ECE 342 Electronic Circuits

Lecture 35 CMOS Logic

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@Illinois.edu

Digital Logic - Generalization

De Morgan's Law

$$\overline{A+B+C+...} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot ...$$

$$\overline{A \cdot B \cdot C \cdot \dots} = \overline{A} + \overline{B} + \overline{C} + \dots$$

Distributive Law

$$AB + AC + BC + BD = A(B+C) + B(C+D)$$

General Procedure

- 1. Design PDN to satisfy logic function
- 2. Construct PUN to be complementary of PDN in every way
- 3. Optimize using distributive rule

CMOS Logic Gate Circuits

- Two Networks
 - Pull-down network (PDN) with NMOS
 - Pull-up network (PUN) with PMOS

PUN conducts when inputs are low and consists of PMOS transistors

PDN consists of NMOS transistors and is active when inputs are high

- PDN and PUN utilize devices
 - In parallel to form OR functions
 - In series to form AND functions

Pull-Down Networks

$$\overline{Y} = A + B$$

$$\overline{Y} = AB$$

Pull-Up Networks

$$Y = \overline{A} + \overline{B}$$

$$Y = \overline{A}\overline{B}$$

Basic Logic Function

Basic Function	INVERTER	NOR	NAND
Symbol	AY	A	A
# Devices PUN	1 PMOS	2 PMOS-Series	2 PMOS-Parallel
# Devices PDN	1 NMOS	2 NMOS-Parallel	2 NMOS-Series
Truth Table	A Y 0 1 1 1 0	A B Y 0 0 1 0 1 0 1 0 0	A B Y 0 0 1 0 1 1 1 0 1

Pull-Down and Pull-Up Functions

Pull-up network (PUN)

Pull-down network (PDN)

- Key features
 - When PDN switch is on, PUN switch is off and vice versa
 - Conditions for being on and off are complementary

$$Y_{DP} = \overline{A + B}$$

Α	В	Y _{DP}
0	0	1
0	1	0
1	0	0
1	1	0

Truth Tables

$$\begin{array}{c|cccc} Y_{US} = AB & & \\ \hline & A & B & Y_{US} \\ \hline & 0 & 0 & 1 \\ & 0 & 1 & 0 \\ & 1 & 0 & 0 \\ & 1 & 1 & 0 \\ \end{array}$$

When Y_{DP} in PDN-parallel is low, this means that either A or B (or both) is high. When either A or B (or both) is high, either transistor (or both) in PUNseries are off Y_{US} = low

When Y_{DP} in PDN-parallel is high, both A and B are low. Both transistors in PUN-Series are on creating a path to VDD. Y_{US} =high $\rightarrow Y_{US}$ = Y_{DP} .

PDN-Parallel and PUN-series are complementary

T 7		AD
Y	_	AB
1 Da		D
128		

Α	В	Y _{DS}
0	0	1
0	1	1
1	0	1
1	1	0

Truth Tables

$$Y_{UP} = \overline{A} + \overline{B}$$

Α	В	Y _{UP}
0	0	1
0	1	1
1	0	1
1	1	0

If Y_{DS} is low, both A and B must be high in which case both transistors in PUN-Parallel are off providing no path to $V_{DD} \rightarrow Y_{UP} = Iow \rightarrow Y_{UP} = Y_{DS}$.

If Y_{DS} is high, then either A or B (or both) are off (low) in which case either Q_{PA} or Q_{PB} in PUN-Parallel will be on and present a path to V_{DD} ; thus Y_{UP} =high $\Rightarrow Y_{UP}$ = Y_{DS}

PDN-Series and PUN-Parallel are complementary

Two-Input NOR Gate

Two-Input NOR Gate

Two-Input NAND Gate

$$Y = \overline{AB} = \overline{A} + \overline{B}$$

Example

$$Y = A\overline{B} \cdot \overline{CD}$$

Using De Morgan's Law

$$Y = A\overline{B} \cdot \overline{CD} = AB + CD = (\overline{A} + \overline{B}) \cdot (\overline{C} + \overline{D})$$

Pull-down network

Pull-up network

۰Υ

Example 1

Evaluate Logic Function

$$Y = (\overline{A + \overline{B}})C$$
 from pull down

$$Y = \overline{A}B + \overline{C}$$
 from pull up

$$\overline{A}B + \overline{C} = \overline{\overline{A}B \cdot C} = \overline{(A + \overline{B})C}$$

Example 2

Implement the function

$$\overline{Y} = A\overline{B} + C$$

$$Y = \overline{A\overline{B} + C} = \overline{A\overline{B} \cdot C} = (\overline{A} + B) \cdot \overline{C}$$

Exclusive-OR (XOR) Function

$$Y = A\overline{B} + \overline{A}B$$
 $\overline{Y} = (\overline{A} + B)(A + \overline{B})$

pull down

	Α	В	Υ
I	0	0	0
١	0	1	1
١	1	0	1
	1	1	0

pull up

Transistor Sizing

Objectives

- PDN provides discharge current of at least that of an NMOS
- > PUN provides charging current of at least that of a PMOS
- Worst case gate delay equal to that of basic inverter
- Find combination that results in lowest output current
- > For transistors in parallel aspect ratios add
- > For transistors in series, inverses of aspect ratios add

Series:
$$\frac{1}{(W/L)_{eq}} = \frac{1}{(W/L)_{1}} + \frac{1}{(W/L)_{2}} + ... + \frac{1}{(W/L)_{M}}$$

Parallel:
$$(W/L)_{eq} = (W/L)_1 + (W/L)_2 + ... + (W/L)_M$$

$$p = (W/L)_p$$
 $n = (W/L)_n$

Transistor Sizing

NOR

NAND

Transistor Sizing – Example 1

Two approaches to realizing the OR function of six input variables. Assuming that the transistors in both circuits are properly sized to provide each gate with a current-driving capability equal to that of the basic matched inverter, find the number of transistors and the total area of each circuit. Assume the basic inverter to have a $(W/L)_n$ ratio of 1.2 μ m/0.8 μ m and a $(W/L)_p$ ratio of 3.6 μ m/0.8 μ m.

Transistor Sizing – Example 1

For design (a), there are 2(6)+2=14 transistors:

All 7 NMOS use $(W/L)_n = n$

1 PMOS uses $(W/L)_p = p$

6 PMOS use $(W/L)_p = 6p$

Total Area = $7(1.2)0.8 + 1(3.6)0.8 + 6(6)(3.6)0.8 = 113.3 \mu m^2$

For design (b), there are 2(3)2 + 1(2)2=16 transistors:

6 NMOS use $(W/L)_n = n$

6 PMOS use $(W/L)_p = 3p$

2 PMOS use $(W/L)_p = p$

2 NMOS use $(W/L)_n = 2n$

Total Area = $70(1.2)0.8 = 67.2 \mu m^2$, or 59% of (a)

