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TEM PROPAGATION
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Telegrapher’s Equations

L:  Inductance per unit length.

C:  Capacitance per unit length. 
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Crosstalk noise depends on termination
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Coupled Transmission Lines
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Telegraphers Equations for Coupled Transmission Lines

Physical form
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Relations Between Physical 
and Maxwellian Parameters

(symmetric lines)

L11 = L22 = Ls

L12 = L21 = Lm

C11 = C22 = Cs+Cm

C12 = C21 = - Cm
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Add voltage
and current
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Subtract voltage
and current
equations

Vd : Odd mode voltage

Id : Odd mode current

Impedance

velocity

Odd Mode
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PHYSICAL SIGNIFICANCE OF EVEN- AND
ODD-MODE IMPEDANCES

* Ze and Zd are the wave resistance seen by the even 
and odd mode travelling signals respectively.

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

* The impedance of each line is no longer described
by a single characteristic impedance; instead, we have
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Even-Mode Impedance: Ze
Impedance seen by wave propagating through the coupled-
line system when excitation is symmetric (1, 1).

Odd-Mode Impedance: Zd
Impedance seen by wave propagating through the coupled-
line system when excitation is anti-symmetric (1, -1).

Common-Mode Impedance: Zc = 0.5Ze
Impedance seen by a pair of line and a common return by a 
common signal.

Differential Impedance: Zdiff = 2Zd
Impedance seen across a pair of lines by differential mode 
signal.

Definitions
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EVEN AND ODD-MODE IMPEDANCES

Z11, Z22 : Self Impedances

Z12, Z21 : Mutual Impedances

For symmetrical lines,

Z11 = Z22 and Z12 = Z21



ECE 451 – Jose Schutt‐Aine 19

EXAMPLE
(Microstrip)

r = 4.3
Zs = 56.4 

Single Line
Dielectric height = 6 mils
Width = 8 mils

r = 4.3

Coupled Lines
Height = 6 mils
Width = 8 mils
Spacing = 12 mils

Ze = 68.1  Zd = 40.8 
Z11 = 54.4  Z12 = 13.6 
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EXTRACT INDUCTANCE AND 
CAPACITANCE COEFFICIENTS
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Microstrip : Inhomogeneous 
structure, odd and even-mode velocities 
must have different values.

Stripline : Homogeneous configuration, 
odd and even-mode velocities have 
approximately the same values.

Modal Velocities  in Stripline and Microstrip
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Microstrip vs  Stripline

Microstrip (h =8 mils)
w = 8 mils
r = 4.32
Ls = 377 nH/m
Cs = 82 pF/m
Lm = 131 nH/m
Cm = 23 pF/m
ve = 0.155 m/ns
vd = 0.178 m/ns

Stripline (h =16 mils)
w = 8 mils
r = 4.32
Ls = 466 nH/m
Cs = 86 pF/m
Lm = 109 nH/m
Cm = 26 pF/m
ve = 0.142 m/ns
vd = 0.142 m/ns

50 

50 
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Probe
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Coupling of Modes 
(asymmetric load)
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Coupling of Modes
(symmetric load)
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Three‐Line Microstrip
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Subtract (1c) from (1a) and (2c) from (2a), we get

This defines the Alpha mode with:

1 3V V V   1 3I I I  and 

The wave impedance of that mode is:

11 13

11 13

L LZ
C C






and the velocity is
  11 13 11 13

1u
L L C C

 
 

Three‐Line – Alpha Mode
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In order to determine the next mode, assume that 

1 2 3V V V V   

1 2 3I I I I   

      31 2
11 21 31 12 22 32 13 23 33

V II IL L L L L L L L L
z t t t
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      31 2
11 21 31 12 22 32 13 23 33

I VV VC C C C C C C C C
z t t t
    

   
         

By reciprocity L32 = L23, L21 = L12, L13 = L31

By symmetry, L12 = L23

Also by approximation, L22  L11, L11+L13  L11

Three‐Line – Modal Decomposition
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In order to balance the right-hand side into I, we need to have

     12 11 2 11 12 13 2 11 12 22L L I L L L I L L I         

2
12 122L L

or 2  

Therefore the other two modes are defined as 

The Beta mode with

Three‐Line – Modal Decomposition
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The Beta mode with
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Three‐Line – Beta Mode
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The Delta mode is defined such that
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The characteristic impedance of the Delta mode is
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The propagation velocity of the Delta mode is:
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Three‐Line – Delta Mode
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Alpha mode
Beta mode*
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Symmetric 3‐Line Microstrip

In summary: we have 3 modes for the 3-line system 

*neglecting coupling between nonadjacent lines
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1 2 3

r = 4.3
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Coplanar Waveguide



ECE 451 – Jose Schutt‐Aine 46

73 0 0
( ) 0 48 0

0 0 94
mZ

 
    
 
 

56 23 8
( ) 22 119 22

8 23 56
cZ

 
    
 
 

0.15 0 0
( / ) 0 0.17 0

0 0 0.18
pv m ns

 
   
 
 

1 2 3

r = 4.3

Coplanar Waveguide



ECE 451 – Jose Schutt‐Aine 47

WS' S'WS

rh

2
Sk

S W




( ) : Complete Elliptic Integral of the first kindK k

'( ) ( ')K k K k

2 1/ 2' (1 )k k 

30 '( ) (ohm)
( )1

2

ocp
r

K kZ
K k







1/ 2
2

1cp
r

v c


 
   

Coplanar Waveguide



ECE 451 – Jose Schutt‐Aine 48

S WW

rh

120 '( )  (ohm)
( )1

2

ocs
r

K kZ
K k







Coplanar Strips



ECE 451 – Jose Schutt‐Aine 49

Characteristic Microstrip Coplanar Wguide Coplanar strips

eff* ~6.5 ~5 ~5

Power handling High Medium Medium

Radiation loss Low Medium Medium

Unloaded Q High Medium Low or High

Dispersion Small Medium Medium

Mounting (shunt) Hard Easy Easy

Mounting (series) Easy Easy Easy

* Assuming r=10 and h=0.025 inch

Qualitative Comparison
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Calculated values of the characteristic impedance for a single-line v-strip structure as a 
function of width-to-height ratio w/h. The relative dielectric constant is r = 2.55.

V‐Line Characteristic Impedance
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Calculated values of the effective relative dielectric constant for a single-line 
v-strip structure as a function of width-to-height ratio w/h.  
The relative dielectric constant is r = 2.55

V‐Line – Effective Permittivity
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L (nH/m)    =     113.54            607.67            113.54
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Microstrip V-line

Comparison of the inductance and capacitance matrices
between a three-line v-line and microstrip structures. 
The parameters are p/h = 0.8 mils, w/h = 0.6  and r = 4.0.
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Plot of mutual inductance (top) and mutual capacitance (bottom) versus spacing-to-height ratio
for v-line and microstrip configurations.  The parameters are w/h = 0.24, r = 4.0.

V‐Line: Coupling Coefficients
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Plot of the coupling coefficient versus spacing-to-height ratio for v-line and microstrip configurations. 
The parameters are w/h = 0.24, r = 4.0.

V‐Line vs Microstrip: Coupling Coefficients
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