
PARALLEL-PLATE  WAVEGUIDES 
 

Wave Equation 
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Transverse Electric (TE) Modes 

For a parallel-plate waveguide, the plates are infinite in the y-extent; we need to study the 

propagation in the z-direction.  The following assumptions are made in the wave equation 
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Assume Ey only   

These two conditions define the TE modes and the wave equation is simplified to read 
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General solution (forward traveling wave) 
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At x = 0, Ey = 0 which leads to A + B = 0.  Therefore, A = -B = Eo/2j, where Eo is an arbitrary 

constant 
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At x = a, Ey(x, z) = 0.  Let a be the distance separating the two PEC plates 
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This leads to : 

xa = m, where m = 1, 2, 3, ... (7) 
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Moreover, from the differential equation (3), we get the dispersion relation 
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where m = 1, 2, 3, ...  Since propagation is to take place in the z direction, for the wave to 
propagate, we must have z2 > 0, or 
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This leads to the following guidance condition which will insure wave propagation 
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The cutoff frequency fc is defined to be at the onset of propagation 
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The cutoff frequency is the frequency below which the mode associated with the index m will 

not propagate in the waveguide.  Different modes will have different cutoff frequencies.  The 
cutoff frequency of a mode is associated with the cutoff wavelength c 
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Each mode is referred to as the TEm mode.  From (6), it is obvious that there is no TE0 mode and 

the first TE mode is the TE1 mode. 

Magnetic Field 
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which leads to 

sinzj zz
x o xH E e x 


 

 (17) 

coszj zx
z o x

j
H E e x 


   (18) 

As can be seen, there is no Hy component, therefore, the TE solution has Ey, Hx and Hz only. 



- 4 - 

 

From the dispersion relation, it can be shown that the propagation vector components satisfy the 

relations 

z = sin, x = cos (19)

where  is the angle of incidence of the propagation vector with the normal to the conductor 

plates. 

The phase and group velocities are given by 
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The effective guide impedance is given by: 
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Transverse Magnetic (TM) modes 

The magnetic field also satisfies the wave equation: 
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For TM modes, we assume 
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Assume Hy only   

These two conditions define the TM modes and equations (21) are simplified to read 
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General solution (forward traveling wave) 
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This leads to 
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At x=0, Ez = 0 which leads to A = B = Ho/2 where Ho is an arbitrary constant.  This leads to 
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At x =a, Ez = 0 which leads to  
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xa = m, where m = 0, 1, 2, 3, ... (31) 

This defines the TM modes which have only Hy, Ex and Ez components. 

The effective guide impedance is given by: 
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NOTE: THE DISPERSION RELATION, GUIDANCE CONDITION AND CUTOFF EQUA-

TIONS FOR A PARALLEL-PLATE WAVEGUIDE ARE THE SAME FOR TE AND TM 

MODES. 

Equation (31) defines the TM modes; each mode is referred to as the TMm mode.  It can be seen 

from (28) that m=0 is a valid choice; it is called the TM0, or transverse electromagnetic or TEM 

mode.  For this mode x=0 and, 
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where z = , and in which there are no x variations of the fields within the waveguide.  The 

TEM mode has a cutoff frequency at DC and is always present in the waveguide. 

 
TEM mode 

Time-Average Poynting Vector 

TE modes 
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The total time-average power is found by integrating <P> over the area of interest. 


