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Parallel-Plate Waveguide

Maxwell’s Equations = V°E+ o’ ucE =0
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TE Modes

For a parallel-plate waveguide, the plates are infinite in the y-
extent; we need to study the propagation in the z-direction. The
following assumptions are made in the wave equation
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= Assume £, only

These two conditions define the TE modes and the wave
equation 1s stmplified to read
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Phasor Solution

General solution (forward traveling wave)

E (x,z) = e /h [Ae_jﬂ"x + Be“ﬂxx]

Atx =0, Ey = () which leads to 4 + B = 0. Therefore,
A =-B = E_/2j, where E 1s an arbitrary constant

E (x,z)= E e/’ sin B.x XA[ e
Z X=() e—

a 1s the distance separating the two PEC plates
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Dispersion Relation

Atx=a, E(x,z) =0 & Ee’*sinfla=0

This leads to: f.a=mx wherem=1, 2, 3, ...

Moreover, from the differential equation (¥), we get the dispersion
relation

B+ =’ ue = f

2
which leadsto g = \/ W’ e — (m—ﬂj
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Guidance Condition

p. = \/ o pig ~ (%j
a

where m =1, 2, 3 ... Since propagation is to take place in the z
direction, for the wave to propagate, we must have £ > 0, or

)

w’ 1g >

a

This leads to the following guidance condition which will
Insure wave propagation
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Cutoff Frequency

The cutoff frequency f. 1s defined to be at the onset of propagation
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Each mode is referred to as the TE A mode. It 1s obvious that
there 1s no TE, mode and the first TE mode 1s the TE, mode.

The cutoff frequency 1s the frequency below which the mode
associated with the index m will not propagate in the waveguide.
Different modes will have different cutoff frequencies.
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Magnetic Field for TE Modes

From VxE =-jouH

iy 2

wehave He—|2 o 2
ja)ﬂﬁx oz

0 E, 0

which leads to
&Eoe_j P sin 3 x

H =-
o
H = +]—’6)"Eoe_jﬂzz cos fB.x

WH
The magnetic field for TE modes has 2 components
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E & H Fields for TE Modes

X X (]
‘ e :/' :i_a.,: :
~ E
x=0

As can be seen, there is no H, component,
therefore, the TE solution has £, H, and H, only.

From the dispersion relation, it can be shown that the propagation

vector components satisfy the relations
[ = Bsin6, = [ cos@ where f1s the angle of incidence of the
propagation vector with the normal to the conductor plates.
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Phase and Group Velocities

The phase and group velocities are given by

Yy = w o ¢ a 2
"B 1’ and vgz—a)zc /l—fcz
1_f2 aﬁz f
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Transverse Magnetic (IM) Modes

The magnetic field also satisfies the wave equation:

Maxwell’s Equations = V’H+ o’ usH=0
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TM Modes

For TM modes, we assume

:izo,buti;ﬁOandi;tO
oy Ox Oz
=> Assume H,, only

These two conditions define the TM modes and the equations are
simplified to read

0’'H, ©o°H,
| o wwel,

General solution (forward traveling wave)

H (x,z)= e/’ [Ae_jﬂ"x + Be”ﬁ"x]
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Electric Field for TM Modes

From VxH=-jwcE

X y 1z
weget E= L 9 0 2
ja)g ox oz
0 H ’ 0
This leads to
E ()C Z) _ ﬂz —JﬂZ[Ae—Jﬂxx +Be+1ﬂxxi|
WE

E (x,z)= &e_jﬁzz [—Ae‘jﬂxx + Be”ﬂxx]
WE
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TM Modes Fields

Atx=0, E, = 0 which leads to 4 = B = H /2 where H, 1s an arbitrary
constant. This leads to

H (x,z)= H e/’ cos B.x

E (x,z)= iHoe‘jﬂZZ cos .x
e

E (x,z)= &Hoe_m “sin B x
wE

At x =a, E_ = 0 which leads to

P.a=mm wherem=0,1,2,3, ..
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E & H Fields for TM Modes

LA

mim
p="
a
This defines the TM modes which have only H, E and E,

components.

The effective guide impedance 1s given by:

E 2
g L
H f

y

Ty =

The electric field for TM modes has 2 components
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E & H Fields for TM Modes

THE DISPERSION RELATION, GUIDANCE CONDITION
AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE
WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.

This defines the TM modes; each mode 1s referred to as the TM
mode. It can be seen from that m=0 is a valid choice; 1t 1s called the
TM,, or transverse electromagnetic or TEM mode. For this mode
and,
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TEM Mode

P=0and . = f. There are no x variations of the fields within the
waveguide. The TEM mode has a cutoff frequency at DC and 1s
always present in the waveguide.

— —Jjp.z .
Hy - HOe The propagation
B _iB.z U B characteristics of the
E, ="=He "™ =,|—H,e" TEM mode do not
& E

vary with frequency
E =0

The TEM mode is the fundamental mode on a
parallel-plate waveguide

.l-l\l-
cal {(LGIENOIS ECE 451 — Jose Schutt-Aine 17

Univ of Ilin t Urbana-Champaign




cet ILLINOIS
) i 1d Computer Engineering
linois at Urbana-Champaign

1)
University of Il

Power for TE Modes

Time-Average Poynting Vector <P>

TE modes
(P)= %Re{yEy x| RH + iHj]}
2 2
<P> :lRe{iE—O‘,BZ sin’ ,Bxx+f(jE—0‘
2 U U
E[ . .,
P)= 0
< > ZZa),u p.sin” B x
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Power for TM Modes

TM modes

<P>:%Re{[iEx +2E,|x¥H, |
<P> =%Re{i 4 B.cos’ B.x—xj

2 2

o o

& &

p.sin B _xcos ,Bxx}

The total time-average power is found by integrating <P>
over the area of interest.
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