ECE 342 Electronic Circuits

Lecture 33 CMOS Characteristics

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@Illinois.edu

Digital Circuits

 V_{IH} : Input voltage at high state $\rightarrow V_{IHmin}$

 V_{IL} : Input voltage at low state $\rightarrow V_{ILmax}$

 V_{OH} : Output voltage at high state $\rightarrow V_{OHmin}$

 V_{OL} : Output voltage at low state $\rightarrow V_{OLmin}$

Likewise for current we can define

Currents into input

$$I_{IH} \longleftrightarrow I_{IHmax}$$
 $I_{II} \longleftrightarrow I_{II max}$

Currents into output

$$I_{OH} \longleftrightarrow I_{OHmax}$$
 $I_{OL} \longleftrightarrow I_{OLmax}$

Voltage Transfer Characteristics (VTC)

The static operation of a logic circuit is determined by its VTC

 In low state: noise margin is NM_L

$$NM_L = V_{IL} - V_{OL}$$

• In high state: noise margin is NM_H

$$NM_H = V_{OH} - V_{IH}$$

An ideal VTC will maximize noise margins

 V_{IL} and V_{IH} are the points where the slope of the VTC=-1

Optimum:
$$NM_L = NM_H = V_{DD} / 2$$

Switching Time & Propagation Delay

Switching Time & Propagation Delay

 t_r =rise time (from 10% to 90%) t_f =fall time (from 90% to 10%) t_{pLH} =low-to-high propagation delay t_{pHL} =high-to-low propagation delay

Inverter propagation delay:
$$t_p = \frac{1}{2} \left(t_{pLH} + t_{pHL} \right)$$

VTC and Noise Margins

For a logic-circuit family employing a 3-V supply, suggest an ideal set of values for V_{th} , V_{IL} , V_{IH} , V_{OH} , NM_L , NM_H . Also, sketch the VTC. What value of voltage gain in the transition region does your ideal specification imply?

Ideal 3V logic implies:

$$V_{OH} = V_{DD} = 3.0V;$$
 $V_{OL} = 0.0V$

$$V_{th} = V_{DD} / 2 = 3.0 / 2 = 1.5V;$$

$$V_{IL} = V_{DD} / 2 = 1.5V$$
; $V_{IH} = V_{DD} / 2 = 1.5V$

VTC and Noise Margins

$$NM_H = V_{OH} - V_{IH} = 3.0 - 1.5 = 1.5V$$

$$NM_L = V_{IL} - V_{OL} = 1.5 - 0.0 = 1.5V$$

Inverting transfer characteristics

The gain in the transition region is:

$$(V_{OH} - V_{OL}) / (V_{IH} - V_{IL}) = (3.0 - 0.0) / (1.5 - 1.5)$$

$$=3/0=\infty V/V$$

CMOS Noise Margins

When inverter threshold is at $V_{DD}/2$, the noise margin NM_H and NM_L are equalized

$$NM_{H} = NM_{L} = \frac{3}{8} \left(V_{DD} + \frac{2}{3} V_{th} \right)$$

 NM_{H} noise margin for high input

 NM_L : noise margin for low input

 V_{th} : threshold voltage

Noise margins are typically around 0.4 V_{DD} ; close to half power-supply voltage \rightarrow CMOS ideal from noise-immunity standpoint

CMOS Inverter VTC

CMOS Inverter VTC

Derivation

- Assume that transistors are matched
- ▶ Vertical segment of VTC is when both Q_N and Q_P are saturated
- ightharpoonup No channel length modulation effect ightharpoonup $\lambda = 0$
- \triangleright Vertical segment occurs at $v_i = V_{DD}/2$
- $\triangleright V_{IL}$: maximum permitted logic-0 level of input (slope=-1)
- $\triangleright V_{IH}$: minimum permitted logic-1 level of input (slope=-1)

To determine V_{IH} , assume Q_N in triode region and Q_P in saturation region

$$(v_I - V_t)v_o - \frac{1}{2}v_o^2 = \frac{1}{2}(V_{DD} - v_I - V_t)^2$$

Next, we differentiate both sides relative to v_i

$$(v_{I} - V_{t}) \frac{dv_{o}}{dv_{I}} + v_{o} - v_{o} \frac{dv_{o}}{dv_{I}} = -(V_{DD} - v_{I} - V_{t})$$

CMOS Inverter VTC

Substitute $v_i = V_{IH}$ and $dv_o/dv_i = -1$

$$v_o = V_{IH} - \frac{V_{DD}}{2}$$

After substitutions, we get

$$V_{IH} = \frac{1}{8} \left(5V_{DD} - 2V_t \right)$$

Same analysis can be repeated for V_{IL} to get

$$V_{IL} = \frac{1}{8} (3V_{DD} + 2V_t)$$

CMOS Inverter Noise Margins

$$V_{IH} = \frac{1}{8} \left(5V_{DD} - 2V_t \right)$$

$$V_{IL} = \frac{1}{8} (3V_{DD} + 2V_t)$$

$$NM_H = \frac{1}{8} \left(3V_{DD} + 2V_t \right)$$

$$NM_L = \frac{1}{8} \left(3V_{DD} + 2V_t \right)$$

Symmetry in VTC → equal noise margins

Matched CMOS Inverter VTC

CMOS inverter can be made to switch at specific threshold voltage by appropriately sizing the transistors

$$\left(\frac{W}{L}\right)_p = \frac{\mu_n}{\mu_p} \left(\frac{W}{L}\right)_n$$

Symmetrical transfer characteristics is obtained via matching → equal current driving capabilities in both directions (pull-up and pull-down)

VTC and Noise Margins - Problem

An inverter is designed with equal-sized NMOS and PMOS transistors and fabricated in a 0.8-micron CMOS technology for which k_n ' = 120 μ A/V², k_p ' = 60 μ A/V², $V_{tn} = |V_{tp}| = 0.7$ V, $V_{DD} = 3$ V, $L_n = L_p = 0.8$ μ m, $W_n = W_p = 1.2$ μ m, find V_{IL} , V_{IH} and the noise margins.

Equal sizes NMOS and PMOS, but $k_n'=2k_p'$

$$V_{t} = 0.7 \text{V}$$

For V_{IH} : $\mathbf{Q_N}$ in triode and $\mathbf{Q_P}$ in saturation

$$k'_{n} \left(\frac{W}{L}\right)_{n} \left[(V_{I} - V_{t}) V_{o} - \frac{1}{2} V_{o}^{2} \right] = \frac{1}{2} k'_{p} \left(\frac{W}{L}\right)_{p} (V_{DD} - V_{I} - V_{t})^{2}$$

$$4(V_I - V_t)V_o - 2V_o^2 = (V_{DD} - V_I - V_t)^2$$
 (1)

Differentiating both sides relative to V_I results in:

$$\frac{\partial}{\partial V_I}: 4(V_I - V_t) \frac{\partial V_o}{\partial V_I} + 4V_o - 4V_o \frac{\partial V_o}{\partial V_I} = 2(V_{DD} - V_I - V_t)(-1)$$

Substitute the values together with:

$$V_I = V_{IH}$$
 and $\frac{\partial V_o}{\partial V_I} = -1$

$$4(V_{IH} - 0.7)(-1) + 4V_o + 4V_o = 2(V_{IH} - 3 + 0.7)$$

$$V_{IH} = \frac{8V_o + 7.4}{6} = 1.33V_o + 1.23 \tag{2}$$

From (1):
$$4(V_{IH} - 0.7)V_o - 2V_o^2 = (3 - V_{IH} - 0.7)^2$$

$$4(V_{IH} - 0.7)V_o - 2V_o^2 = (2.3 - V_{IH})^2$$
 (3)

solving (2) & (3):
$$1.55V_o^2 + 4.97V_o - 1.14 = 0$$

$$\Rightarrow V_o = 0.22 V$$
 $V_{IH} = 1.52 V$

For V_{IL} : Q_N is in saturation and Q_P in triode

$$\frac{1}{2}k_{n}'\left(\frac{W}{L}\right)_{n}(V_{I}-V_{t})^{2}=k_{p}'\left(\frac{W}{L}\right)_{p}\left[(V_{DD}-V_{I}-V_{t})(V_{DD}-V_{o})-\frac{1}{2}(V_{DD}-V_{o})^{2}\right]$$

$$(V_I - 0.7)^2 = (3 - V_I - 0.7)(3 - V_o) - \frac{1}{2}(3 - V_o)^2$$
 (1)

$$(V_I - 0.7)^2 = (2.3 - V_I)(3 - V_o) - \frac{1}{2}(3 - V_o)^2$$

$$\frac{\partial}{\partial V_I} \Rightarrow 2(V_I - 0.7) = (2.3 - V_I) \left(-\frac{\partial V_o}{\partial V_I} \right) - (3 - V_o) + (3 - V_o) \frac{\partial V_o}{\partial V_I}$$

$$V_I = V_{IL}$$
 and $\frac{\partial V_o}{\partial V_I} = -1$

$$2V_{IL} - 1.4 = 2.3 - V_{IL} - 3 + V_o + 3 + V_o$$

$$V_{IL} = \frac{2}{3}V_o - 1.15$$

From (1):
$$(V_{IL} - 0.7)^2 = (2.3 - V_{IL})(3 - V_o) - \frac{1}{2}(3 - V_o)^2$$

$$(0.66V_o - 1.85)^2 = (3.45 - 0.66V_o)(3 - V_o) - \frac{1}{2}(3 - V_o)^2$$

$$V_o = 2.96 V$$

$$V_{IL} = 0.81 V$$

Noise Margins:

$$NM_H = 3 - 1.52 = 1.48 V$$

$$NM_L = 0.81 - 0 = 0.81 V$$

Since Q_N and Q_P are not matched, the VTC is not symmetric