ECE 342
Electronic Circuits

Lecture 34
CMOS Delay Model

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu
Digital Circuits

V_{IH}: Input voltage at high state $\Rightarrow V_{IHmin}$

V_{IL}: Input voltage at low state $\Rightarrow V_{ILmax}$

V_{OH}: Output voltage at high state $\Rightarrow V_{OHmin}$

V_{OL}: Output voltage at low state $\Rightarrow V_{OLmin}$

Likewise for current we can define

Currents into input

$\begin{align*}
I_{IH} & \leftrightarrow I_{IHmax} \\
I_{IL} & \leftrightarrow I_{ILmax}
\end{align*}$

Currents into output

$\begin{align*}
I_{OH} & \leftrightarrow I_{OHmax} \\
I_{OL} & \leftrightarrow I_{OLmax}
\end{align*}$
The static operation of a logic circuit is determined by its VTC

- In low state: noise margin is N_{ML}

\[N_{ML} = V_{IL} - V_{OL} \]

- In high state: noise margin is N_{MH}

\[N_{MH} = V_{OH} - V_{IH} \]

- An ideal VTC will maximize noise margins

\[N_{ML} = N_{MH} = V_{DD} / 2 \]

V_{IL} and V_{IH} are the points where the slope of the VTC=-1
CMOS Inverter VTC

Q_P and Q_N are matched
CMOS Inverter VTC

Derivation

- Assume that transistors are matched
- Vertical segment of VTC is when both Q_N and Q_P are saturated
- No channel length modulation effect $\Rightarrow \lambda = 0$
- Vertical segment occurs at $v_i = V_{DD}/2$
- V_{IL}: maximum permitted logic-0 level of input (slope=-1)
- V_{IH}: minimum permitted logic-1 level of input (slope=-1)

CMOS inverter can be made to switch at $V_{DD}/2$ by appropriate sizing

LOGIC Threshold:

$$V_M = V_{th} = \frac{V_{DD} - |V_{tp}| + \sqrt{k_n/k_p} V_{tn}}{1 + \sqrt{k_n/k_p}}$$

where

$$k_n = k_n' \left(\frac{W}{L} \right)_n \quad \text{and} \quad k_p = k_p' \left(\frac{W}{L} \right)_p$$
Matched CMOS Inverter VTC

CMOS inverter can be made to switch at specific threshold voltage by appropriately sizing the transistors.

\[
\left(\frac{W}{L} \right)_p = \frac{\mu_n}{\mu_p} \left(\frac{W}{L} \right)_n
\]

Symmetrical transfer characteristics is obtained via matching equal current driving capabilities in both directions (pull-up and pull-down).
Switching Time & Propagation Delay

- Input
- Output

- v_I
- v_{IH}
- $(v_{IL} + v_{IH})/2$
- v_{IL}
- v_o
- v_{oH}
- $(v_{oL} + v_{oH})/2$
- v_{oL}
- t_r
- t_{pHL}
- t_{THL}
- t_f
- t_{pLH}
- t_{TLH}
Switching Time & Propagation Delay

\[t_r = \text{rise time (from 10\% to 90\%)} \]
\[t_f = \text{fall time (from 90\% to 10\%)} \]
\[t_{pLH} = \text{low-to-high propagation delay} \]
\[t_{pHL} = \text{high-to-low propagation delay} \]

Inverter propagation delay:

\[t_p = \frac{1}{2} (t_{pLH} + t_{pHL}) \]
CMOS Dynamic Operation

- Exact analysis is too tedious
- Replace all the capacitances in the circuit by a single equivalent capacitance C connected between the output node of the inverter and ground
- Analyze capacitively loaded inverter to determine propagation delay
CMOS – Dynamic Operation

\[C = 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2} + C_{g3} + C_{g4} + C_w \]
CMOS – Dynamic Operation

(a) CMOS circuit diagram

(b) Waveform diagram for input and output voltages

(c) Graph showing dynamic operation with key points labeled

(d) Simplified diagram of a CMOS circuit element

Operating point at $t = 0^+$

Capacitor discharge through Q_N

Operating point after switching is completed

$v_{GSN} = V_{DD}$

Operating point at $t = 0^-$

$V_{DD} - V_I$
CMOS Dynamic Operation

Need interval t_{PHL} during which v_o reduces from V_{DD} to $V_{DD}/2$

$$I_{av}t_{PHL} = C \left[V_{DD} - \left(\frac{V_{DD}}{2} \right) \right]$$

Which gives

$$t_{PHL} = \frac{C V_{DD}}{2 I_{av}}$$

I_{av} is given by

$$I_{av} = \frac{1}{2} \left[i_{DN}(E) + i_{DN}(M) \right]$$
CMOS Dynamic Operation

where

\[i_{DN}(E) = \frac{1}{2} k'_n \left(\frac{W}{L} \right)_n (V_{DD} - V_{tn})^2 \]

and

\[i_{DN}(M) = k'_n \left(\frac{W}{L} \right)_n \left[(V_{DD} - V_{tn}) \left(\frac{V_{DD}}{2} \right) - \frac{1}{2} \left(\frac{V_{DD}}{2} \right)^2 \right] \]

this gives

\[t_{PHL} = \frac{\alpha_n C}{k'_n \left(\frac{W}{L} \right)_n V_{DD}} \]
CMOS Dynamic Operation

Where α_n is given by

$$\alpha_n = \sqrt{\frac{2}{\frac{7}{4} - \frac{3}{V_{tn}} + \left(\frac{V_{tn}}{V_{DD}}\right)^2}}$$

Likewise, t_{PLH} is given by

$$t_{PLH} = \frac{\alpha_p C}{k_p \left(W / L\right)_p V_{DD}}$$

with

$$\alpha_p = \sqrt{\frac{2}{\frac{7}{4} - \frac{3}{V_{tp}} + \left|\frac{V_{tp}}{V_{DD}}\right|^2}}$$
CMOS Dynamic Operation

Propagation delay, t_p is given by

$$t_p = \frac{1}{2} (t_{PHL} + t_{PLH})$$

- Components can be equalized by matching transistors
- t_p is proportional to C \Rightarrow reduce capacitance
- Larger V_{DD} means lower t_p
- Conflicting requirements exist
CMOS – Propagation Delay

\[V_{DD} \]

\(t \)

\(V_{DD} \)

\(t_{PLH} \)

\(V_{DD} \)

\(t_{PHL} \)

\(Q_1 \)

\(Q_2 \)

\[V_{DD} \]

\[0 \]

\[0 \]

\[t \]
CMOS – Propagation Delay

Capacitance C is the sum of:
- Internal capacitances of Q_N and Q_P
- Interconnect wire capacitance
- Input of the other logic gate

$$t_{PHL} = \frac{1.6C}{k' \left(\frac{W}{L} \right)_n V_{DD}}$$

To lower propagation delay
- Minimize C
- Increase process transconductance k'
- Increase W/L
- Increase V_{DD}
Propagation Delay - Example

Find the propagation delay for a minimum-size inverter for which $k_n' = 3k_p' = 180 \ \mu A/V^2$ and $(W/L)_n = (W/L)_p = 0.75 \ \mu m/0.5 \ \mu m$, $V_{DD} = 3.3 \ V$, $V_{tn} = -V_{tp} = 0.7 \ V$, and the capacitance is roughly $2fF/mm$ of device width plus $1 \ fF/device$. What does t_p become if the design is changed to a matched one? Use the method of average current.

Solution

$$\alpha_n = 2 \sqrt{\left[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + \left(\frac{V_{tn}}{V_{DD}} \right)^2 \right]} = 2 \sqrt{\left[\frac{7}{4} - \frac{3 \times 0.7}{3.3} + \left(\frac{0.7}{3.3} \right)^2 \right]} = 1.73$$

$$t_{PHL} = \frac{\alpha_n C}{k_n'(W/L)_n V_{DD}} = \frac{1.73 \times (2 fF \times 0.75 + 1 fF)}{180 \times 10^{-6} \times \frac{0.75}{0.5} \times 3.3}$$
Propagation Delay - Example

\[t_{PHL} = 4.85 \text{ ps} \]

Since \(V_{tn} = \left| V_{tp} \right| \), then \(\alpha_n = \alpha_p = 1.73 \)

We also have \(\left(\frac{W}{L} \right)_n = \left(\frac{W}{L} \right)_p \), hence

\[t_{PLH} = t_{PHL} \times \frac{k_n'}{k_p'} = 4.85 \times 3 = 14.55 \text{ ps} \]

\[t_p = \frac{1}{2} \left(t_{PHL} + t_{PLH} \right) = \frac{1}{2} \left(4.85 + 14.55 \right) = 9.7 \text{ ps} \]
Propagation Delay - Example

If both devices are matched, then

\[k'_p = k'_n \]

\[t_{PLH} = t_{PHL} \]

and

\[t_p = \frac{1}{2} (t_{PHL} + t_{PLH}) = t_{PHL} = 4.85 \text{ ps} \]
CMOS – Dynamic Power Dissipation

In every cycle

- Q_N dissipate $\frac{1}{2} CV_{DD}^2$ of energy
- Q_P dissipate $\frac{1}{2} CV_{DD}^2$ of energy
- Total energy dissipation is CV_{DD}^2

If inverter is switched at f cycles per second, dynamic power dissipation is:

$$P_D = fCV_{DD}^2$$
Power Dissipation - Example

In this problem, we estimate the inverter power dissipation resulting from the current pulse that flows in Q_N and Q_P when the input pulse has finite rise and fall times. Let $V_{tn} = -V_{tp} = 0.5$ V, $V_{DD} = 1.8$ V, and $k_n = k_p = 450 \mu$A/V2. Let the input rising and falling edges be linear ramps with the 0-to-V_{DD} and V_{DD}-to-0 transitions taking 1 ns each. Find I_{peak}.

13.44
To determine the energy drawn from the supply per transition, assume that the current pulse can be approximated by a triangle with a base corresponding to the time for the rising or falling edge to go from V_t to $V_{DD}-V_t$, and the height equal to I_{peak}. Also, determine the power dissipation that results when the inverter is switched at 100 MHz.
Power Dissipation - Example

\[I_{Peak} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_n \left(\frac{V_{DD}}{2} - V_{tn} \right)^2 \]

\[I_{Peak} = \frac{1}{2} \cdot 450 \frac{\mu A}{V^2} \left(\frac{1.8}{2} - 0.5 \right)^2 = 36 \mu A \]
Power Dissipation - Example

The time when the input reaches V_t is:

$$\frac{0.5}{1.8} \times 1 \text{ ns} = 0.28 \text{ ns}$$

The time when the input reaches $V_{DD} - V_t$ is:

$$\frac{1.8 - 0.5}{1.8} \times 1 \text{ ns} = 0.72 \text{ ns}$$

The base of the triangle is

$$\Delta t = 0.72 - 0.28 = 0.44 \text{ ns wide}$$
Power Dissipation - Example

\[E = \frac{1}{2} I_{\text{peak}} \times V_{DD} \times \Delta t = \frac{1}{2} \times 36 \mu A \times 1.8 \times 0.44 \text{ ns} \]

\[E = 14.3 \text{ fJ} \]

\[P = f \times E = 100 \times 10^6 \times 14.3 \times 10^{-15} = 1.43 \mu W \]