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Maxwell's Equation 

2 2   E E 0  (A) 

2 2   H H 0  (B) 

For a waveguide with arbitrary cross section as shown in the above figure, we assume a plane 
wave solution and as a first trial, we set Ez = 0.  This defines the TE modes. 
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We want to express all quantities in terms of Hz. 

From (2), we have  
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Solving for Ex 
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Combining solutions for Ex and Ey into (3) gives 
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If the cross section of the waveguide is a rectangle, we have a rectangular waveguide and the 

boundary conditions are such that the tangential electric field is zero on all the PEC walls. 

TE Modes 

The general solution for TE modes with Ez=0 is obtained from (16) 
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At y=0, Ex=0 which leads to C=D 

At x=0, Ey=0 which leads to A=B 
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At x=a, Ey=0; this leads to x
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The dispersion relation is obtained by placing (20) in (16) 
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The guidance condition is 
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or f > fc where fc is the cutoff frequency of the TEmn mode given by the relation 
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The TEmn mode will not propagate unless f is greater than fc.  Obviously, different modes will 

have different cutoff frequencies. 
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TM Modes 

The transverse magnetic modes for a general waveguide are obtained by assuming Hz =0.  By 

duality with the TE modes, we have 
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with general solution 
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The boundary conditions are  

At x=0, Ez=0 which leads to A=-B 

At y=0, Ez=0 which leads to C=-D 
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so that the generating equation for the TMmn modes is 
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NOTE: THE DISPERSION RELATION, GUIDANCE CONDITION AND CUTOFF EQUA-

TIONS FOR A RECTANGULAR WAVEGUIDE ARE THE SAME FOR TE AND TM 

MODES. 

For additional information on the field equations see Rao (6th Edition), page 607, Table 9.1. 

There is no TE00 mode 

There are no TMm0 or TM0n modes 

The first TE mode is the TE10 mode 

The first TM mode is the TM11 mode 
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Impedance of a Waveguide  

For a TE mode, we define the transverse impedance as 
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we get 
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where  is the intrinsic impedance 
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Power Flow in a Rectangular Waveguide (TE10) 

The time-average Poynting vector for the TE10 mode in a rectangular waveguide is given by 
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Therefore, the time-average power flow in a waveguide is proportional to its cross-section area. 


