ECE 342 Electronic Circuits

Lecture 30 Operational Amplifiers - 1

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@Illinois.edu

 Universal importance (e.g. amplification from microphone to loudspeakers)

General terminal configuration with bias

Common configuration with bias implied but not shown

Signaling

- 1. Differential input stage
- 2. Difference between input is amplified

Ideal Op Amp

- 1. Infinite input impedance
- 2. Zero output impedance
- 3. Infinite open-loop gain A→inf
- 4. Infinite CMRR or zero common-mode gain
- 5. Infinite bandwidth

Also, op amps are dc (or direct coupled) amplifiers since they are expected to amplify signals with frequency as low as DC.

Differential & Common-Mode Signals

- Differential input signal V_{ID}=V₂-V₁
- Common-mode input signal v_{ICm}=0.5(v₁+v₂)

$$v_{1} = v_{ICm} - \frac{v_{ID}}{2}$$

$$v_{2} = v_{ICm} + \frac{v_{ID}}{2}$$

$$v_{1} + \frac{v_{1D}}{2}$$

Ideally, v_{ICM} should be zero to achieve high CMRR.

 Amplifier will amplify the <u>difference</u> between the two input signals

Practical Considerations

The output voltage swing of an op amp is limited by the DC power supply. Since op amp can exhibit high gain, power supply voltage fluctuations must be minimized → use decoupling capacitors from power supply

We introduce R_F (or R_2) to reduce gain (from inf)

• When R_F is connected to terminal 1, we talk about negative feedback. If R_F is tied to terminal 2, we have positive feedback

Need to evaluate v_a/v_t

Assume ideal Op-Amp

Since gain is infinite:
$$\frac{v_o}{A} = (v_2 - v_1) = 0$$

Thus,
$$v_1 = v_2 = 0$$

Thus, $v_1 = v_2 = 0$ Note: A is open-loop gain

V₁ is virtual ground

$$i_1 = \frac{v_I - v_1}{R_1} = \frac{v_I}{R_1}$$

Since input impedance of OP amp is infinite, current through R_F is i_1

$$i = i_{1} = \frac{v_{I}}{R_{1}}$$

$$\frac{v_{1} - v_{o}}{R_{F}} = \frac{0 - v_{o}}{R_{F}} = i = \frac{v_{I}}{R_{1}}$$

$$\frac{-v_o}{R_F} = \frac{v_I}{R_1} \Longrightarrow v_o = -v_I \frac{R_F}{R_1}$$

Closed-Loop gain

$$\frac{v_o}{v_I} = -\frac{R_F}{R_1} = G$$

Observe that the closed-loop gain is the ratio of external components → we can make the closed-loop as accurate as we want. Gain is smaller but more accurate.

We assumed that the OP-amp was ideal. If we assume that the gain A is finite = A

$$(v_2 - v_1)A = v_o \Longrightarrow v_1 = -v_o / A$$

$$i_1 = \frac{v_{in} - (-v_o/A)}{R_1} = \frac{v_{in} + v_o/A}{R_1}$$

Still assume infinite input impedance

$$v_{o} = -\frac{v_{o}}{A} - iR_{F} = -\frac{v_{o}}{A} - \frac{(v_{i} + v_{o}/A)R_{F}}{R_{1}}$$

$$G = \frac{v_{o}}{v_{I}} = \frac{-R_{F}/R_{1}}{(1 + R_{F}/R_{1})/A} = \frac{-AR_{F}}{R_{1}(1 + A) + R_{F}}$$

$$G = \frac{-AR_F}{R_1(1+A) + R_F}$$

Closed-loop gain for inverting configuration

The reflected impedance of R_F is given by

$$R_{R} = \frac{v_{1}}{i_{1}} = \frac{-(v_{o}/A)R_{1}}{\frac{v_{o}}{G} + v_{o}/A}$$

$$R_R = \frac{-R_1}{1 + \frac{A}{G}}$$
 since $\frac{A}{G} = -1 - \frac{-R_1}{R_F}(1 + A)$

$$R_R = \frac{R_F}{1+A}$$

→ small

Since the reflected impedance is so small, v_1 is thus very small and the inverting terminal is said to be a virtual ground in this configuration

we see that
$$as\ A \to \infty,\ G \to -\frac{R_F}{R_1}$$
 $as\ A \to \infty,\ R_R \to 0$

Note: To minimize the closed-loop gain (G) on the value of the open-loop gain (A), make $1+R_P/R_1 << A$

Input and Output Impedances

Inverting Configuration

$$R_i \equiv \frac{v_I}{i_1} = \frac{v_I}{v_I / R_1} = R_1$$

- If high gain is required, input impedance will be low
- Output impedance is zero

Example

Find closed-loop gain for $A=10^3$, $A=10^4$ and $A=10^5$ assuming $R_1=1$ k Ω and $R_F=100$ k Ω . Assuming $V_I=0.1$ V, find V_1 .

Using formulas

<u>A</u>	G	<u>V</u> 1
10 ³	90.83	-9.08 mV
104	99.00	-0.99 mV
10 ⁵	99.90	-0.1 mV

Note: Since output of inverting configuration is at terminal of VCVS, output impedance of closed-loop amp is zero.

Assume gain is
$$\infty \Longrightarrow v_{ID} = \frac{v_o}{A} \longrightarrow 0$$

$$v_{ID} = 0 \Rightarrow v_1 \approx v_2 \Rightarrow virtual \ short$$

Infinite input impedance $\Rightarrow i_1 = 0$

Therefore
$$\frac{v_1 - v_o}{R_F} = \frac{0 - v_1}{R_a}$$

$$\frac{v_1(R_a + R_F)}{R_a} = v_o$$

Virtual short
$$\implies v_2 = v_I = v_1$$

$$v_I \frac{\left(R_a + R_F\right)}{R_a} = v_o$$

$$G = \frac{v_o}{v_I} = 1 + \frac{R_F}{R_a}$$

$$G = 1 + \frac{R_F}{R_a}$$

The Buffer Stage

If
$$R_F \to 0$$
, $G = 1 + \frac{R_F}{R_a} \to 1$

Although voltage gain is low, current gain can be quite high. Buffer stage can be used to interface between processors and switches.

The Voltage Follower

- Unity gain amplifier
- 100% negative feedback

$$R_{in}=\infty$$

$$R_{out} = 0$$