ECE 342
Electronic Circuits

Lecture 35
CMOS Delay Model

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu
Digital Circuits

\(V_{IH} \): Input voltage at high state \(\Rightarrow V_{IH\text{min}} \)
\(V_{IL} \): Input voltage at low state \(\Rightarrow V_{IL\text{max}} \)
\(V_{OH} \): Output voltage at high state \(\Rightarrow V_{OH\text{min}} \)
\(V_{OL} \): Output voltage at low state \(\Rightarrow V_{OL\text{min}} \)

Likewise for current we can define

Currents into input

\[I_{IH} \leftrightarrow I_{IH\text{max}} \]
\[I_{IL} \leftrightarrow I_{IL\text{max}} \]

Currents into output

\[I_{OH} \leftrightarrow I_{OH\text{max}} \]
\[I_{OL} \leftrightarrow I_{OL\text{max}} \]
Voltage Transfer Characteristics (VTC)

The static operation of a logic circuit is determined by its VTC

- In low state: noise margin is NM_L

 \[NM_L = V_{IL} - V_{OL} \]

- In high state: noise margin is NM_H

 \[NM_H = V_{OH} - V_{IH} \]

- An ideal VTC will maximize noise margins

\[\text{Optimum: } NM_L = NM_H = \frac{V_{DD}}{2} \]

V_{IL} and V_{IH} are the points where the slope of the VTC = -1
Switching Time & Propagation Delay

Diagram showing the switching time and propagation delay with input and output signals.

- **Input**
 - v_I
 - v_{IH}
 - $(v_{IL} + v_{IH})/2$
 - v_{IL}
 - 10%
 - 90%
 - t_r
 - t_pHL

- **Output**
 - v_o
 - v_{oH}
 - $(v_{oL} + v_{oH})/2$
 - v_{oL}
 - 10%
 - 90%
 - t_{THL}
 - t_pLH
 - t_{TLH}
Switching Time & Propagation Delay

\[t_r = \text{rise time (from 10\% to 90\%)} \]
\[t_f = \text{fall time (from 90\% to 10\%)} \]
\[t_{pLH} = \text{low-to-high propagation delay} \]
\[t_{pHL} = \text{high-to-low propagation delay} \]

Inverter propagation delay:

\[t_p = \frac{1}{2} \left(t_{pLH} + t_{pHL} \right) \]
CMOS Dynamic Operation

- Exact analysis is too tedious
- Replace all the capacitances in the circuit by a single equivalent capacitance C connected between the output node of the inverter and ground
- Analyze capacitively loaded inverter to determine propagation delay
CMOS – Dynamic Operation

\[C = 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2} + C_{g3} + C_{g4} + C_w \]
CMOS – Dynamic Operation

(a) CMOS circuit diagram

(b) Voltage waveforms

(c) Voltage transfer characteristic

(d) Capacitor discharge through \(Q_N \)

Operating point at \(t = 0+ \)

Operating point at \(t = 0- \)

Operating point after switching is completed

\(v_{GSN} = V_{DD} \)
CMOS Dynamic Operation

Need interval t_{PHL} during which v_o reduces from V_{DD} to $V_{DD}/2$

$$I_{av} t_{PHL} = C \left[V_{DD} - \left(\frac{V_{DD}}{2} \right) \right]$$

Which gives

$$t_{PHL} = \frac{C V_{DD}}{2 I_{av}}$$

I_{av} is given by

$$I_{av} = \frac{1}{2} \left[i_{DN}(E) + i_{DN}(M) \right]$$
CMOS Dynamic Operation

where

\[i_{DN}(E) = \frac{1}{2} k'_n \left(\frac{W}{L} \right)_n (V_{DD} - V_{tn})^2 \]

and

\[i_{DN}(M) = k'_n \left(\frac{W}{L} \right)_n \left[(V_{DD} - V_{tn}) \left(\frac{V_{DD}}{2} \right) - \frac{1}{2} \left(\frac{V_{DD}}{2} \right)^2 \right] \]

this gives

\[t_{PHL} = \frac{\alpha_n C}{k'_n \left(\frac{W}{L} \right)_n V_{DD}} \]
CMOS Dynamic Operation

Where a is given by

$$\alpha_n = \frac{2}{\left[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + \left(\frac{V_{tn}}{V_{DD}} \right)^2 \right]}$$

Likewise, t_{PLH} is given by

$$t_{PLH} = \frac{\alpha_p C}{k_p \left(\frac{W}{L} \right)_p V_{DD}}$$

with

$$\alpha_p = \frac{2}{\left[\frac{7}{4} - \frac{3|V_{tp}|}{V_{DD}} + \left| \frac{V_{tp}}{V_{DD}} \right|^2 \right]}$$
CMOS Dynamic Operation

Where \(a \) is given by

\[
t_p = \frac{1}{2} (t_{PHL} + t_{PLH})
\]

- Components can be equalized by matching transistors
- \(t_p \) is proportional to \(C \) \(\Rightarrow \) reduce capacitance
- Larger \(V_{DD} \) means lower \(t_p \)
- Conflicting requirements exist
CMOS – Propagation Delay

\[V_{DD} \]

\[V_{DD} \]

\[V_{DD} \]

\[V_{DD} \]

\[0 \]

\[0 \]

\[t \]

\[t \]

\[t_{PHL} \]

\[t_{PLH} \]
CMOS – Propagation Delay

Capacitance C is the sum of:
- Internal capacitances of Q_N and Q_P
- Interconnect wire capacitance
- Input of the other logic gate

$$t_{PHL} = \frac{1.6C}{k_n'(W/L)_n V_{DD}}$$

To lower propagation delay
- Minimize C
- Increase process transconductance k'
- Increase W/L
- Increase V_{DD}
Propagation Delay - Example

Find the propagation delay for a minimum-size inverter for which \(k_n' = 3k_p' = 180 \) \(\mu A/V^2 \) and \((W/L)_n = (W/L)_p = 0.75 \) \(\mu m/0.5 \) \(\mu m \), \(V_{DD} = 3.3 \) V, \(V_{tn} = -V_{tp} = 0.7 \) V, and the capacitance is roughly \(2fF/mm \) of device width plus \(1fF/device \). What does \(t_p \) become if the design is changed to a matched one? Use the method of average current.

Solution

\[
\alpha_n = 2 \sqrt{\left[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + \left(\frac{V_{tn}}{V_{DD}} \right)^2 \right] = 2 \sqrt{\left[\frac{7}{4} - \frac{3 \times 0.7}{3.3} + \left(\frac{0.7}{3.3} \right)^2 \right] = 1.73}
\]

\[
t_{PHL} = \frac{\alpha_n C}{k_n' (W/L)_n V_{DD}} = \frac{1.73 \times (2fF \times 0.75 + 1fF)}{180 \times 10^{-6} \times \frac{0.75}{0.5} \times 3.3} = \text{13.38}
\]
Propagation Delay - Example

\[t_{PHL} = 4.85 \, \text{ps} \]

Since \(V_{tn} = |V_{tp}| \), then \(\alpha_n = \alpha_p = 1.73 \)

We also have \(\left(\frac{W}{L} \right)_n = \left(\frac{W}{L} \right)_p \), hence

\[t_{PLH} = t_{PHL} \times \frac{k'_n}{k_n} = 4.85 \times 3 = 14.55 \, \text{ps} \]

\[t_{PLH} = \frac{1}{2} \left(t_{PHL} + t_{PLH} \right) = \frac{1}{2} \left(4.85 + 14.55 \right) = 9.7 \, \text{ps} \]
Propagation Delay - Example

If both devices are matched, then

\[k_p' = k_n' \]

\[t_{PLH} = t_{PHL} \]

and

\[t_p = \frac{1}{2} (t_{PHL} + t_{PLH}) = t_{PHL} = 4.85 \text{ ps} \]
CMOS – Dynamic Power Dissipation

In every cycle

- \(Q_N \) dissipate \(\frac{1}{2} CV_{DD}^2 \) of energy
- \(Q_P \) dissipate \(\frac{1}{2} CV_{DD}^2 \) of energy
- Total energy dissipation is \(CV_{DD}^2 \)

If inverter is switched at \(f \) cycles per second, dynamic power dissipation is: \(P_D = fCV_{DD}^2 \)
In this problem, we estimate the inverter power dissipation resulting from the current pulse that flows in Q_N and Q_P when the input pulse has finite rise and fall times. Let $V_{tn} = -V_{tp} = 0.5 \ V$, $V_{DD} = 1.8\ V$, and $k_n = k_p = 450\ \mu A/V^2$. Let the input rising and falling edges be linear ramps with the 0-to-V_{DD} and V_{DD}-to-0 transitions taking 1 ns each. Find I_{peak}.

13.44
To determine the energy drawn from the supply per transition, assume that the current pulse can be approximated by a triangle with a base corresponding to the time for the rising or falling edge to go from V_t to $V_{DD} - V_t$, and the height equal to I_{peak}. Also, determine the power dissipation that results when the inverter is switched at 100 MHz.
Power Dissipation - Example

\[I_{\text{Peak}} = \frac{1}{2} \mu_n C_{\text{ox}} \left(\frac{W}{L} \right)_n \left(\frac{V_{DD}}{2} - V_{tn} \right)^2 \]

\[I_{\text{Peak}} = \frac{1}{2} \times 450 \mu A \left(\frac{1.8}{2} - 0.5 \right)^2 = 36 \mu A \]
Power Dissipation - Example

The time when the input reaches V_t is:

$$\frac{0.5}{1.8} \times 1\,\text{ns} = 0.28\,\text{ns}$$

The time when the input reaches $V_{DD} - V_t$ is:

$$\frac{1.8 - 0.5}{1.8} \times 1\,\text{ns} = 0.72\,\text{ns}$$

The base of the triangle is

$$\Delta t = 0.72 - 0.28 = 0.44\,\text{ns}$$
Power Dissipation - Example

\[E = \frac{1}{2} I_{\text{peak}} \times V_{DD} \times \Delta t = \frac{1}{2} \times 36\mu A \times 1.8 \times 1.44 \text{ ns} \]

\[E = 14.3 \text{ fJ} \]

\[P = f \times E = 100 \times 10^6 \times 14.3 \times 10^{-15} = 1.43 \mu W \]