ECE 342 Electronic Circuits

Lecture 34 CMOS Delay Model

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@Illinois.edu

Digital Circuits

 V_{IH} : Input voltage at high state $\rightarrow V_{IHmin}$

 V_{IL} : Input voltage at low state $\rightarrow V_{ILmax}$

 V_{OH} : Output voltage at high state $\rightarrow V_{OHmin}$

 V_{OL} : Output voltage at low state $\rightarrow V_{OLmin}$

Likewise for current we can define

Currents into input

$$I_{IH} \longleftrightarrow I_{IHmax}$$
 $I_{II} \longleftrightarrow I_{II max}$

Currents into output

$$I_{OH} \longleftrightarrow I_{OHmax}$$
 $I_{OL} \longleftrightarrow I_{OLmax}$

Voltage Transfer Characteristics (VTC)

The static operation of a logic circuit is determined by its VTC

 In low state: noise margin is NM_L

$$NM_L = V_{IL} - V_{OL}$$

• In high state: noise margin is NM_H

$$NM_H = V_{OH} - V_{IH}$$

An ideal VTC will maximize noise margins

 V_{IL} and V_{IH} are the points where the slope of the VTC=-1

Optimum:
$$NM_L = NM_H = V_{DD} / 2$$

CMOS Inverter VTC

CMOS Inverter VTC

Derivation

- Assume that transistors are matched
- ▶ Vertical segment of VTC is when both Q_N and Q_P are saturated
- ightharpoonup No channel length modulation effect ightharpoonup $\lambda = 0$
- \triangleright Vertical segment occurs at $v_i = V_{DD}/2$
- $\triangleright V_{IL}$: maximum permitted logic-0 level of input (slope=-1)
- $\triangleright V_{IH}$: minimum permitted logic-1 level of input (slope=-1)

CMOS inverter can be made to switch at $V_{DD}/2$ by appropriate sizing

$$\text{LOGIC Threshold: } V_{M} = V_{th} = \frac{V_{DD} - \left|V_{tp}\right| + \sqrt{k_{n} \, / \, k_{p}} V_{tn}}{1 + \sqrt{k_{n} \, / \, k_{p}}}$$

where
$$k_n = k'_n (W/L)_n$$
 and $k_p = k'_p (W/L)_p$

Matched CMOS Inverter VTC

CMOS inverter can be made to switch at specific threshold voltage by appropriately sizing the transistors

$$\left(\frac{W}{L}\right)_p = \frac{\mu_n}{\mu_p} \left(\frac{W}{L}\right)_n$$

Symmetrical transfer characteristics is obtained via matching → equal current driving capabilities in both directions (pull-up and pull-down)

Switching Time & Propagation Delay

Switching Time & Propagation Delay

 t_r =rise time (from 10% to 90%) t_f =fall time (from 90% to 10%) t_{pLH} =low-to-high propagation delay t_{pHL} =high-to-low propagation delay

Inverter propagation delay:
$$t_p = \frac{1}{2} \left(t_{pLH} + t_{pHL} \right)$$

- Exact analysis is too tedious
- ➤ Replace all the capacitances in the circuit by a single equivalent capacitance *C* connected between the output node of the inverter and ground
- Analyze capacitively loaded inverter to determine propagation delay

$$C = 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2} + C_{g3} + C_{g4} + C_{w}$$

Need interval t_{PHL} during which v_o reduces from V_{DD} to $V_{DD}/2$

$$I_{av}t_{PHL} = C\left[V_{DD} - (V_{DD} / 2)\right]$$

Which gives

$$t_{PHL} = \frac{CV_{DD}}{2I_{av}}$$

I_{av} is given by

$$I_{av} = \frac{1}{2} \left[i_{DN} \left(E \right) + i_{DN} \left(M \right) \right]$$

where

$$i_{DN}(E) = \frac{1}{2} k_n' \left(\frac{W}{L}\right)_n \left(V_{DD} - V_{tn}\right)^2$$

and

$$i_{DN}(M) = k_n' \left(\frac{W}{L}\right)_n \left[(V_{DD} - V_{tn}) \left(\frac{V_{DD}}{2}\right) - \frac{1}{2} \left(\frac{V_{DD}}{2}\right)^2 \right]$$

this gives

$$t_{PHL} = \frac{\alpha_{n}C}{k_{n}'(W/L)_{n}V_{DD}}$$

Where α_n is given by

$$\alpha_n = \frac{2}{\left[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + \left(\frac{V_{tn}}{V_{DD}}\right)^2\right]}$$

Likewise, t_{PLH} is given by

$$t_{PLH} = \frac{\alpha_{p}C}{k_{p}^{'}(W/L)_{p}V_{DD}} \quad \text{with} \quad \alpha_{p} = \frac{2}{\left[\frac{7}{4} - \frac{3|V_{tp}|}{V_{DD}} + \left|\frac{V_{tp}|}{V_{DD}}\right|^{2}\right]}$$

Propagation delay, t_p is given by

$$t_P = \frac{1}{2} \left(t_{PHL} + t_{PLH} \right)$$

- Components can be equalized by matching transistors
- $\succ t_P$ is proportional to $C \rightarrow$ reduce capacitance
- \triangleright Larger V_{DD} means lower t_p
- Conflicting requirements exist

CMOS – Propagation Delay

CMOS – Propagation Delay

Capacitance C is the sum of:

- Internal capacitances of Q_N and Q_P
- Interconnect wire capacitance
- Input of the other logic gate

$$t_{PHL} = \frac{1.6C}{k'_n \left(W/L\right)_n V_{DD}}$$

To lower propagation delay

- Minimize C
- Increase process transconductance k'
- Increase W/L
- Increase V_{DD}

Propagation Delay - Example

Find the propagation delay for a minimum-size inverter for which k_n '=3 k_p '=180 μ A/V² and $(W/L)_n = (W/L)_p$ =0.75 μ m/0.5 μ m, V_{DD} = 3.3 V, V_{tn} = - V_{tp} = 0.7 V, and the capacitance is roughly 2fF/mm of device width plus 1 fF/device. What does t_p become if the design is changed to a matched one? Use the method of average current.

Solution

$$\alpha_{n} = 2 / \left[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + \left(\frac{V_{tn}}{V_{DD}} \right)^{2} \right] = 2 / \left[\frac{7}{4} - \frac{3 \times 0.7}{3.3} + \left(\frac{0.7}{3.3} \right)^{2} \right] = 1.73$$

$$t_{PHL} = \frac{\alpha_{n}C}{k_{n}'(W/L)_{n}V_{DD}} = \frac{1.73 \times (2fF \times 0.75 + 1fF)}{180 \times 10^{-6} \times \frac{0.75}{0.5} \times 3.3}$$

Propagation Delay - Example

$$t_{PHL} = 4.85 \ ps$$

Since
$$V_{tn} = |V_{tp}|$$
, then $\alpha_n = \alpha_p = 1.73$

We also have
$$\left(\frac{W}{L}\right)_n = \left(\frac{W}{L}\right)_p$$
, hence

$$t_{PLH} = t_{PHL} \times \frac{k_n'}{k_p'} = 4.85 \times 3 = 14.55 \ ps$$

$$t_p = \frac{1}{2} (t_{PHL} + t_{PLH}) = \frac{1}{2} (4.85 + 14.55) = 9.7 \ ps$$

Propagation Delay - Example

If both devices are matched, then

$$k_p' = k_n'$$

$$t_{PLH} = t_{PHL}$$

and

$$t_p = \frac{1}{2} (t_{PHL} + t_{PLH}) = t_{PHL} = 4.85 \ ps$$

CMOS – Dynamic Power Dissipation

In every cycle

- $-Q_N$ dissipate ½ CV_{DD}^2 of energy
- Q_P dissipate $\frac{1}{2} CV_{DD}^2$ of energy
- Total energy dissipation is CV_{DD}^{2}

If inverter is switched at f cycles per second, dynamic power dissipation is: $P_D = fCV_{DD}^2$

In this problem, we estimate the inverter power dissipation resulting from the current pulse that flows in Q_N and Q_P when the input pulse has finite rise and fall times. Let V_{tn} =- V_{tp} =0.5 V, V_{DD} = 1.8V, and k_n = k_p =450 μ A/V². Let the input rising and falling edges be linear ramps with the 0-to- V_{DD} and V_{DD} -to-0 transitions taking 1 ns each. Find I_{peak} .

13.44

To determine the energy drawn from the supply per transition, assume that the current pulse can be approximated by a triangle with a base corresponding to the time for the rising or falling edge to go from V_t to V_{DD} - V_t , and the height equal to I_{peak} . Also, determine the power dissipation that results when the inverter is switched at 100 MHz.

$$I_{Peak} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_n \left(\frac{V_{DD}}{2} - V_{tn} \right)^2$$

$$I_{Peak} = \frac{1}{2} 450 \frac{\mu A}{V^2} \left(\frac{1.8}{2} - 0.5 \right)^2 = 36 \mu A$$

The time when the input reaches V_t is:

$$\frac{0.5}{1.8} \times 1 \text{ ns} = 0.28 \text{ ns}$$

The time when the input reaches V_{DD} - V_t is:

$$\frac{1.8 - 0.5}{1.8} \times 1 \text{ ns} = 0.72 \text{ ns}$$

The base of the triangle is

$$\Delta t = 0.72 - 0.28 = 0.44$$
 ns wide

$$E = \frac{1}{2}I_{Peak} \times V_{DD} \times \Delta t = \frac{1}{2} \times 36 \mu A \times 1.8 \times 0.44 \text{ ns}$$

$$E = 14.3 \, fJ$$

$$P = f \times E = 100 \times 10^6 \times 14.3 \times 10^{-15} = 1.43 \ \mu W$$

