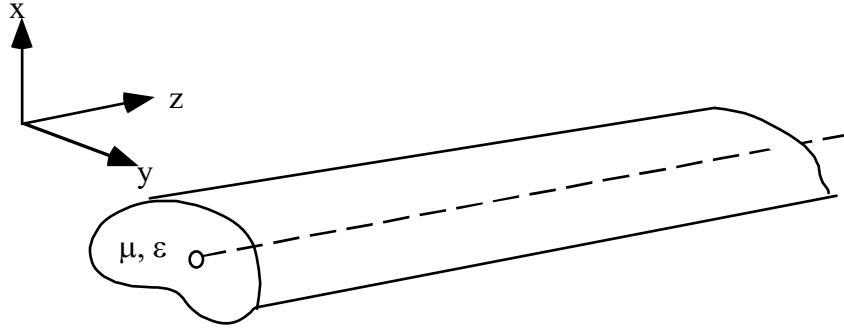


## WAVEGUIDES



### Maxwell's Equation

$$\nabla^2 \mathbf{E} + \omega^2 \mu \epsilon \mathbf{E} = \mathbf{0} \quad (A)$$

$$\nabla^2 \mathbf{H} + \omega^2 \mu \epsilon \mathbf{H} = \mathbf{0} \quad (B)$$

For a waveguide with arbitrary cross section as shown in the above figure, we assume a plane wave solution and as a first trial, we set  $E_z = 0$ . This defines the TE modes.

From  $\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$ , we have

$$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = -\mu \frac{\partial H_x}{\partial t} \Rightarrow +j\beta_z E_y = -j\omega \mu H_x \quad (1)$$

$$\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = -\mu \frac{\partial H_y}{\partial t} \Rightarrow -j\beta_z E_x = -j\omega \mu H_y \quad (2)$$

$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -\mu \frac{\partial H_z}{\partial t} \Rightarrow \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -j\omega \mu H_z \quad (3)$$

From  $\nabla \times \mathbf{H} = j\omega \epsilon \mathbf{E}$ , we get

$$j\omega \epsilon \mathbf{E} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix}$$

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} = j\omega\epsilon E_x \Rightarrow \frac{\partial H_z}{\partial y} + j\beta_z H_y = j\omega\epsilon E_x \quad (4)$$

$$\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} = j\omega\epsilon E_y \Rightarrow -j\beta_z H_x - \frac{\partial H_z}{\partial x} = j\omega\epsilon E_y \quad (5)$$

$$\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = 0 \quad (6)$$

We want to express all quantities in terms of  $H_z$ .

From (2), we have

$$H_y = \frac{\beta_z E_x}{\omega\mu} \quad (7)$$

in (4)

$$\frac{\partial H_z}{\partial y} + j\beta_z^2 \frac{E_x}{\omega\mu} = j\omega\epsilon E_x \quad (8)$$

Solving for  $E_x$

$$E_x = \frac{j\omega\mu}{\beta_z^2 - \omega^2\mu\epsilon} \frac{\partial H_z}{\partial y} \quad (9)$$

From (1)

$$H_x = \frac{-\beta_z E_y}{\omega\mu} \quad (10)$$

in (5)

$$j \frac{\beta_z^2 E_y}{\omega\mu} - \frac{\partial H_z}{\partial x} = j\omega\epsilon E_y \quad (11)$$

so that

$$E_y = \frac{-j\omega\mu}{\beta_z^2 - \omega^2\mu\epsilon} \frac{\partial H_z}{\partial x} \quad (12)$$

$$H_x = \frac{j\beta_z}{\beta_z^2 - \omega^2 \mu \epsilon} \frac{\partial H_z}{\partial x} \quad (13)$$

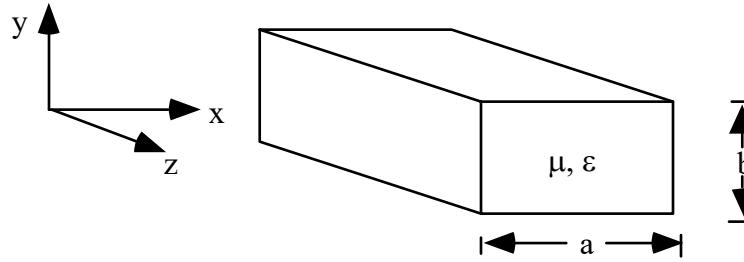
$$H_y = \frac{j\beta_z}{\beta_z^2 - \omega^2 \mu \epsilon} \frac{\partial H_z}{\partial y} \quad (14)$$

$$E_z = 0 \quad (15)$$

Combining solutions for  $E_x$  and  $E_y$  into (3) gives

$$\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} = [\beta_z^2 - \omega^2 \mu \epsilon] H_z \quad (16)$$

## RECTANGULAR WAVEGUIDES



If the cross section of the waveguide is a rectangle, we have a rectangular waveguide and the boundary conditions are such that the tangential electric field is zero on all the PEC walls.

### TE Modes

The general solution for TE modes with  $E_z=0$  is obtained from (16)

$$H_z = e^{-j\beta_z z} [A e^{-j\beta_x x} + B e^{+j\beta_x x}] [C e^{-j\beta_y y} + D e^{+j\beta_y y}] \quad (17)$$

$$E_y = \frac{\beta_x \omega \mu}{\beta_z^2 - \omega^2 \mu \epsilon} e^{-j\beta_z z} [-A e^{-j\beta_x x} + B e^{+j\beta_x x}] [C e^{-j\beta_y y} + D e^{+j\beta_y y}] \quad (18)$$

$$E_x = \frac{-\beta_y \omega \mu}{\beta_z^2 - \omega^2 \mu \epsilon} e^{-j\beta_z z} [A e^{-j\beta_x x} + B e^{+j\beta_x x}] [-C e^{-j\beta_y y} + D e^{+j\beta_y y}] \quad (19)$$

At  $y=0$ ,  $E_x=0$  which leads to  $C=D$

At  $x=0$ ,  $E_y=0$  which leads to  $A=B$

$$H_z = H_o e^{-j\beta_z z} \cos \beta_x x \cos \beta_y y \quad (20)$$

$$E_y = \frac{j\beta_x \omega \mu}{\beta_z^2 - \omega^2 \mu \epsilon} H_o e^{-j\beta_z z} \sin \beta_x x \cos \beta_y y \quad (21)$$

$$E_x = \frac{-j\beta_y \omega \mu}{\beta_z^2 - \omega^2 \mu \epsilon} H_o e^{-j\beta_z z} \cos \beta_x x \sin \beta_y y \quad (22)$$

At  $x=a$ ,  $E_y=0$ ; this leads to  $\beta_x = \frac{m\pi}{a}$

At  $y=b$ ,  $E_x=0$ ; this leads to  $\beta_y = \frac{n\pi}{b}$

The dispersion relation is obtained by placing (20) in (16)

$$\beta_x^2 + \beta_y^2 + \beta_z^2 = \omega^2 \mu \epsilon \quad (23)$$

$$\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \beta_z^2 = \omega^2 \mu \epsilon \quad (24)$$

and

$$\beta_z = \sqrt{\omega^2 \mu \epsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2} \quad (25)$$

The guidance condition is

$$\omega^2 \mu \epsilon > \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \quad (26)$$

or  $f > f_c$  where  $f_c$  is the cutoff frequency of the  $TE_{mn}$  mode given by the relation

$$f_c = \frac{1}{2\sqrt{\mu \epsilon}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} \quad (27)$$

The  $TE_{mn}$  mode will not propagate unless  $f$  is greater than  $f_c$ . Obviously, different modes will have different cutoff frequencies.

### TM Modes

The transverse magnetic modes for a general waveguide are obtained by assuming  $H_z = 0$ . By duality with the TE modes, we have

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} = [\beta_z^2 - \omega^2 \mu \epsilon] E_z \quad (28)$$

with general solution

$$E_z = e^{-j\beta_z z} [A e^{-j\beta_x x} + B e^{+j\beta_x x}] [C e^{-j\beta_y y} + D e^{+j\beta_y y}] \quad (29)$$

The boundary conditions are

At  $x=0$ ,  $E_z=0$  which leads to  $A=-B$

At  $y=0$ ,  $E_z=0$  which leads to  $C=-D$

At  $x=a$ ,  $E_z=0$  which leads to  $\beta_x = \frac{m\pi}{a}$

At  $y=b$ ,  $E_z=0$  which leads to  $\beta_y = \frac{n\pi}{b}$

so that the generating equation for the  $TM_{mn}$  modes is

$$E_z = E_o e^{-j\beta_z z} \sin \beta_x x \sin \beta_y y \quad (30)$$

NOTE: THE DISPERSION RELATION, GUIDANCE CONDITION AND CUTOFF EQUATIONS FOR A RECTANGULAR WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.

For additional information on the field equations see **Rao (6<sup>th</sup> Edition), page 607, Table 9.1**.

There is no  $TE_{00}$  mode

There are no  $TM_{m0}$  or  $TM_{0n}$  modes

The first TE mode is the  $TE_{10}$  mode

The first TM mode is the  $TM_{11}$  mode

### Impedance of a Waveguide

For a TE mode, we define the transverse impedance as

$$\eta_{gTE} = \frac{-E_y}{H_x} = \frac{E_x}{H_y} = \frac{\omega\mu}{\beta_z}$$

From the relationship for  $\beta_z$  and using

$$f_c^2 = \frac{1}{4\mu\epsilon} \left[ \left( \frac{m}{a} \right)^2 + \left( \frac{n}{b} \right)^2 \right] \quad (31)$$

we get

$$\eta_{gTE} = \frac{\eta}{\sqrt{1 - \frac{f_c^2}{f^2}}} \quad (32)$$

where  $\eta$  is the intrinsic impedance  $\eta = \sqrt{\frac{\mu}{\epsilon}}$ . Analogously, for TM modes, it can be shown that

$$\eta_{gTM} = \eta \sqrt{1 - \frac{f_c^2}{f^2}} \quad (33)$$

### Power Flow in a Rectangular Waveguide (TE<sub>10</sub>)

The time-average Poynting vector for the TE<sub>10</sub> mode in a rectangular waveguide is given by

$$\langle \mathbf{P} \rangle = \frac{1}{2} \operatorname{Re} [\mathbf{E} \times \mathbf{H}^*] = \hat{\mathbf{z}} \frac{|E_o|^2}{2} \frac{\beta_z}{\omega\mu} \sin^2 \frac{\pi x}{a} \quad (34)$$

$$\langle \text{Power} \rangle = \int_0^a \int_0^b \frac{|E_o|^2}{2} \frac{\beta_z}{\omega\mu} \sin^2 \frac{\pi x}{a} dx dy \quad (35)$$

$$\langle \text{Power} \rangle = \frac{|E_o|^2}{4} \frac{\beta_z ab}{\omega\mu} = \frac{|E_o|^2}{4} \frac{ab}{\eta_{gTE_{10}}} \quad (36)$$

Therefore, the time-average power flow in a waveguide is proportional to its cross-section area.