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Simulation for Digital DesignSimulation for Digital Design
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• Only measurement data is available 
• Actual circuit model is too complex

Motivations

• Inverse-Transform & Convolution
• IFFT from frequency domain data
• Convolution in time domain 

• Macromodel Approach
• Curve fitting
• Recursive convolution

Methods

Black Box SynthesisBlack Box Synthesis
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Blackbox
[S]:

: Ii

Vi

Zgi
Vgi

Vg1 Zg2

I1V1

B=SA

b(t) = s(t)*a(t) 

s( t )* a( t ) s( t )a( )d  




 

IFFT/Convolution Approach to IFFT/Convolution Approach to MacromodelsMacromodels

In frequency domain

In time domain

Convolution:
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Since a() is known for < t, we have:

Isolating a(t)

Discrete ConvolutionDiscrete Convolution

t 1

1
s( t )* a( t ) s( 0 )a( t ) s( t )a( )


   




  

t 1

1
H( t ) s( t )a( )  :    History


  




 

t

1
s( t )* a ( t ) s( t )a( )


  


 

When time is discretized the convolution becomes
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Termination ConditionsTermination Conditions

Defining s'(0) =s(0)we finally obtain

a(t)  =  (t)b(t)  +  T(t)g(t)

b(t)  =  s'(0)a (t) +  H (t)

By combining these equations, the stamp can be derived
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   11
stamp oY Z 1 s'( 0 ) 1 s'( 0 )  

  11
stamp oI 2Z 1 s'(0 ) H( t ) 

YstampYg IstampIg

Termination Black Box

+

-

v

i

( ) ( )g stamp g stampY Y v t I I  

stamp stampi( t ) Y v( t ) I 

Stamp Generation from ConvolutionStamp Generation from Convolution
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5. Set the imaginary parts of the first and last points to zero: Imag{a}=0, and Imag{g}=0

4. Determine the frequency step, fstep=fstop/N. From this, the time step (tstep=1/(2Nfstep)), 
the total duration of the simulation (tstop=Ntstep) are determined; the frequency-domain 
data points can now be be arranged as follows 

3. Perform extrapolation and interpolation of raw data and map the M points from 
the raw data into the N points of the processed data 

2. We wish to process the data. For this purpose we will define our own set of 
parameters which may or may not be the same as those of the original data. 
Number of points N, start frequency fstart, stop frequency fstop. From the discussion 
above we learned that the start frequency is best set to zero; therefore, all of the 
parameters will be set by the choice of two quantities: N and fstop.

1. The sampled data for the blackbox will come with the following set of 
parameters: number of points M, start frequency f1, stop frequency f2 (and 
frequency step f). 

a b c d e f

Inverse FFT ProcedureInverse FFT Procedure
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9. If everything is fine, proceed by keeping only the first N points of the sequence 
(o to t). They represent the impulse response of the data and will be used for the 
time-domain convolution

8. These points should all be real. They are the time-domain impulse response.

7. Feed those N2 points to IFFT routine to obtain inverse FFT. After the IFFT call, scale 
all the points in the returned array by dividing them by (N2tstep). The data now looks like 

6. Fold the data with respect to its conjugate mirror image in order to insure that 
the time-domain response will be pure real; this looks as follows (* indicates 
complex conjugate): 

g f* e* d* c* b* a b c d e f

where g and a are now real quantities. The total number of points is N2=2N

o p q r s t u v w x y z

Inverse FFT ProcedureInverse FFT Procedure
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Left: IFFT of a sinc pulse sampled from 10 MHz to 10 GHz. Right: IFFT of the same sinc pulse with frequency 
data ranging from 0-10 GHz. In both cases 1000 points are used

Importance of LowImportance of Low--FrequencyFrequency

 2sin 2
( )

2
ft

V f
ft



Calculating inverse Fourier Transform of:
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• Convolution is slow 
• Linear network block can be large

Limitations

• Faster
• Requires transfer function to have the form:

Motivation for Recursive Convolution

Recursive ConvolutionRecursive Convolution

1
1

1 1

( )
1 /

L
i

i c i

aH A
j


 

 
   


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 
1

( ) ( ) ( )
L

pi
i

y nT Ax n K T y nT


  

   ( ) (1 ) ( 1) ( 1)ci ciT T
pi i piy nT a e x n K T e y n T       

( ) ( ) ( )Y H X  

Given the frequency-domain relation:

If the transfer function is written as

Then, the time domain relationship (for step invariant model)  is:

where

This is also called recursive convolution

Time Domain Solution Using Recursive Convolution
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• AWE – Pade 
• Pade via Lanczos (Krylov methods)
• Rational Function
• Chebyshev-Rational function
• Vector Fitting Method

Macromodel ‐ Approximation

1
1

1 1

( )
1 /

L
i

i c i

aH A
j


 

 
   



Objective: Approximate frequency-domain transfer function 
to take the form:

Methods
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• Numerical Robustness
– Accuracy
– Passivity
– Causality

• User Flexibility
– Automatic selection of starting poles
– Automatic determination of order

• Compensation Features
– Frequency truncation
– No DC information
– Measurement noise 

Attributes for Macromodel
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Causality Causality -- Hilbert Transform AnalysisHilbert Transform Analysis

( ) 0,    0h t t 

( ) ( ) ( )e oh t h t h t 

 1( ) ( ) ( )
2eh t h t h t  

 1( ) ( ) ( )
2oh t h t h t  

( ),    0
( )

( ),    0
e

o
e

h t t
h t

h t t


  

( ) sgn( ) ( )o eh t t h t

Enforce causality

Even function

Odd function

Every function can be considered as the sum of an even function and an odd function
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( ) ( ) sgn( ) ( )e eh t h t t h t 

1( ) ( ) * ( )e eH f H f H f
j f

 

ˆ( ) ( ) ( )e eH f H f jH f 

ˆ ( ) is the Hilbert transform of ( )e eH f H f

1 1 ( )ˆ( ) ( )* xx t x t d
t t

 
  





 


Causality Causality -- Hilbert Transform AnalysisHilbert Transform Analysis

Imaginary part of transfer 
function is related to the 
real part through the 
Hilbert transform

 odd

 even

2 ,       even
ˆ( )

2 ,       odd

n

n
n k

n

n

h k
k n

HT h h
h k

k n


   

 









Discrete Hilbert Transform

In frequency domain this becomes
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Observation: Good agreement

Actual is red, HT is blue
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Length = 7 inches

1.- DISC: Transmission line with discontinuities

2.- COUP: Coupled transmission line2

dx = 51/2 inches

Frequency sweep: 300 KHz – 6 GHz

Measurement DataMeasurement Data

dx
x y
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w

Line A

Line B



22Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 451

DISC: Approximation order 90

DISC: Approximation ResultsDISC: Approximation Results
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COUP: Approximation order 75 – Before Passivity Enforcement

COUP: Approximation ResultsCOUP: Approximation Results
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Magnitude plot  of Y11, measured data 
and the 30-th  order rational 
approximation with passivity check

Phase plot of Y11, measured data and the 30-th
order rational approximation with passivity 
check

Results After Passivity CheckResults After Passivity Check

TL with capacitive discontinuity



25Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 451

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

30 35 40 45 50

Exact

B

A

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

30 35 40 45 50

Convolution

B

A

Port 1: a – Port 2: d
Data from 300 KHz to 6 GHz d

xx y

a

b

c

d

Observation: Good agreement

Coupled Lines Coupled Lines –– Measured on ANAMeasured on ANA
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Observation: Good agreement


