draws 9.5 mA from each power supply. Determine:

- the voltage gain
- the current gain
- the power gain
- the power drawn from supplies
- the power dissipated and η

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{9}{1} = 9$$

$$A_{v-dB} = 20\log|A_v| = 20\log|9| = 19.1 dB$$

$$\hat{I}_o = \frac{9}{1k\Omega} = 9 \, mA$$

The current gain is

$$A_i = \frac{\hat{I}_o}{\hat{I}_i} = \frac{9}{0.1} = 90$$

Problem

$$A_{i-dB} = 20\log 90 = 39.1 \, dB$$

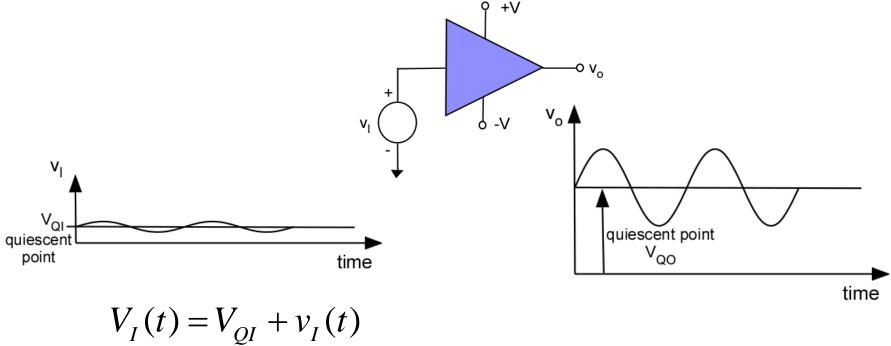
Power at Load =
$$P_L = V_{o-rms}I_{o-rms} = \frac{9}{\sqrt{2}} \frac{9}{\sqrt{2}} = 40.5 \text{ mW}$$

Power at input =
$$P_I = V_{I-rms}I_{I-rms} = \frac{1}{\sqrt{2}} \frac{0.1}{\sqrt{2}} = 0.05 \text{ mW}$$

$$A_p = \frac{P_d}{P_I} = \frac{40.5}{0.05} = 810$$

$$A_{p-dB} = 10\log 810 = 29.1 \, dB$$

$$P_{dc} = 10 \times 9.5 + 10 \times 9.5 = 190 \, mW$$


$$P_{dissipated} = P_{dc} + P_I - P_L$$

$$P_{dissipated} = 190 - 0.05 - 4.05 = 149.6 \, mW$$

$$P_{dc} = 10 \times 9.5 + 10 \times 9.5 = 190 \ mW$$
 $\eta = \frac{P_L}{P_{dc}} \times 100 = 21.3\%$

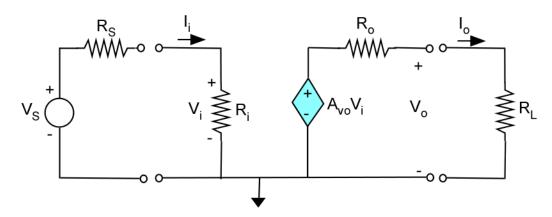
Biasing of Amp

Bias will provide quiescent points for input and output about which variations will take place. Bias maintain amplifier in active region.

$$V_{I}(t) = V_{QI} + V_{I}(t)$$

$$V_{o}(t) = V_{QO} + V_{o}(t)$$

$$V_{o}(t) = A_{v}V_{I}(t)$$


$$A_{v} = A_{v}V_{I}(t)$$

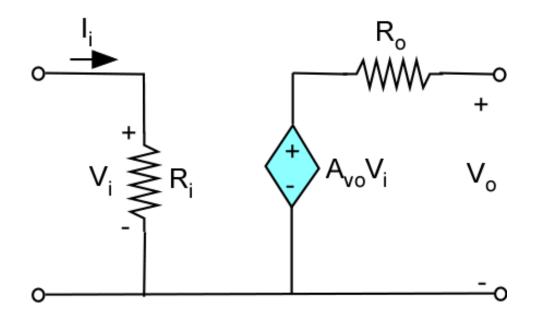
$$A_{v} = \frac{dv_{o}}{dv_{I}}\bigg|_{at Q}$$

Amplifier characteristics are determined by bias point

Voltage Amplifier

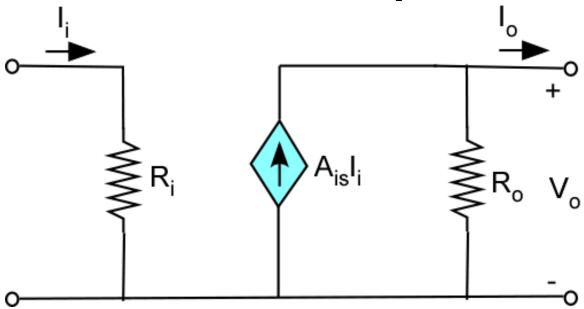
Voltage gain is:
$$\frac{v_o}{v_i} = A_v = \frac{A_{vo}R_L}{R_L + R_o}$$
Input $v_i = v_s \frac{R_i}{R_L + R_o}$

$$v_o = \frac{A_{vo}v_iR_L}{R_L + R_o}$$


Want R_i large (so $v_i \approx v_s$) (actually want $R_i >> R_s$) ideal $R_i = \infty$

Want R_o small (as small as possible) to achieve maximum gain → ideal R_o =0

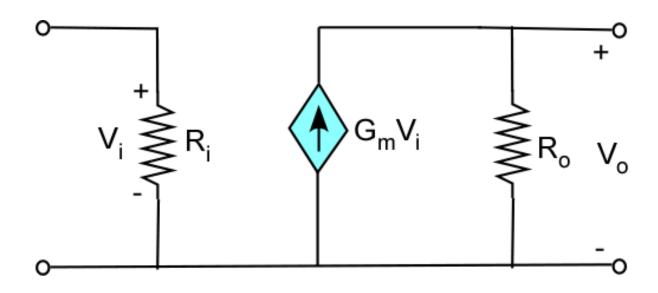
Overall gain:
$$\frac{v_o}{v_s} = A_{vo} \frac{R_i}{R_i + R_s} \cdot \frac{R_L}{R_L + R_o}$$



Voltage Amplifier

Open Circuit Voltage Gain :
$$A_{vo} = \frac{v_o}{v_i}\Big|_{i_o=0}$$
 $ideal: R_i = \infty$ $R_o = 0$

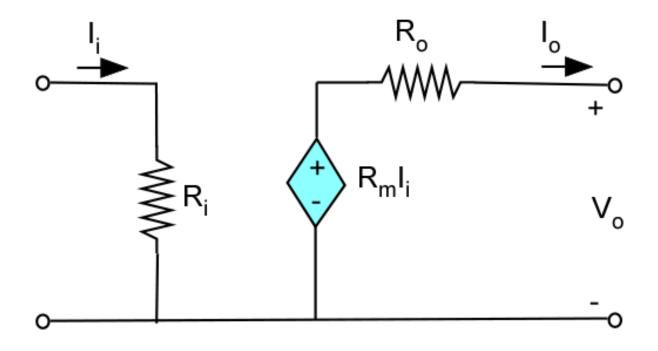
Current Amplifier



Short Circuit Current Gain:
$$A_{is} = \frac{i_o}{i_i}\Big|_{i_o=0}$$

$$ideal: R_i = 0$$
$$R_o = \infty$$

Transconductance Amplifier


Short Circuit Transconductance :
$$G_m = \frac{i_o}{v_i}$$

$$ideal : R_i = \infty$$

$$R_o = \infty$$

Transresistance Amplifier

Open Circuit Transresistance :
$$R_m = \frac{v_o}{i_i}$$

$$ideal : R_i = 0$$

$$R_o = 0$$

Small-Signal Model

What is a small-signal incremental model?

- Equivalent circuit that only accounts for signal level fluctuations about the DC bias operating points
- Fluctuations are assumed to be small enough so as not to drive the devices out of the proper range of operation
- Assumed to be linear
- Derives from superposition principle

