

PARALLEL-PLATE WAVEGUIDES

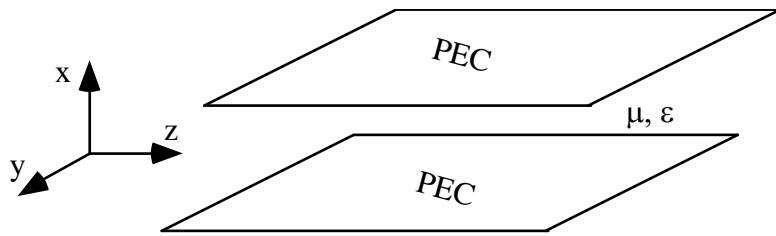
Wave Equation

$$\nabla^2 \mathbf{E} + \omega^2 \mu \epsilon \mathbf{E} = \mathbf{0} \quad (1)$$

$$\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} = -\omega^2 \mu \epsilon E_x \quad (2a)$$

$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} = -\omega^2 \mu \epsilon E_y \quad (2b)$$

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} = -\omega^2 \mu \epsilon E_z \quad (2c)$$



Transverse Electric (TE) Modes

For a parallel-plate waveguide, the plates are infinite in the y-extent; we need to study the propagation in the z-direction. The following assumptions are made in the wave equation

$$\Rightarrow \frac{\partial}{\partial y} = 0, \text{ but } \frac{\partial}{\partial x} \neq 0 \text{ and } \frac{\partial}{\partial z} \neq 0$$

\Rightarrow Assume E_y only

These two conditions define the **TE modes** and the wave equation is simplified to read

$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial z^2} = -\omega^2 \mu \epsilon E_y \quad (3)$$

General solution (forward traveling wave)

$$f > \frac{m}{2a\sqrt{\mu\epsilon}} \quad (12)$$

The *cutoff frequency* f_c is defined to be at the onset of propagation

$$f_c = \frac{m}{2a\sqrt{\mu\epsilon}} \quad (13)$$

The cutoff frequency is the frequency below which the mode associated with the index m will not propagate in the waveguide. Different modes will have different cutoff frequencies. The cutoff frequency of a mode is associated with the cutoff wavelength λ_c

$$\lambda_c = \frac{v}{f_c} = \frac{2a}{m} \quad (14)$$

Each mode is referred to as the TE_m mode. From (6), it is obvious that there is no TE_0 mode and the first TE mode is the TE_1 mode.

Magnetic Field

$$\text{From } \nabla \times \mathbf{E} = -j\omega\mu\mathbf{H} \quad (15)$$

we have

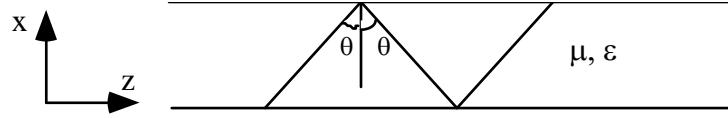
$$\mathbf{H} = \frac{-1}{j\omega\mu} \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial z} \\ 0 & E_y & 0 \end{vmatrix} \quad (16)$$

which leads to

$$H_x = -\frac{\beta_z}{\omega\mu} E_o e^{-j\beta_z z} \sin \beta_x x \quad (17)$$

$$H_z = +\frac{j\beta_x}{\omega\mu} E_o e^{-j\beta_z z} \cos \beta_x x \quad (18)$$

As can be seen, there is no H_y component, therefore, the TE solution has E_y , H_x and H_z only.



From the dispersion relation, it can be shown that the propagation vector components satisfy the relations

$$\beta_z = \beta \sin \theta, \beta_x = \beta \cos \theta \quad (19)$$

where θ is the angle of incidence of the propagation vector with the normal to the conductor plates.

The phase and group velocities are given by

$$v_{pz} = \frac{\omega}{\beta_z} = \frac{c}{\sqrt{1 - \frac{f_c^2}{f^2}}} \quad \text{and} \quad v_g = \frac{\partial \omega}{\partial \beta_z} = c \sqrt{1 - \frac{f_c^2}{f^2}}$$

The effective guide impedance is given by:

$$\eta_{TE} = \frac{E_y}{-H_x} = \frac{\eta_o}{\sqrt{1 - \frac{f_c^2}{f^2}}}$$

Transverse Magnetic (TM) modes

The magnetic field also satisfies the wave equation:

$$\nabla^2 \mathbf{H} + \omega^2 \mu \epsilon \mathbf{H} = \mathbf{0} \quad (20)$$

$$\frac{\partial^2 H_x}{\partial x^2} + \frac{\partial^2 H_x}{\partial y^2} + \frac{\partial^2 H_x}{\partial z^2} = -\omega^2 \mu \epsilon H_x \quad (21a)$$

$$\frac{\partial^2 H_y}{\partial x^2} + \frac{\partial^2 H_y}{\partial y^2} + \frac{\partial^2 H_y}{\partial z^2} = -\omega^2 \mu \epsilon H_y \quad (21b)$$

$$\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} + \frac{\partial^2 H_z}{\partial z^2} = -\omega^2 \mu \epsilon H_z \quad (21c)$$

For TM modes, we assume

$$\Rightarrow \frac{\partial}{\partial y} = 0, \text{ but } \frac{\partial}{\partial x} \neq 0 \text{ and } \frac{\partial}{\partial z} \neq 0$$

\Rightarrow Assume H_y only

These two conditions define the *TM modes* and equations (21) are simplified to read

$$\frac{\partial^2 H_y}{\partial x^2} + \frac{\partial^2 H_y}{\partial z^2} = -\omega^2 \mu \epsilon H_y \quad (22)$$

General solution (forward traveling wave)

$$H_y(x, z) = e^{-j\beta_z z} \left[A e^{-j\beta_x x} + B e^{+j\beta_x x} \right] \quad (23)$$

$$\text{From } \nabla \times \mathbf{H} = -j\omega \epsilon \mathbf{E} \quad (24)$$

we get

$$\mathbf{E} = \frac{1}{j\omega \epsilon} \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial z} \\ 0 & H_y & 0 \end{vmatrix} \quad (25)$$

This leads to

$$E_x(x, z) = \frac{\beta_z}{\omega \epsilon} e^{-j\beta_z z} \left[A e^{-j\beta_x x} + B e^{+j\beta_x x} \right] \quad (26)$$

$$E_z(x, z) = \frac{\beta_x}{\omega \epsilon} e^{-j\beta_z z} \left[-A e^{-j\beta_x x} + B e^{+j\beta_x x} \right] \quad (27)$$

At $x=0$, $E_z = 0$ which leads to $A = B = H_o/2$ where H_o is an arbitrary constant. This leads to

$$H_y(x, z) = H_o e^{-j\beta_z z} \cos \beta_x x \quad (28)$$

$$E_x(x, z) = \frac{\beta_z}{\omega \epsilon} H_o e^{-j\beta_z z} \cos \beta_x x \quad (29)$$

$$E_z(x, z) = \frac{j\beta_x}{\omega \epsilon} H_o e^{-j\beta_z z} \sin \beta_x x \quad (30)$$

At $x=a$, $E_z = 0$ which leads to

$$\beta_x a = m\pi, \text{ where } m = 0, 1, 2, 3, \dots \quad (31)$$

This defines the TM modes which have only H_y , E_x and E_z components.

The effective guide impedance is given by:

$$\eta_{TM} = \frac{E_x}{H_y} = \eta_o \sqrt{1 - \frac{f_c^2}{f^2}}$$

NOTE: THE DISPERSION RELATION, GUIDANCE CONDITION AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.

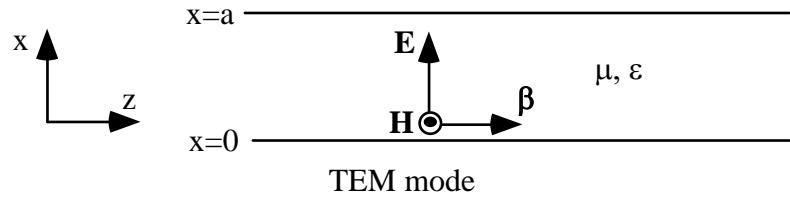
Equation (31) defines the **TM modes**; each mode is referred to as the TM_m mode. It can be seen from (28) that $m=0$ is a valid choice; it is called the TM_0 , or *transverse electromagnetic* or TEM mode. For this mode $\beta_x=0$ and,

$$H_y = H_o e^{-j\beta_z z} \quad (32)$$

$$E_x = \frac{\beta_z}{\omega \epsilon} H_o e^{-j\beta_z z} = \sqrt{\frac{\mu}{\epsilon}} H_o e^{-j\beta_z z} \quad (33)$$

$$E_z = 0 \quad (34)$$

where $\beta_z = \beta$, and in which there are no x variations of the fields within the waveguide. The TEM mode has a cutoff frequency at DC and is always present in the waveguide.



Time-Average Poynting Vector

TE modes

$$\langle \mathbf{P} \rangle = \frac{1}{2} \operatorname{Re} \{ \mathbf{E} \times \mathbf{H}^* \} \quad (35)$$

$$\langle \mathbf{P} \rangle = \frac{1}{2} \operatorname{Re} \left\{ \hat{\mathbf{y}} E_y \times \left[\hat{\mathbf{x}} H_x^* + \hat{\mathbf{z}} H_z^* \right] \right\} \quad (36)$$

$$\langle \mathbf{P} \rangle = \frac{1}{2} \operatorname{Re} \left\{ \hat{\mathbf{z}} \frac{|E_o|^2}{\omega \mu} \beta_z \sin^2 \beta_x x + \hat{\mathbf{x}} j \frac{|E_o|^2}{\omega \mu} \beta_x \cos \beta_x x \sin \beta_x x \right\} \quad (37)$$

$$\langle \mathbf{P} \rangle = \hat{\mathbf{z}} \frac{|E_o|^2}{2\omega\mu} \beta_z \sin^2 \beta_x x \quad (38)$$

TM modes

$$\langle \mathbf{P} \rangle = \frac{1}{2} \operatorname{Re} \left\{ \mathbf{E} \times \mathbf{H}^* \right\} \quad (39)$$

$$\langle \mathbf{P} \rangle = \frac{1}{2} \operatorname{Re} \left\{ \left[\hat{\mathbf{x}} E_x + \hat{\mathbf{z}} E_z \right] \times \hat{\mathbf{y}} H_y^* \right\} \quad (40)$$

$$\langle \mathbf{P} \rangle = \frac{1}{2} \operatorname{Re} \left\{ \hat{\mathbf{z}} \frac{|H_o|^2}{\omega \epsilon} \beta_z \cos^2 \beta_x x - \hat{\mathbf{x}} j \frac{|H_o|^2}{\omega \epsilon} \beta_x \sin \beta_x x \cos \beta_x x \right\} \quad (41)$$

$$\langle \mathbf{P} \rangle = \hat{\mathbf{z}} \frac{|H_o|^2}{2\omega\epsilon} \beta_z \cos^2 \beta_x x \quad (42)$$

The total time-average power is found by integrating $\langle \mathbf{P} \rangle$ over the area of interest.