ECE 342
Electronic Circuits

Lecture 6
MOS Transistors

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu
Typically $L = 0.1$ to 3 μm, $W = 0.2$ to 100 μm, and the thickness of the oxide layer (t_{ox}) is in the range of 2 to 50 nm.
• **NMOS Transistor**
 – N-Channel MOSFET
 – Built on p-type substrate
 – MOS devices are smaller than BJTs
 – MOS devices consume less power than BJTs
NMOS Transistor - Layout

Top View

Cross Section
MOS Regions of Operation

Resistive

\[V_{GS} > V_T \]
\[V_{DS} \text{ small} \]

Triode

Nonlinear

\[V_{GS} > V_T \]
\[V_{DS} < (V_{GS} - V_T) \]

Active

Saturation

\[V_{GS} > V_T \]
\[V_{DS} \geq V_{GS} - V_T \]
MOS Transistor Operation

• As V_G increases from zero
 – Holes in the p substrate are repelled from the gate area leaving negative ions behind
 – A depletion region is created
 – No current flows since no carriers are available

• As V_G increases
 – The width of the depletion region and the potential at the oxide-silicon interface also increase
 – When the interface potential reaches a sufficiently positive value, electrons flow in the “channel”. The transistor is turned on

• As V_G rises further
 – The charge in the depletion region remains relatively constant
 – The channel current continues to increase
MOS – Triode Region - 1

\[I_D = \mu \frac{W}{L} C_{ox} \left[(V_{GS} - V_T) V_{DS} \right] \]

\[V_{DS} \ll \left(V_{GS} - V_T \right) \]

\[C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3.9 \varepsilon_o}{t_{ox}} \]

- \(C_{ox} \): gate oxide capacitance
- \(\mu \): electron mobility
- \(L \): channel length
- \(W \): channel width
- \(V_T \): threshold voltage
FET is like a linear resistor with

\[r_{ds} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)} \]
MOS – Triode Region - 2

\[
\begin{align*}
V_{GS} & > V_T \\
V_{DS} & < (V_{GS} - V_T)
\end{align*}
\]

- Charge distribution is nonuniform across channel
- Less charge induced in proximity of drain

\[
I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]
\]
MOS – Active (Saturation) Region

Saturation occurs at pinch off when

\[V_{DS} = (V_{GS} - V_T) = V_{DSP} \]

\[V_{GS} > V_T \]

\[V_{DS} > (V_{GS} - V_T) \] (saturation)

\[I_D = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2 \]
NMOS – Circuit Symbols
NMOS – Regions of Operation

Cut off

\[V_{GS} < V_{T} \]
\[I_D = 0 \]

Triode

\[V_{GS} > V_{T} \]
\[V_{DS} < (V_{GS} - V_{T}) \]

Saturation

\[V_{GS} > V_{T} \]
\[V_{DS} > (V_{GS} - V_{T}) \]

\[I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{T})V_{DS} - \frac{1}{2} V_{DS}^2 \right] \]

\[I_D = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_{T})^2 \]
NMOS – Drain Current

- **Triode region**: $v_{DS} < v_{GS} - V_t$
- **Saturation region**: $v_{DS} \geq v_{GS} - V_t$

Current saturates because the channel is pinched off at the drain end, and v_{DS} no longer affects the channel.

Curve bends because the channel resistance increases with v_{DS}.

Almost a straight line with slope proportional to $(v_{GS} - V_t)$.

Almost a straight line with slope proportional to $(v_{GS} - V_t)$.

$v_{GS} > V_t$

$v_{DS_{sat}} = v_{GS} - V_t$
characteristics for a device with $k'_n (W/L) = 1.0 \text{ mA/V}^2$.
MOS Threshold Voltage

The value of V_G for which the channel is “inverted” is called the threshold voltage V_T (or V_t).

- **Characteristics of the threshold voltage**
 - Depends on equilibrium potential
 - Controlled by inversion in channel
 - Adjusted by implantation of dopants into the channel
 - Can be positive or negative
 - Influenced by the body effect
nMOS Device Types

• **Enhancement Mode**
 – Normally off & requires positive potential on gate
 – Good at passing low voltages
 – Cannot pass full V_{DD} (pinch off)

• **Depletion Mode**
 – Normally on (negative threshold voltage)
 – Channel is implanted with positive ions ($\rightarrow V_T$)
 – Provides inverter with full output swings
Types of MOSFETS

Diagram showing the types of MOSFETs:
- **p-channel enhancement**
- **p-channel depletion**
- **n-channel depletion**
- **n-channel enhancement**
PMOS Transistor

- All polarities are reversed from nMOS
- v_{GS}, v_{DS} and V_t are negative
- Current i_D enters source and leaves through drain
- Hole mobility is lower \Rightarrow low transconductance
- nMOS favored over pMOS
PMOS – Regions of Operation

Cut off

\[V_{GS} > V_{TP} \]

\[I_D = 0 \]

Triode

\[V_{GS} < V_{TP} \]

\[V_{DS} > (V_{GS} - V_{TP}) \]

\[I_D = -\mu_p C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TP}) V_{DS} - \frac{1}{2} V_{DS}^2 \right] \]

Saturation

\[V_{GS} < V_{TP} \]

\[V_{DS} < (V_{GS} - V_{TP}) \]

\[I_D = -\mu_p C_{ox} \frac{W}{2L} (V_{GS} - V_{TP})^2 \]
PMOS – Alternative Equations

In positive quantities (V_{SG}, V_{DS}, $|V_{TP}|$)

Cut off

$$V_{SG} < |V_{TP}|$$

$I_D = 0$

Triode

$$V_{SG} > |V_{TP}|$$

$$V_{SD} < (V_{SG} - |V_{TP}|)$$

$$I_D = \mu_p C_{ox} \frac{W}{L} \left[(V_{SG} - |V_{TP}|) V_{SD} - \frac{1}{2} V_{SD}^2 \right]$$

Saturation

$$V_{SG} > |V_{TP}|$$

$$V_{SD} > (V_{SG} - |V_{TP}|)$$

$$I_D = \mu_p C_{ox} \frac{W}{2L} \left(V_{SG} - |V_{TP}| \right)^2$$