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Need for Heterogeneous Integration - 1

Al Requirements

Training a large language model like
GPT-3, for example, is estimated to
use just under 1,300 megawatt
hours (MWh) of electricity; about as
much power as consumed annually
by 130 US homes. To put that in
context, streaming an hour of Netflix
requires around 0.8 kWh (0.0008
MWh) of electricity. That means you’d
have to watch 1,625,000 hours to
consume the same amount of power it
takes to train GPT-3.

Source: James Vincent, How much electricity does Al consume? The Verge - 2/16/2024
https://Iwww.theverge.com/24066646/ai-electricity-energy-watts-generative-consumption
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Need for Heterogeneous Integration - 3
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Heterogeneous Integration

Focus on minimizing energy and delay

Identify and address conflicting requirements,
Take advantage of novel interconnect technologies
Leverage from Al methodologies

Address design and computational complexity
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System-Level Integration
(Microelectronic Packaging)

Semiconductor
* Unprecedented Innovations in CMOS, Si-Ge,Copper Wiring
* Fundamental technical Limits

Electronic Systems
* Computers, telecom & Consumer Products Merge

* Portable, Wireless, & Internet Accessible
* Very Low Cost & Very High Performance

Microelectronic Packaging
* High Cost, Low Performance, Low Reliability
* Lack of Skilled Human Resources
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Packaging Challenges

- Package is bottleneck to system performance
- Package cost is increasing percentage of system cost
- Package limits IC technology

- On-chip system can outperform package capability
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Levels of Integration
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CHIP PACKAGE BOARD
- Transistors - Interconnects - Transmission lines, sensors
- Nonlinear - Linear - Linear+Nonlinear
- SPICE - EM Tools - EM Extraction, SPICE, IBIS,...
- Scaling with tech - Scaling with A - Scaling with A
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Advantages of SOC

* Fewer Levels of Interconnections
* Reduced Size and Weight

* Merging of Voice, Video, Data....

Arguments against SOC
* Challenges too Big

* Legal issues
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Challenges for SOC

* Different Types of Devices

* Single CMOS Process for RF and Digital

* Design Methodology not available

* EDA Tools cannot handle level of complexity
* Intellectual Property

* Signal Integrity

* High-Power Requirements of PA
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System on a Chip (SOC)

Logic BT S A Full-scan
BIST - core amay synthesis
—_— - : and ATPG

In-house

Memory BIST ey

Partial-scan
synthesis and

In-house
block B ATPG

Core access

i
z
3
:

Core reuse
Sequential

ATPG

Boundary
scan

ATPG = automatic test pattern generation  IP = intellectual property
BIST = built-in self-test TAP = test access port

Source: Mentor Graphics Corp.
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SOC vs SOP

System on Chip
Silicon
substrate Spiral

Voltage Controlled Oscillator
(UIUC-CAD group — 1999)
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System on Package

Passive Ceramic
Components Substrate

o

Triple-band GSM/EDGE Power Amp Module
(RF Design Magazine — 4/02)
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SOP vs SOC

SOP SOC

Low cost consumer products (<$200) YES

Portable products ($200-$2000)

Single processor products ($1-$5K)

High Performance Products (>5K)

Automotive and Space Applications YES NO

Ffu-
Biectricl s {(Lé!tNOIs ECE 451 — Jose Schutt-Aine 12

University of Illinois at Urbana-Champai



RF Front End Technologies

Product PA LNA Mixer VCO Filter  Switch
GaAs :
Technology : : . Si : Si
Si Si Si GaA Si
(Standard) SiGe ans GaAs
Technology [InP InP InP InP Ic?PA
Alternate) | GaAs  GaAs  GaAs GaAs aAs
( ) SiGe LU=l MEMS
. . Isolation,
Criterion F_’AE, _ Low power Llneal_'lty, 1/f noise High Q Insertion
linearity 1/f noise hoee

e IL LINOIS

Biectica and Compute Engl ECE 451 — Jose Schutt-Aine

13
University of Illinois at Urba (.h pg



Transistor Technologies

GaAs

Si Bipolar MESFET GaAs HBT InP HBT
base resistance high E low low
transit time high - low low
Beta*Early voltage low E high high
col-subst capacitance high - low low
turn on voltage 0.8 - 14 0.3
thermal conductivity high - low medium
transconductance 90X 1 50X 50X
device matching <1mV >10 mV 1 mV 1 mV
EZiLg:ELSgor negligible >10 mV negligible negligible
breakdown voltage <10V >8V >10V low
fT (GHz) 30 100 100 160

"’“'ILLINOIS
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Trends & Enabling Technologies

Materials/Processing Radio Architectures

* RF CMOS, SiGe .
@ Polar vs Cartesian loop
 AlGaAs/GaAs, InGaP/GaAs ] i
Met hic GaA ® Direct Conversion
o etamorpnic GaAas .
P ® Software Radio

* InP SHBT, DHBT

CAD Tools Packaging

@ Device behavioral models @ Differential designs
® RF Time-domain tools @ RF MEMS

@ Fast Solvers @ LTCC
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Dual-in-Line (DIP) Package

&
b /AN

W‘W&’/ﬂ\l

ﬁTU
MWMM
‘”W)“ﬂf
w

- Mounted on PWB in pin-through-hole (PTH) configuration
- Chip occupies less than 20% of total space
- Lead frame with large inductance
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Package Types

DIP QFP CSP Flip Chip
. DIP QFP csp Flip Chip
Top View %sg 28 2 s5e s
(showing chip topackage connection) E E E ; :g :: i
AN INF - °00o0
s Gl SMT/BGA DEA |
Plane View ‘E’ @ |
showing package to board connection)
Chip Size (mm x mm) 5x5 16 x 16 25 x25 36 x 36
Chip Perimeter (mm) 20 64 100 144
Number of 1/Os 64 500 1600 3600
Chip Pad Pitch (um) 312 128 625 600
Package Size (inxin) 3.3x1.0 2.0x2.0 1.0x1.0 1.4x1.4
Lead Pitch (mils) 100 16 25 24
Chip Area (mm?) 25 256 625 1296
Feature Size (um) 2.0 0.5 0.25 0.125
Gates/Chip 30K 300K 2M 10M
Max Frequency (MHz) 5 80 320 1280
Power Dissipation (W) 0.5 7.5 30 120
Chip Pow Dens (W/cm?) 2.9 4.8 9.3 2.0
Pack Pow Dens (W/cm?2) 0.024 0.3 4.8 9.8
Supply Voltage (V) 5 3.3 2.2 1.5
Supply Current (A) 0.1 2.3 13.6 80
cccILLINOIS
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Material

Air (dry)

Alumina:
99.5%
96%
85%

Sapphire

Glass, typical

Polyimide
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Substrate Materials

Surface
roughne
ss (um)

N/A

0.05-0.25
5-20
30-50

0.005-
0.025

0.025

104 tand
at 10
GHz

0.4-0.7

20

50

10.1
9.6
15

9.4,11.

3.2
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Thermal

conductivity K
(W/cm?/°C)

0.00024

0.37
0.28
0.2

0.01

0.002

Dielectric
strength
(kV/cm)

30

4x103
4x103
4x103

4x103

4.3
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Material

Irradiated polyolefin

Quartz
(fused) i.e. SiO2

Beryllia
Rutile

Ferrite/garnet
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Substrate Materials

Surface
roughne
ss (pm)

0.006-
0.025

0.05-1.25

0.25-2.5

0.25

104 tand
at 10
GHz

2.3

3.8

6.6

100

13-16
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Thermal
conductivity K
(W/cm?/°C)

0.001

0.01

2.5

0.03

Dielectric
strength
(kV/cm)

~300

10x103

4x103
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Material

FRA4 circuit board

RT-duroid 5880

RT-duroid 6010

AT-1000

Cu-flon
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Substrate Materials

Surface
roughne
ss (um)

0.75-1
4.25-8.75

0.75-1
4.25-8.75

104 tand
at 10
GHz

100

5-15

10-60

20

4.5
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4.3-4.5

2.16-
2.24

10.2-
10.7

10.0-
13.0

21

Thermal
conductivity K
(W/cm?2/°C)

0.005

0.0026

0.0041

0.0037

Dielectric
strength
(kV/cm)

20



Material

Si (high resistivity)
GaAs

InP

SiO2 (on chip)

LTCC (typical green
tape 951)

cet ILLINOIS

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Substrate Materials

Surface
roughne
ss (pm)

0.025

0.025

0.025

0.22

104 tand g
at10

GHz

10-100 1.9

6 12.85
10 124

- 4.0-4.2
15 7.8
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Thermal
conductivity K
(W/cm?2/°C)

0.9

0.3

0.4

Dielectric
strength
(kV/cm)

300

350

350

400
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Ceramic Substrate
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Stacked Wire Bonds
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Ball Bonding for Flip Chip
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Flip Chip Pin Grid Array
(FC-PGA)

Bumped

Die

Package
Body

Pins
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3D Packaging

Packaging-Based Chip Stack Die-to-Wafer
Eondlng SoC

BEOL Wafer-to-Wafer Bonding
3D Hyper-Integration

s cequeniary VR 0 (R
[RGeR TRy, aian, bond,
interconnect
: 3-D Chip
Stack

D, AE Ople8ie
i sansors or MEMS

HTW (i) I '| (k)

Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE
pp 18-30, Vol. 97, No. 1, January 2009.
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3D Packaging

“Via-Last” TSV “Via-First” TSV

“Integrated passive”

- Decoupling Capacitors,
Inductors...

LA A ) :-:-';;';'L-_-s..
IPD Digital
interposer
.l.-.il Key concepts
PCB /laminated substrate .
*  Wires
Source: Yole Report 2009. > shorter

> lots of it
° Heterogeneous integration
> Analog and digital
» Technologies (GaAs and Si?)
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3D Industry

» 16Gb NAND flash (2Gx8 chips) Wide Bus DRAM
® Micron
» Wide Bus DRAM

* Intel

» CPU + Memory
° OKI

» CMOS Sensor
* Xilinx

» 4 die 65 nm interposer
* Raytheon/Ziptronix
» PIN Detector Device

° IBM
» REF Silicon Circuit Board/ TSV Logic & Analog
* Toshiba
» 3D NAND
CCrC /U.INOIS

ECE 451 — Jose Schutt-Aine
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Through-Silicon Vias

IO Pad

JISONN

L13450Nd

LIISONN

Si Zr NMOSFET PMOSFET
Substrate

Through Si Via
(TSV)

Adhesive

Layer

Metal

Microbump

™ Insulating
Layer

PMOSFET

NMOSFET

NMOSFET

Si L‘"

NMOSFET
Substrate PMOSFET

(b)

Mitsumasa Koyanagi," High-Density Through Silicon Vias for 3-D LSIs"
Proceedings of the IEEE, Vol. 97, No. 1, January 2009
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L Supporting
Material

~Through Si Via

(TSV)

— Adhesive

Layer

\Mctﬂl

Microbump

From: M. Motoshi, "Through-Silicon Via,
Proc. of IEEE Vol. 97, No. 1, January 2009.

TSV Density: 10/cm? - 108/cm?

ECE 451 — Jose Schutt-Aine
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Through-Silicon Vias (TSV)

Advantages

» Make use of third dimension
> several orders of magnitude (10/cm? to 108/cm?)

» Minimize interconnection length
> More design flexibility

Issues

Metal Mic ml’urn|

» 3D Infrastructure & supply chain | E : __};.f

I-'n':lh::lqr.ru l F.I.It'—“l'
> 1/0 Standardization {
> EMI Supporfing Substatd &
. oge b
» Thermal management and reliability From Koyanagi et al., IEEE Proceedings, Feb 2009
~re
ILLINOIS
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TSV Pitch # Area / Number of TSVs
* TSV pitch example

» 1024 bit busses require a lot of and
space with larger TSVs S

TSV Pitch

3rd
Stratum ¥

{Thinned
Substrate)

Substrate)

» They connect to the heart and

Interstrata pads, 1/0s, or power/ground

wemanangs ON-Chip
wene  INtEFCGARECE

Bonding

{Metal,
Eutectic,
ar solder}

Adhesive
Bonding,
Oide

most dense area of processing — Sonding:
1st A, or Oxide
elements El'g:;:':ll ol Multi-level on-chip interconnects ( .Ei?gas ;:I
» The 45nm bus pitch is ~100 Substrat]
nm; TSV pitch is > 100x greater
Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE,
pp 18-30, Vol. 97, No. 1, January 2009.
~rr-
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Through-Silicon Vias (TSV)

3rd

® Via First St 3
® Via Last e
® Via at Front End (FEOL) s
* Via at Mid line searea
® Via at Back end (BEOL) it

Bond
ﬂhdheslve
or Oxide)

A= [eyice
surface

Bond

Multi-level on-chip interconnects

(Adhesive
or Oxide)

+— Device

Si Substrate surface

Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE,

pp 18-30, Vol. 97, No. 1, January 2009.
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Through-Silicon Vias (TSV)

iy

BC

Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE,
pp 18-30, Vol. 97, No. 1, January 2009.
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TSV-Based Products

STMicro CMOS Sony Video / DSC L
image sensor in camera with BSI Elpida’s 3D TSV stacked DRAM memory
WLP/TSV package CMOS image

sensors

There are currently about 15 different 3D-IC pilot lines worldwide
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3D-ICand TSV

* Stacking of chips makes heat transfer through
the z-direction difficult.

* Lossy silicon substrate makes coupling between
adjacent TSVs strong.

* TSV noise can be easily coupled to the adjacent

TSV through conductive silicon substrate
* 3D IC yields are much lower than 2D-IC
* Difficult to detect TSV and MOS failures

Solution: Use 2.5D integration

cccILLINOIS
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2.5D Integration

2.5D-IC emerges as a temporary solution

* In 2.5D-IC, several chips are stacked on interposer
only homogeneous chip stacking is used.

* fine-pitch metal routing is necessary because it
increase I/0 counts

* For this purpose, an interposer is used where small
width and small space metal routing is possible.

* Silicon substrate is usually used for an interposer

because on-silicon metallization process is mature

and fine-pitch metal routing is possible

l-fu-
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Silicon Interposers

'
{
b

Memory
o5 (a»]
Memory
o) x5
Memory
= @ ]
Memory Processor
o
‘ l ﬂ 1 ﬂlnterposer ‘

Source: J. Kim et al — DesignCon 2013.
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Silicon Interposers

Multi-layer Signals

|

Front-side
insulator

Back-side

Silicon
J— insulator

Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim,
"Double-sided Si-Interposer with Embedded Thin Film Devices",
2013 IEEE 15th Electronics Packaging Technology Conference
(EPTC 2013), pp 757-760.
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Silicon Interposers

Signal W/S=10/10 pm

Low-loss Via

IC #1 IC #2

L T XY FYYYY YN Y . 4 N TSN
High @ Inductors

Organic 3

ﬂarli[: 1

Organic 2

Organic 4

Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim,
"Double-sided Si-Interposer with Embedded Thin Film Devices",
2013 IEEE 15th Electronics Packaging Technology Conference
(EPTC 2013), pp 757-760.
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Hybrid Bonding

simultaneous bonding of dielectric and metal bond pads in one bonding step

Oxide fo Oxide Internal Heat Closes Dishing Gap Further Heating Compresses
Bond at Room Temperature (Metal CTE > Oxide CTE) Metal without External Pressure

>

Silicon
(MOS Back End of Line
” 7 ”

Silicon Silicon

(MOS Back End of Line
Oxide Meial Dxide

Oxide Metal Oxide
CMOS Back End of Line
Silicon

CMOS Back End of Line

Oxide Matal Oxide Oxid

Oxide Meal Oxide ¥ Oxide L Oxide W
(MOS Back End of Line (MOS Back tnd of Line
Silicon Silicon

[mage Cradit Imed Jani. Tast and charocierizafion of 3D high-densidy interconnacts. Micro and Nonotechnolo- gies/Microalacironics. Université Grancble Alpes, 2019, Englich. NINT : 20T $GREATOP4 . fel- 02434259
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Hybrid Bonding
Advantages

* Allows advanced 3D device stacking

* Highest I/O

* Enables sub-10-pm bonding pitch

* Higher memory density

* Expanded bandwidth

* Increased power

* Improved speed efficiency

* Eliminates the need for bumps, improving
performance with no power or sighal penalties
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Hybrid Bonding
Processing Steps

Simplified process to show how permanent bonding adhesive can be used in hybrid bonding

Oxide/Metal H'p'l.'!rld Eum:ling w
i - e - e - SO

Copper Fillar Oxide Deposition Plunarizafion Alignment & Bonding

Palymer/Metal Hybrid Bonding w
. S e -

Patternad Polymer Electroplating Mlignment & Bonding

cet ILLINOIS
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Hybrid Bonding
Applications

BT

HBM stack for maximum data throughput. Source: Rambus

a0 ILI.INOIS
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Hybrid Bonding

Comparison

Hybrid Bonding
Micro Bump

-5}
)
)
Wi
)
=)
©
o
Loy
(7

.,(.\“

SolderBump

6 8 ecsi2 14 16
Frequency [GHz]

Hybrid bonding virtually eliminates signal loss. Source: Applied

Materials
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What is Co-Design?

* Level Co-design ° Function-based Co-design
»Chip » Thermal aware
»Package »Signal integrity aware
»Board » Testability

»Security aware

* Physics-based Co-design « pDomain-based Co-design

» Thermal »Hardware

> Electrical » Software

> Mechanical » Architecture
»Optical

o ILLINOIS
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Traditional Design Flow

IC Technology selection

v

Active circuit synthesis

Y

Layout tape-out
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v

Package/module selection

v

Y

PC board selection

v

Passive integration
(filters, switches,...)

Placement routing

v

Y

I/O Pad design

Antenna

ECE 451 — Jose Schutt-Aine
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Co-Design Flow

IC Design Flow

IC Technology Selection

Y

Package Design Flow

Package
Technology Selection

Y

Routing and /O

Pad placement & I/O

Y

Y

PCB Design Flow

PCB
Technology Selection

v

Component placement

v

Passive implementation: filters, switches, etc...

Y

Y

Matching networks

Y

!

Decoupling network/Power distribution

Y

Layout

v

Layout

v

v

Routing

Layout

Antenna Integration

v

!

RF Simulation

ECE 451 — Jose Schutt-Aine
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Co-Design Requirements

- Tradeoffs in advance
- Translation and domains
- Propagate information

- Manage connectivity

- Database formats

Courtesy of Zuken
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Thermal-Aware Co-Design

3D/2.5D INTEGRATION

Current
density

Interconnect/
TSV density

Thermal
coupling
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Dissipated Heat
Bower Power
Electrical Thermal
equivalent equivalent
Update Material | Temperature

Resistivity PFUD'EITY Distribution
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Multi-Chiplet Challenge

°* Objectives
»1000 chiplets on panel

»New layer of abstraction needed
»Abundance of wires (~6000/mm)

° Challenges
»Logic connectivity vs physical connectivity
»Fragmented design ecosystem
»Increased desigh complexity

S O C “
cccILLINOIS
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Power Delivery for Chiplet-Based SiP

Chiplets must be positioned in their respective locations and provided with
paths through the power distribution network. There can be multiple power
domains. Package builder tools are used to automate the placement of
vias, ball grid arrays and traces to the PDN. To mitigate supply voltage
fluctuations decoupling capacitors (“decaps”) are placed on the PCB,
package substrate, package interposer, and the silicon dies.

chiplet

chiplet2
active

=2
m
=4
o
=]
]
m
=

Package side view

=0 ILLINOIS

Electrical al dC mp r Engin
University of Illin tu h (.h mp ign

ECE 451 — Jose Schutt-Aine 51



Coupling Noise in Mixed Signal Systems

High-Performance A/D Converter Digital Signal Processor
Digital Digital Digital Digital
GND VDD package PCB-level GND VDD

(chip-to-chip interface) - -
! a4 aA
o ;\
b Ieue: 2

Analog
In it Generation couplin CHIP 2
Sensitive  aye| 3 coupling
nalog Block \/ Noisy
VvV €4 "\ Digital Block
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Proposed Solution

* Electromagnetic Bandgap (EBG) Structures

— Definition: One-, Two- or Three-Dimensional
Periodic Metallic/Dielectric System which Exhibits
Band Rejection Behavior

— Bandstop filter characteristics due to shunt
capacitances and series inductance

— Design can be optimized for PDN applications
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Electromagnetic Bandgap Structures

IEEE MWCL July 2004 (EBG) LPF: Cpand Ly,
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Planar-type EBG Structures

IEEE APS July 2005

90mm

..

IEEE MWCL Mar.

Q0mm
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EBG Structure

1. Reducing Cut-off Frequency of Planar-type EBG Structure

(In Consequence) Enhancing Noise Suppression Bandwidth

2. Miniaturizing Unit Cell of Planar-type EBG Structure

B

L .
Bo— 4GHz stopband ——8
[ ]

b
=

S-pahrametert dB)
=

&
=

Without Degradation in Stopband Bandwidth

—ra
£

£

&3

100

Frequency(GHz)
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EBG Structure

(i-1) Cell ith Cell (i+1)th Cell
: Cgap i
L2 ¢ L2 L L2 i L2
parasztlcs N ; b :l

, 5 I
: g % : %
2Lparasitics CP/Z 5 C'P/2 2Lpamsitics T:T "".[;I"""&:r ........

Cw? T _TIT ¢ C/2  =F T
7 »
ith Patch Bridge (i+1)th Patch
METHODS OF CUT-OFF DOMINANT CIRCUIT LEVEL CUT-OFF FREQUENCY (fioupass_cutoff) HIGH FREQUENCY LIMITATION OF EBG
FREQUENCY ENHANCEMENTS COMPONENTS IN FIG. [MHZ] STRUCTURE
Method 1: Conventional . [ Tl st ( )
Planar-type EBG Structure Lp, Lpriage (FLmst), and Cp a \/C P (L p+L MSL) 1* Resonant Frequency of Patch at c/ 2b4/ &,
Method 2: Increasing Bridge - 1
Inductance using Series Lp, Lyriage (SLcnip), and Cp r.|C P ‘ Lp +Lepip '] 1* Resonant Frequency of Patch at c/ (Zb £, )
Lumped Chip Inductors )
Method.3: Incregsmg Patch Loy Lvidgo Lyarasiics, Cr, and - : -1 Parallel Resonant Frequency of Cp and Lparasirics at
Capacitance using Shunt o 74/Cp (L p+L bridge) 1/(27[ \/CLi )
Lumped Chip Capacitors chip L P parasitics
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Verification: ADS Simulation

Port
(a) (b) ©) = e
y {mm] 12x12 array of T-models Xf%”%” e —CT (—
fmm] bozises  Srws
¥ N
-—*-"g L L —
Inductor (74 74)' L . L4 VIP Ea
bridge‘ POI’t i L=p_2 21“) ) Dg :ijp‘z Y[1,1]=freq*cp*tan(0.02)
(46 45) (74 45)
Port_ 1 Port 3 : -_ : o
' mﬁ-ﬁ%ﬁﬁ-ﬁ?ﬁ L R

! pherb]
5 #'!!!!!!!!!!!!#5!!&?

(e) 1% order LC model

A
Il

---------------------------------------------------------------------------------- Poit I Poit

: ....................................... .v ] L Eemb Pe ¢ P
. 085 (.‘.86 087 (.‘.88 c89 31291 092 093 094 (.‘.95 096 : Num=1 | C-016pF Numn=2>
C=cgap C=cgap 5

C=cgap C=cgap C=cgap C=cgap C=cgap

o v 25 o A B b A o

(d) 12-section distributed |capacitance models
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Simulation Results

— EBG Structure with 90x90 mm? Ground Plane Area

il
Il
it | !I
MWCL 2005 /;“

W

1 10n Parametegr}
NN |
] 100n

-1 50 [ [ N [ | [ | [ [ [ [ | [ [ [ [ | [ [ [ [
0 \ 200n 5 3 4 5
330n
470n freq, GHz
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Thermal Management

Manage heat within a system to ensure efficient and safe operation.

Thermal Management Techniques
- Air Cooling, Liquid Cooling, and Two Phase Cooling
- Conduction Cooling

Passive Cooling Technology

- Thermal Interface Materials
- Heat Spreaders

- Heat Sinks

Source: C.Bailey, "Thermal Management Technologies for
Electronic Packaging: Current Capabilities and Future
Challenges for Modelling Tools", 2008 10th Electronics
Packaging Technology Conference, 2008.
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Thermal Management

Boundary CFD, FEA, optimisation
conditions

Temperature,
thermal resistance
stress

Material
behaviour

suoiesall ubisaqg

Failure

sriGr Damage model

Reliability

*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future
Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.
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Thermal Management

Passive Technology Materials*

Material Thermal CTE Price/
conductivity 10K

CVD diamond 1300 2.0 High
Aldumimium Nitrigde 260 4.0 Medium
Cubic boron nitride 200-250 | High
Silicon Carbide 200 2.8 Medium
Aluming 30 5 L.ow
Copper 400 16 Low
Alumimim 200 23 Low
Molvbdenum 138 5.1 Low
Copper Molvbdenum |65-215 6.8-4 Medium
Copper Tungsten 175-235 6.5-9 Medium
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*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future
Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.
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Electrical-Thermal AC Analysis

Electrical Analysis: Thermal Analysis:
V x (iv X E) —ko2e,E = —jkoZo) V-kVI=-P
Hr
T = T. on [ e
» Waveguide port boundary OT
condition k% — _h(T — Ta) on [cony
» Absorbing boundary
condition
"’"'ILLINOIS
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Electrical-Thermal DC Analysis

Electrical Analysis: Thermal Analysis:
V.-oVep=0 V- -kVT =-P
O = Oc on [ ve T =T on [ .
do 0 orT
— = == k— = —h(T — Ta rconv
o5, pc On Moad o ( ) on [,

e
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cal a d( p l-
Univ of Ilin tU l (.h mp ign



Electrical-Thermal Isomorphism

Current Flow (1) i Heat Flow (Q)

Voltage Drop (VI=V2) | Temperature Drop (T1 = T2)

Electrical Resistance (K ) E Thermal Resistance (Ry)
i

I Q
—_— —_—
vl =M\ v2 =12 Tle—AW—oT2
Ra E Ry

cccILLINOIS
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Thermal /Electrical Co-Simulation
Thermal Modeling Using Circuit Simulgtor*

Source Oxide SO, Drain
i (thickness: t )
Current Flow (1) ! Heat Flow (Q)

Voltage Drop (VI=V2) | Temperature Drop (T1 = T2)
Electrical Resistance (R.) +  Thermal Resistance (R;) ——

I : Q | ] | |

—_— ! e n+ n+

vl —MW— v2 =1 Tle—MA\—oT2

Re I Ry

- ' p-type substrate (body)

Cross section. Temperature °C, Time:395ns

100

50
80

> 100
60

150
40

200

20 40 60 80 100 120
X

* Klokotov, D., Schutt-Aine, J.E., "Latency Insertion Method (LIM) for Electro-Thermal Analysis of 3-D Integrated
Systems at Pre-Layout Design Stages", IEEE Trans. Compon., Packag. Manuf. Technol., vol: 3 , no. 7, pp. 1138-1147,
July 2013
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Electro-Thermal Analysis. Motivation

— 3D stacked IC designs
— Increased power density
— Heat removal difficulties

— Electrical reliability (electro-migration)
— Power delivery (IR drop)

— Signal propagation (RC delay)

— Memory retention time (Leakage)

— Thermal-aware design at the earliest stages

— Using the floor plan and early power distribution analysis (know the
current distribution — want to use that information)

.l-l\ ~
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Temperature distribution in IC structure

* Modeling methodology | GomentFow () Feat low (@)
Dltafgc Dmp_ (V1=-¥2) E Tempem[ure_]]mp (T1 =-T2)
— Use thermal — electrical analogy recriod] fesstanes () - Thermal Fsisanes (R0
— Thermal problem = electrical circuit Vi AW V2 -=-1§-=- Tl AW T2
— Bulk of the material = 3D Resistive network e E .
— Heat sources = Constant current sources Acl oC
— Convective boundaries = Effective resistances R, :k_A{ W

— Ambient temperature - Constant voltage sources

— . hai[ C}
— Ambient air —> @Rh heA W

Heat sources > = R, AAA
Apply
circuit

solver

e Solve the resulting network for node voltages
— A major issue — the SIZE of the model
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Benchmark Thermal Problem

e 2D benchmark problem (NAFEMS) D f —
. _ |
— Simple geometry Convectionto |
|
— Has all typical components e euator 1.0m
I
_ . . . E |
There is analytical solutlc.m o o105 1 i
— Target temperature at Eis 18.3°C —
N
———_08m ___
100
3 ——LIM solution
80 —o- Analytical solution
O i
2 0 |
% ' x=20cm
£ 40/ T=183C
& X=60
20+ E i : ity D o 1moms
% 20 40 60 80 i B E = £
Distance from point B, cm

[10] Davies, G.A.O. and Fenner, R. T. and Lewis, R. W., Background to benchmarks, NAFEMS, 1993
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3D Structure. Chip-Interposer-Chip

silicon substrate

—Aam Flmuar
—"EaEm —u A W
R TY

interposer
substrate

AAAAAAAAAAAAAAA

’—EST DEV. TH. 0.85
1370

17 ]
1 ]

5-2-5BU SUBSTRATE

CAVITY LID
SECTION
SHOWN

> How hot does the system get ?

> How much heat is transferred Model parameters

from the top chip (controller) to Unit cell size (cube) Ax =0.2833 mm
the bottom (memory) ?
Number of nodes 135,089
> !f the via density or distribution Number of branches 326,168
is changed, how does that affect
the temperature distribution ? Total number of 461,257
elements
» How much heat can be
dissipated through the
interposer substrate ?
~re
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Results of the simulation

 LIM simulation results in a symmetric temperature profile

Temperature, C !90

70
60
50
40

.30

 |cepak resultis not symmetric

96.3927

87.4686

78.5444

69.6203

60.6962

51.7721

42.8479

33.9238

24.9997

- ‘-..______/
".D...D...D.D.D.D...D...DL o g
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Results with non-uniform cooling

* Cross section of the 3D structure (center cut)

— Comparison between two pictures from different tools

— Looking for correct temperature range and general distribution (color maps used by
the tools are not exactly the same)

— In general, very good correlation is observed

TEmperature

96.3927
87.4686
78.5444
69.6203
60.6962
51.7721

42.8479

33.9238

(a) ANSYS Icepak simulation 24.9997
96
Temperature, C .90

180
170

160
150
140
(b) LIM MATLAB simulation I30
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More Results

e Can look at two scenarios

: 100
: 100
50

a0 Al

L
I
T
S R

a0

= 70

35.000

21800

= &0

= 50

30

5-2-5 BU SUBSTRATE

Steady-state temperature profile.
Top view of the structure
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Model Size Issues

* Mesh density considerations

» coarse mesh results in errors in heat flux calculation
» geometry of the structure

» structure of the underlying PDN

» sizes of elements of interest (TSVs, solder balls, etc.)

#1

3 segments [0

# 2

6 seqd m@ ts PR

nm Run time LIM (C++) Run time LIM (MATLAB) Run time HSPICE 2010

461,257 27 (total)

2 3,514,400 65 154 949 (total)

* Typically the size of the equivalent circuit is very large

* Traditional solvers (SPICE) do not scale well with the
size of the model
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Transient results

* Transient analysis is naturally performed by the LIM
* Insert the actual capacitance instead of fictitious

100

90+

80t

70F

60

Temperature, C

501
The structure heats up from

40 the ambient temperature
and reaches the steady state

30

200 0.01 0.02 0.03 0.04 0.05 0.06

Time, s

 Dynamic heat management through workload distribution
* Cooling management
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