ECE 342 Electronic Circuits

Lecture 3 PN Junctions and Diodes

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

Definitions

B: material dependent parameter = 5.4×10^{31} for Si

 E_G : Bandgap energy = 1.12 eV

k: Boltzmann constant= 8.62×10^{-5} ev/K

 n_i : intrinsic carrier concentration

At T = 300 K, $n_i = 1.5 \times 10^{10}$ carriers/cm³

 J_p : hole current density A/m²

$$J_n^{F}$$
: electron current density A/m²

q: electron charge

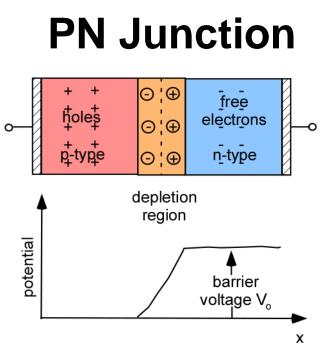
 D_p : Diffusion constant (diffusivity) of holes

 D_n^{P} : Diffusion constant (diffusivity) of electrons

$$\mu_{p}$$
: mobility for holes = 480 cm² /V sec

 μ_n : mobility for electrons = 1350 cm² /V sec

 N_D : concentration of donor atoms


 n_{no} : concentration of free electrons at thermal equilibrium

 N_A : concentration of acceptor atoms

 p_{po} : concentration of holes at thermal equilibrium

Einstein Relation : $\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q} = V_T$: thermal voltage

- When a p material is connected to an n-type material, a junction is formed
 - Holes from p-type diffuse to n-type region
 - Electrons from n-type diffuse to p-type region
 - Through these diffusion processes, recombination takes place
 - Some holes disappear from p-type
 - Some electrons disappear from n-type

A depletion region consisting of bound charges is thus formed Charges on both sides cause electric field \rightarrow potential = V_o

PN Junction

- Potential acts as <u>barrier</u> that must be overcome for holes to diffuse into the n-region and electrons to diffuse into the p-region
- Open circuit: No external current

Junction built-in voltage

From principle of detailed balance and equilibrium we get:

$$V_o = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$$

For Si, V_o is typically 0.6V to 0.8V

Charge equality in depletion region gives:

$$qx_pAN_A = qx_nAN_D$$

A: cross-section of junction x_p : width in p side x_n : width in n side

 ε_s : silicon permittivity $\varepsilon_s = 11.7\varepsilon_o = 1.04 \times 10^{-8}$ F/m

$$\frac{x_n}{x_p} = \frac{N_A}{N_D}$$

$$W_{dep} = x_n + x_p = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)} V_o$$

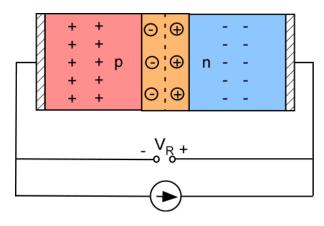
Example

Find the barrier voltage across the depletion region of a silicon diode at T = 300 K with $N_D = 10^{15}$ /cm³ and $N_A = 10^{18}$ /cm³.

Use
$$V_o = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$$

@ 300K,
 $n_i = 1.5 \times 10^{10} / \text{cm}^3$
 $V_T = 0.026 \text{ V}$

$$V_o = \psi_o = 0.026 \ln\left(\frac{10^{18} \cdot 10^{15}}{(1.5)^2 \times 10^{20}}\right) = 0.026 \ln\left[\frac{10^{13}}{2.25}\right]$$


 $V_o = \psi_o = 0.026 \times 29.12 = 0.7571$ volts

 $V_o = \psi_o = 0.7571$ volts

ECE 342 – Jose Schutt-Aine

PN Junction under Reverse Bias

• When a reverse bias is applied

- Transient occurs during which depletion capacitance is charged to new bias voltage
- Increase of space charge region
- Diffusion current decreases
- Drift current remains constant
- Barrier potential is increased
- A steady state is reached
- − After transient: steady-state reverse current = I_S - I_D (I_D is very small) → reverse current ~ I_S ~ 10⁻¹⁵ A

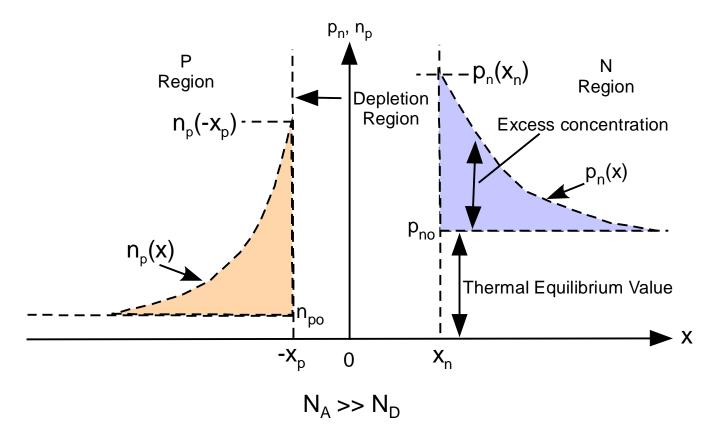
Under reverse bias the current in the diode is negligible

Depletion Layer Stored Charge

$$q_j = q_N = q N_D x_n A$$

A: cross section area q_j : stored charge

Let W_{dep} = depletion-layer width


$$q_j = q \frac{N_A N_D}{N_A + N_D} A W_{dep}$$

The total voltage across the depletion layer is $V_o + V_R$

$$W_{dep} = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) \left(V_o + V_R\right)}$$

Forward-Biased Junction Carrier Distribution

Barrier voltage is now lower than V_o

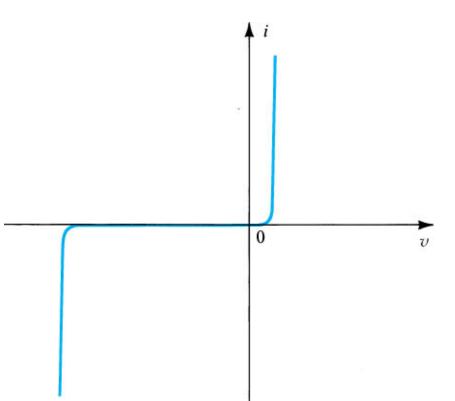
In steady state, concentration profile of <u>excess minority carriers</u> remains constant

Forward-Biased PN Junction

Diode equation: $I_D = I_S \left(e^{V/nV_T} - 1 \right)$

$$I_{S} = Aqn_{i}^{2} \left(\frac{D_{p}}{L_{p}N_{D}} + \frac{D_{n}}{L_{n}N_{A}} \right)$$

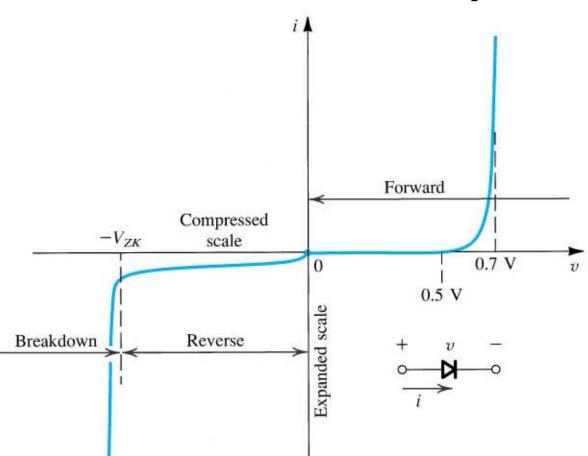
since
$$n_i^2$$
 is a strong function of temperature; thus I_s is a strong function of temperature


n has a value between 1 and 2. Diodes made using standard IC process have n=1; discrete diodes have n=1

In general, assume *n*=1

If $V \gg V_T$, we can use $I_D \approx I_S e^{V/V_T}$

Diode Characteristics



• Three distinct regions

- The forward-bias region, determined by v > 0
- The reverse-bias region, determined by v < 0
- The breakdown region, determined by $v < -V_{ZK}$

Diode I-V Relationship

Breakdown

 Electric field strong enough in depletion layer to break covalent bonds and generate electron-hole pairs. Electrons are then swept by E-field into the nside. Large number of carriers for a small increase in junction voltage

