ECE 342 Electronic Circuits

Lecture 31 Operational Amplifiers - 2

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@Illinois.edu

No feedback

A(f)

 A_{MBOa}

 f_{20a}

 GBW_{oa}

with feedback

 $A_{ni}(f)$

 A_{MBni}

 f_{2ni}

 GBW_{ni}

description

Gain

Midband gain

3 dB freq pt

Gain-BW prod

$$A_{MBni} = \frac{A_{MBoa}}{1 + A_{MBoa}F}$$

$$F = \frac{R_a}{R_a + R_F}$$

If
$$A_{MBoa}F \approx 1$$
,

$$A_{MBni} = \frac{1}{F} = \frac{R_a + R_F}{R_a} = 1 + \frac{R_F}{R_a}$$

$$A_{ni}(f) = \frac{A}{1 + AF}$$

$$A(f) = \frac{A_{MBoa}}{1 + jf / f_{2oa}}$$

$$A_{ni}(f) = \frac{A_{MBoa}}{1 + A_{MBoa}F} \cdot \frac{1}{1 + j\frac{f}{(1 + A_{MBoa}F)f_{2oa}}}$$

$$A_{MBni} = \frac{A_{MBoa}}{1 + A_{MBoa}F}$$

$$f_{2ni} = f_{2oa} \left(1 + A_{MBoa} F \right)$$

$$A_{ni}(f) = \frac{A_{MBni}}{1 + jf / f_{2ni}}$$

$$GBW_{ni} = A_{MBni} f_{2ni} = \frac{A_{MBoa}}{1 + A_{MBoa} F} \cdot f_{2oa} (1 + A_{MBoa} F)$$

$$GBW_{ni} = A_{MBni} f_{2ni} = A_{MBoa} f_{2oa} = GBW_{oa}$$

Gain-Bandwidth product is constant

Midband voltage gain is reduced from A_{MBoa} to A_{MBni}

The upper 3-dB frequency will be greater than that of the op amp by the same factor of gain reduction.

If the low-frequency gain of the op amp is A_{MBoa} = 200,000 and with resistors A_{MBni} = 40, the gain is reduced by a factor of 5,000. If the basic 3-db frequency is 5 Hz, the noninverting 3dB frequency will be 25 kHz.

$$A_{i} = \frac{-AR_{F}}{R_{1}(1+A) + R_{F}}$$

Using
$$A = \frac{A_{MBoa}}{1 + jf / f_{2oa}}$$

$$A_{i} = \frac{-A_{MBoa}R_{F}}{R_{1}(1 + A_{MBoa}) + R_{F} + j(R_{1} + R_{F})f/f_{2oa}}$$

Using
$$R_1 (A_{MBoa} + 1) \approx R_1 A_{MBoa}$$

and neglecting R_F

$$A_{i} = \frac{R_{F}}{R_{1}} \cdot \frac{1}{1 + j \frac{f}{f_{2oa} (1 + A_{MBoa} R_{1} / [R_{1} + R_{F}])}}$$

$$A_{MBi} = \frac{-R_F}{R_1}$$

$$f_{2i} = f_{2oa} (1 + A_{MBoa} R_1 / [R_1 + R_F])$$

$$A_{MBi} f_{2i} = f_{2oa} \left(1 + A_{MBoa} \frac{R_1}{R_1 + R_F} \right) \left(\frac{-R_F}{R_1} \right)$$

$$A_{MBi}f_{2i} = -f_{2oa} \left(1 + A_{MBoa} \frac{R_F}{R_1 + R_F} \right)$$

$$A_{MBi}f_{2i} \approx -f_{2oa}A_{MBoa}$$

if
$$R_F >> R_1$$

$$A_{i}(f) = \frac{A_{MBi}}{1 + jf / f_{2i}}$$

if $R_F >> R_1$ gain-bandwidth is constant

if
$$R_F \sim R_1$$
,

$$GBW_i = |A_{MBi}| f_{2i} \approx A_{MBoa} f_{2oa} \frac{R_F}{R_F + R_1}$$

$$GBW_i \approx GBW_{oa} \frac{R_F}{R_F + R_1}$$

$$f_{2i} = GBW_{oa} \frac{R_F}{R_F + R_1} \cdot \frac{1}{|A_{MBi}|} = \frac{GBW_{oa}R_1}{R_F + R_1}$$

Example

Design an amplifier to couple a microphone to a resistive load. The microphone generates a peak output of 50 mV for a typical voice input level and has a 10-k Ω output impedance. The output voltage across the 2-k Ω load is to have a peak value of 10 V. the bandwidth of the voltage gain should be at least 40 kHz. If the GBW of the op amp used is 3×10^6 Hz, calculate the bandwidth of the final design

The midband voltage gain is:

$$A_{MBo} = \frac{10}{0.05} = 200$$

For a single noninverting stage with this gain, the upper corner frequency is:

$$f_{2ni} = \frac{GBW_{ni}}{A_{MBni}} = \frac{GBW_{oa}}{A_{MBni}} = \frac{3 \times 10^6}{200} = 15 \text{ kHz}$$

Example (cont')

This value of BW will not work → need 2 stages

Pick first stage gain 10; second stage gain 20. We must then have:

$$1 + \frac{R_{F2}}{R_{22}} = 20 \qquad \text{and} \qquad 1 + \frac{R_{F1}}{R_{21}} = 10$$

Example (cont')

Choose R_{21} and R_{22} arbitrarily and use above equations to extract R_{F1} and R_{F2} ; we get:

$$R_{F1}$$
= 18 k Ω , R_{F2} = 38 k Ω

Next, find 3-dB bandwidth of each stage by dividing respective gains into GBW_{oa} or GBW_{ni}

$$f_{2ni1} = \frac{3 \times 10^6}{10} = 300 \, kHz$$

$$f_{2ni2} = \frac{3 \times 10^6}{20} = 150 \, kHz$$

Example (cont')

The overall gain is:

$$A_o(\omega) = \frac{10}{1 + jf/3 \times 10^5} \frac{20}{1 + jf/1.5 \times 10^5}$$

At 3dB point, magnitude squared of denominator must be 2

$$2 = \left(1 + \frac{f_{2o}^2}{9 \times 10^{10}}\right) \left(1 + \frac{f_{2o}^2}{2.25 \times 10^{10}}\right)$$

From which

$$f_{20} = 126 \, kHz$$

