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Parallel-Plate Waveguide

Maxwell’s Equations  
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For a parallel-plate waveguide, the plates are infinite in the y-
extent; we need to study the propagation in the z-direction.  The 
following assumptions are made in the wave equation

0, but 0 and 0
y x z
  

   
  

 Assume Ey only

These two conditions define the TE modes and the wave 
equation is simplified to read

TE Modes
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General solution (forward traveling wave)

( , ) x xz j x j xj z
yE x z e Ae Be       

( , ) sinzj z
y o xE x z E e x 

At x = 0, Ey = 0 which leads to A + B = 0.  Therefore, 
A = -B = Eo/2j, where Eo is an arbitrary constant

Phasor Solution

a is the distance separating the two PEC plates
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At x = a, Ey(x, z) = 0   

This leads to: xa= m, where m = 1, 2, 3, ...

Moreover, from the differential equation (¥), we get the dispersion 
relation

which leads to

Dispersion Relation
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where m = 1, 2, 3 ...  Since propagation is to take place in the z
direction, for the wave to propagate, we must have z

2 > 0, or

This leads to the following guidance condition which will
insure wave propagation
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The cutoff frequency fc is defined to be at the onset of propagation

Each mode is referred to as the TEm mode. It is obvious that
there is no TE0 mode and the first TE mode is the TE1 mode.

Cutoff  Frequency

The cutoff frequency is the frequency below which the mode 
associated with the index m will not propagate in the waveguide.  
Different modes will have different cutoff frequencies.  
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we have

From  = - jE H

which leads to

Magnetic Field for TE Modes

The magnetic field for TE modes has 2 components
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As can be seen, there is no Hy component,
therefore, the TE solution has Ey, Hx and Hz only.

From the dispersion relation, it can be shown that the propagation 
vector components satisfy the relations
z = sin, x = cos where  is the angle of incidence of the 
propagation vector with the normal to the conductor plates.

E & H Fields for TE Modes
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and

The effective guide impedance is given by:

The phase and group velocities are given by

Phase and Group Velocities
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The magnetic field also satisfies the wave equation:

Transverse Magnetic (TM) Modes

Maxwell’s Equations  
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Assume Hy only  
These two conditions define the TM modes and the equations are 
simplified to read

General solution (forward traveling wave)

For TM modes, we assume

( , ) x xz j x j xj z
yH x z e Ae Be       

TM Modes
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This leads to

( , ) x xz j x j xj zz
xE x z e Ae Be 


     

( , ) x xz j x j xj zx
zE x z e Ae Be 


      

Electric Field for TM Modes

we get

From
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( , ) coszj z
y o xH x z H e x 

( , ) coszj zz
x o xE x z H e x 




( , ) sinzj zx
z o x

jE x z H e x 




At x=0, Ez = 0 which leads to A = B = Ho/2 where Ho is an arbitrary 
constant.  This leads to

At x =a, Ez = 0 which leads to

TM Modes Fields

xa = m, where m = 0, 1, 2, 3, ...
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This defines the TM modes which have only Hy, Ex and Ez
components.

E & H Fields for TM Modes

The electric field for TM modes has 2 components

The effective guide impedance is given by:
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This defines the TM modes; each mode is referred to as the TMm
mode.  It can be seen from that m=0 is a valid choice; it is called the 
TM0, or transverse electromagnetic or TEM mode.  For this mode 
and,

E & H Fields for TM Modes

THE DISPERSION RELATION, GUIDANCE CONDITION 
AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE 
WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.
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x=0 and z = . There are no x variations of the fields within the 
waveguide.  The TEM mode has a cutoff frequency at DC and is 
always present in the waveguide.

TEM Mode

The TEM mode is the fundamental mode on a 
parallel-plate waveguide

The propagation 
characteristics of the 
TEM mode do not 
vary with frequency
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Power for TE Modes

TE modes
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TM modes

The total time-average power is found by integrating <P>
over the area of interest.

Power for TM Modes


