ECE 451 Advanced Microwave Measurements

Signal Integrity

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu

Signal Integrity

- Attenuation & Loss (skin effect, on-chip loss)
- Crosstalk (interconnect proximity, coupling)
- Dispersion (frequency dependence of parameters)
- Reflection (unmatched loads, reactive loads, ISI)
- Distortion (nonlinear loads)
- Interference & Radiation (EMI/EMC)
- Rise time degradation
- Clock skew (different electrical path lengths)

PCI

- PC Interface
 - For external cards
 - > Graphics, Network, Sound, etc...
 - ➢ Parallel

Conventional PCI					
PCI La	ocal Bus				
The second s	mm nrm 2 100				
Three 5V 32-bit PCI expansion slots on a					
motherboard					
Year created:	July 1993				
Created by:	Created by: Intel				
Superseded by:	PCI Express				
	(2004)				
Width:	32 or 64 bits				
Number of device:	s: 1 per slot				
Capacity	133 MB/s				
Style:	Parallel				
Hotplugging?	Optional				
External?	no				

PCI-Express

Computer Expansion Card Standard

Replaced older PCI
Based on serial links
Capacity up to 1 Gb/s
V3.0 scheduled for 2010

PC	Express	
PCI	Express logo	
Year created: 2004		
Created by:	Intel	
Width:	1 bit	
Number of devices:	1 per slot	
Capacity	Per lane: • v1.x: 250 MB/s • v2.0: 500 MB/s • v3.0: 1 GB/s	
Style:	Serial	
Hotplugging?	Depends on form factor	
External?	Yes, with External PCI Express	

Universal Serial Bus (USB)

Interfaces devices to computers

- No rebooting
- Low power
- No need for external power supply
- ≻480 Mb/s

IDE

Expansion Card Standard

Replaced older PCI
Based on serial links
Capacity up to 1 Gb/s
V3.0 scheduled for 2010

AT Atta	chment with F	Packet Interface		
ATA connecto	r on the left, wit connectors on	h two motherboard ATA the right.		
Туре	Internal stora	age device connector		
Production history				
Designer	Western Digital, subsequently amended by many others			
Designed	1986			
Superseded by	Serial ATA (2003)			
Specifications				
Hot pluggable	No			
External	No			
	Width	16 bits		
Bandwidth 16 MB/s originally later 33, 66, 100 and 133 MB/s				
Max 2 (master/slave) devices				
	Protocol	Parallel		
Cable	40 or 80 wire	es ribbon cable		
Pins	40			
	Pin ou	t		
1 2 40				

ECE 451 – Jose Schutt-Aine

Serial - ATA

Storage interface

Replaces older parallel ATA or IDE
Based on serial links
Capacity up to 3 Gb/s
Hot swapping capability

	SATA 1.5Gb/s	SATA 3Gb/s
Frequency	1500 MHz	3000 MHz
Bits/clock	1	1
8b10b encoding	80%	80%
bits/Byte	8	8
Real speed	150 MB/s	300 MB/s

Motherboards and Backplanes

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

ece illinois

Cables and Transmission Lines

coaxial

Cable Specifications

.	арргох.			dielectric		overall o	liameter	havid		
type	impedance	core	type	[in]	[mm]	in	mm	Draid	velocity factor	comments
RG-6/U	75Ω	1.0 mm	Solid PE	0.185	4.7	0.332	8.4	double	0.75	Low loss at high frequency for cable television, satellite television and cable modems
RG-6/UQ	75Ω		Solid PE			0.298	7.62	quad		This is "quad shield RG-6". It has four layers of shielding; regular RG-6 only has one or two
RG-8/U	50 Ω	2.17 mm	Solid PE	0.285	7.2	0.405	10.3			Thicknet (10base5) and amateur radio
RG-9/U	51 Ω		Solid PE			0.420	10.7			Thicknet (10base5)
RG-11/U	75Ω	1.63 mm	Solid PE	0.285	7.2	0.412	10.5		0.66	Used for long drops and underground conduit
RG-58/U	50 Ω	0.9 mm	Solid PE	0.116	2.9	0.195	5.0	single	0.66/0.78	Used for radiocommunication and amateur radio, thin Ethernet (10base2) and NIM electronics. Common.
RG-59/U	75 Q	0.81 mm	Solid PE	0.146	3.7	0.242	6.1	single	0.66	Used to carry baseband video in closed- circuit television, previously used for cable television. Generally it has poor shielding but will carry an HQ HD signal or video over short distances.
RG-62/U	92 Ω		Solid PE			0.242	6.1	single	0.84	Used for ARCNET and automotive radio antennas.
RG-62A	93Ω		ASP			0.242	6.1	single		Used for NIM electronics
RG-174/U	50 Ω	0.48 mm	Solid PE	0.100	2.5	0.100	2.55	single	0.66	Common for wifi pigtails: more flexible but higher loss than RG58; used with LEMO 00 connectors in NIM electronics.
RG-178/U	50 Ω	7×0.1 mm (Ag pltd Cu clad Steel)	PTFE	0.033	0.84	0.071	1.8	single	0.69	
RG-179/U	75Ω	7×0.1 mm (Ag pltd Cu)	PTFE	0.063	1.6	0.098	2.5	single	0.67	VGA RGBHV
RG-213/U	50 Ω	7×0.0296 in Cu	Solid PE	0.285	7.2	0.405	10.3	single	0.66	For radiocommunication and amateur radio, EMC test antenna cables. Typically lower loss than RG58. Common.
RG-214/U	50 Ω	7×0.0296 in	PTFE	0.285	7.2	0.425	10.8	double	0.66	
RG-218	50 Q	0.195 in Cu	Solid PE	0.660 (0.680?)	16.76 (17.27?)	0.870	22	single	0.66	Large diameter, not very flexible, low loss (2.5dB/100' @ 400 MHz), 11 kV dielectric withstand.
RG-223	50 Ω	2.74mm	PE Foam	0.285	7.24	0.405	10.29	Double		

Computer Interconnections

Name м	Raw bandwidth (Mbit/s) 🖂	Transfer speed (MB/s) ⊯	Max. cable length (m) 📧	Power provided 🖂	Devices per Channel 🖂
SAS	3000	375	8	No	4
eSATA	3000	300	2 with eSATA HBA (1 with passive adapter)	No ^[18]	1 (15 with port multiplier)
SATA 300	3000	300	1	No	1 (15 with port multiplier)
SATA 150	1500	150	1	No	1 per line
PATA 133	1064	133	0.46 (18 inches)	No	2
FireWire 3200	3144	393	100; alternate cables available for 100 m+	15 W, 12–25 V	63 (with hub)
FireWire 800	786	98.25	100 ^[19]	15 W, 12–25 V	63 (with hub)
FireWire 400	393	49.13	4.5 ^{[19][20]}	15 W, 12–25 V	63 (with hub)
USB 2.0	480	60	5 ^[21]	2.5 W, 5 V	127 (with hub)
USB 3.0*	5000	625	3 ^[22]	4.5 W, 5 V	127 (with hub) ^[22]
Ultra-320 SCSI	2560	320	12	No	15 (plus the HBA)
Fibre Channel	4000	400	12	No	126
over copper cable	4000	-00	12	140	(16777216 with switches)
Fibre Channel over optic fiber	10520	2000	2-50000	No	126 (16777216 with switches)
Infiniband 12X Quad-rate	120000	12000	5 (copper) ^{[23][24]} <10000 (fiber)	No	1 with Point to point Many with switched fabric

Semiconductor Technology Trends

	1997	2003	2006	2012
Chip size (mm ²)	300	430	520	750
Number of transistors (million)	11	76	200	1400
Interconnect width (nm)	200	100	70	35
Total interconnect length (km)	2.16	2.84	5.14	24

5-Layer Interconnect Technology 0.25 μm

Vertical parallel-plate capacitance $0.05 \text{ fF}/\mu m^2$ Vertical parallel-plate capacitance (min width) $0.03 \text{ fF}/\mu m$ Vertical fringing capacitance (each side) $0.01 \text{ fF}/\mu m$ Horizontal coupling capacitance (each side)0.03

Source: M. Bohr and Y. El-Mansy - IEEE TED Vol. 4, March 1998

ECE 451 – Jose Schutt-Aine

Integrated Circuit Wiring

Vertical parallel-plate capacitance Vertical parallel-plate capacitance (min width) Vertical fringing capacitance (each side) Horizontal coupling capacitance (each side) 0.05 fF/μm² 0.03 fF/μm 0.01 fF/μm 0.03

Electrical and Computer Engineering University of Illinois at Urbana-Champaign ECE 451 – Jose Schutt-Aine

The Interconnect Bottleneck

Interconnect

 Total interconnect length (m/cm²) – active wiring only, excluding global levels will increases:

Year	2003	2004	2005	2006	2007	2008	2009
Total Length	579	688	907	1002	1117	1401	1559

- Interconnect power dissipation is more than 50% of the total dynamic power consumption in 130nm and will become dominant in future technology nodes
- Interconnect centric design flows have been adopted to reduce the length of the critical signal path

Chip-Level Interconnect Delay

Package-Level Complexity

- Up to 16 layers
- Hundreds of vias
- Thousands of TLs
- High density
- Nonuniformity

Signal Integrity

Interconnect Bottleneck

Signal Integrity

Reflection in Transmission Lines

Metallic Conductors

Metallic Conductors

Metal	Conductivity		
	σ (Ω ⁻¹ m ⁻¹ ×10 ⁻⁷)		
Silver	6.1		
Copper	5.8		
Gold	3.5		
Aluminum	1.8		
Tungsten	1.8		
Brass	1.5		
Solder	0.7		
Lead	0.5		
Mercury	0.1		

Loss in Transmission Lines

Skin Effect in Transmission Lines

Skin Depth

The decay of electromagnetic wave propagating into a conductor is measured in terms of the *skin depth*

Definition: skin depth δ is distance over which amplitude of wave drops by 1/e.

$$\delta = \frac{1}{\alpha}$$

For good conductors: δ

$$\delta = \sqrt{\frac{2}{\omega u \sigma}}$$

Skin Depth

For perfect conductor, $\delta = 0$ and current only flows on the surface

DC Resistance

Reference plane

$$R_{dc} = \frac{l}{\sigma wt}$$

l: conductor length σ: conductivity

Frequency-Dependent Resistance

Approximation is to assume that all the current is flowing uniformly within a skin depth

Frequency-Dependent Resistance

Reference Plane Current

distance from center

$$R_{ac,ground} \approx \frac{l}{6h} \sqrt{\frac{\pi \mu f}{\sigma}}$$

Skin Effect in Microstrip

H. A. Wheeler, "Formulas for the skin effect," Proc. IRE, vol. 30, pp. 412-424,1942

Skin Effect in Microstrip

Current density varies as

$$J = J_o e^{-y/\delta} e^{-jy/\delta}$$

Note that the phase of the current density varies as a function of *y*

$$I = \int_{0}^{\infty} J_{o} w e^{-y/\delta} e^{-jy/\delta} dy = \frac{J_{o} w \delta}{1+j}$$
$$\sigma E_{o} = J_{o} \Longrightarrow E_{o} = \frac{J_{o}}{\sigma}$$

The voltage measured over a section of conductor of length *D* is:

$$V = E_o D = \frac{J_o D}{\sigma}$$

Skin Effect in Microstrip

The skin effect impedance is

$$Z_{skin} = \frac{V}{I} = \frac{J_o D}{\sigma} \frac{(1+j)}{J_o w \delta} = \frac{D}{w} (1+j) \sqrt{\pi f \mu \rho}$$

where $\rho = \frac{1}{\sigma}$ is the bulk resistivity of the conductor

$$Z_{skin} = R_{skin} + jX_{skin}$$

with

$$R_{skin} = X_{skin} = \frac{D}{w} \sqrt{\pi f \,\mu \sigma}$$

Skin effect has reactive (inductive) component

Internal Inductance

The internal inductance can be calculated directly from the ac resistance

$$L_{\text{internal}} = \frac{R_{ac}}{\omega} = \frac{R_{skin}}{\omega}$$

> Skin effect resistance goes up with frequency

Skin effect inductance goes down with frequency

Surface Roughness

Copper surfaces are rough to facilitate adhesion to dielectric during PCB manufacturing

When the *tooth* height is comparable to the skin depth, roughness effects cannot be ignored Surface roughness will increase ohmic losses

Lossy Transmission Line

Telegraphers Equation

$$-\frac{\partial V}{\partial z} = (R + j\omega L)I = ZI$$

$$-\frac{\partial I}{\partial z} = (G + j\omega C)V = YV$$

ECE 451 – Jose Schutt-Aine

Lossy Transmission Line

backward wave

Coupled Lines and Crosstalk

Crosstalk noise depends on termination

Crosstalk depends on signal rise time

 $t_r = 1 ns$

Crosstalk depends on signal rise time

 $t_r = 1 ns$

Sense Line at Near End 0.2 -0.15 -0.1 0.05 Volts -0.05 -0.1 -0.15 -40 10 15 20 25 30 35 0 5 Time (ns)

7-Line Coupled-Microstrip System

 $L_s = 312 \text{ nH/m};$ $C_s = 100 \text{ pF/m};$ $L_m = 85 \text{ nH/m};$ $C_m = 12 \text{ pF/m}.$

ECE 451 – Jose Schutt-Aine

Sense Line

IC on Package

Mixed Signal Noise

- Simultaneous switching and inductance (L_{eff})
- L_{eff} is f(current magnitude and direction)
- Interactions between noise generated by power/ground and signal paths

Power-Supply Noise

- Power-supply-level fluctuations
- Delta-I noise
- Simultaneous switching noise (SSN)
- Ground bounce

Power Distribution Problem

At high frequencies, Wire B is a transmission line and ground connection is no longer the reference voltage

On-Chip Power and Ground Distribution

• Distribution Network for Peripheral Bonding

- Power and ground are brought onto the chip via bond pads located along the four edges
- Metal buses provide routing from the edges to the remainder of the chip

Intersymbol Interference (ISI)

- Signal launched on a transmission line can be affected by previous signals as result of reflections
- ISI can be a major concern especially if the signal delay is smaller than twice the time of flight
- ISI can have devastating effects
- Noise must be allowed to settled before next signal is sent

Intersymbol Interference

Minimizing ISI

- Minimize reflections on the bus by avoiding impedance discontinuities
- Minimize stub lengths and large parasitics from package sockets or connectors
- Keep interconnects as short as possible (minimize delay)
- Minimize crosstalk effects

Measurements

VNA: S-parameter

Time-domain simulation

Spectrum Analyzer

Jitter Definition

Jitter is difference in time of when something was ideally to occur and when it actually did occur.

Some devices specify the amount of marginal jitter and total jitter that it can take to operate correctly. If the cable adds more jitter than the receiver's allowed marginal jitter and total jitter the signal will not be received correctly. In this case the jitter is measured as in the below diagram

- Timing uncertainties in digital transmission systems
- Utmost importance because timing uncertainties cause bit errors
- There are different types of jitter

Jitter Characteristics

- Jitter is a signal timing deviation referenced to a recovered clock from the recovered bit stream
- Measured in Unit Intervals and captured visually with eye diagrams
- Two types of jitter
 - Deterministic (non Gaussian)
 - Random
- The total jitter (TJ) is the sum of the random (RJ) and deterministic jitter(DJ)

Types of Jitter

• Deterministic Jitter (DDJ)

Data-Dependent Jitter (DDJ)

Periodic Jitter (PJ)

> Bounded Uncorrelated Jitter (BUJ)

• Random Jitter (RJ)

- Gaussian Jitter
- F^{−α} Higher-Order Jitter

Jitter Effects

Bandwidth Limitations

- Cause intersymbol interference (ISI)
- ISI occurs if time required by signal to completely charge is longer than bit interval
- > Amount of ISI is function of channel and data content of signal

Oscillator Phase Noise

- Present in reference clocks or high-speed clocks
- > In PLL based clocks, phase noise can be amplified

Jitter Statistics

- Most common way to look at jitter is in statistical domain
- > Because one can observe jitter histograms directly on oscilloscopes
- No instruments to measure jitter time waveform or frequency spectrum directly

Jitter Histograms and Probability Density Functions (PDF)

- > Built directly from time waveforms
- > Frequency information is lost
- Peak-to-peak value depends on observation time

Total Jitter Time Waveform

The total jitter waveform is the sum of individual components

Jitter Statistics

The total jitter PDF is the convolution of individual components

An eye diagram is a time-folded representation of a signal that carries digital information

Eye diagram construction in real-time oscilloscope is based on hardware clock recovery and trigger circuitry

1. Capture of the Waveform Record

2. Determine the Edge Times

3. Determine the Bit Labels

4. Clock Recovery

5. Slice Overlay

6. Display

Eye Diagram Measurements

Reference Levels

Eye Height

Eye Height is the measuremnt of the eye height in volts

Eye Height =
$$(\mu_{PTop} - 3\sigma_{PTop}) - (\mu_{PBase} + 3\sigma_{PBase})$$

$$\mu_{PTop}$$
 : mean value of eye top

- σ_{PTop} : standard deviation of eye top
- μ_{PBase} : mean value of eye base
- σ_{PBase} : standard deviation of eye base

Eye Width is the measuremnt of the eye width in seconds

$$Eye Width = (\mu_{TCross2} - 3\sigma_{TCross2}) - (\mu_{TCross1} + 3\sigma_{TCross1})$$

Crossing percent measurement is the eye crossing point expressed as a percentage of the eye height

Crossing Percent =
$$\frac{\left(\mu_{PCross1} - \mu_{PBase}\right)}{\left(\mu_{PTop} - \mu_{PBase}\right)} \times 100\%$$

Eye Diagram Specifications

PCI Express 2.0 eye diagram specification for full and deemphasized signals

Margin Testing

Eye diagram with low margin

Eye Pattern Analysis

Typical Eye Diagrams

Eye Diagram - ADS Simulation

Eye Diagram - ADS Simulation Ideal Matched Line

Eye Diagram of 10 GHz Data Transmission over an Ideal 50 ohm, matched Line

> Bit Rate = 10 G Hz Rise time = 0.1 psec Fall time = 0.1 psec

Eye Diagram - ADS Simulation 5 GHz Data Transmission

		5 GHz Data Transmission Over Microstrip Line	
		Vout	
		VtBitSeq R	
	• •	SRC1 R1 TLA R2	
	• •	M Vlow=0 V R=50 Ohm R=50 Ohm R=50 Ohm	
	• •	Vhigh=2 V	
		- Rate=5 GHz	
		Rise=0.1 nsec	
		Fall=0.1 nsec	
	• •	BitSeg=X MSUB	
	• •	MSub1	
	• •	H=0.25 mm	
,		TRANSIENT	
		. <u> </u>	
		Tran Cond=1.0E+50	
		Tran1 Hu=1 Oe+033 mm	
		StopTime=300 nsec	ł
		MaxTimeStep=0.01-nsec	
	-	NAPI I I Rough=0.002	
	Eqn	VAR	
		X="191010101000010101010101010101010101010	10

Eye Diagram - ADS Simulation 5 GHz Data Transmission

Eye Diagram of 5 GHz Data Transmission over a Microstrip Line

Eye Diagram - ADS Simulation 10 GHz Data Transmission

· · · 10 6	GHz E)ata Trar	smissior	n Over	lde	al Si) Dich	im r	nisr	nati	chei	d'Lir	ne i	with	via	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	V	in						j L		~	i.									; •	-		-			Iniut			
	VtBits SRC1 Vlows	Séq 1 =0 V	R R1 R=30 O	hm j		TLIN TL1 Z=5	1 : 0.0	J Ohr	. L . L n. L	1 =0.	5 nF	i H	•				01 01 0=2	.0 o	IF-	TL TL Z=	IN 2- 50.I	0.0	hm	•	ł	R2 R=9	90 C) Dhm	-
Ť	Vhigh Rate: Rise:	=2 V. =10 GHz				E=4 F=1	5 GH	z	-	-		1		1	-			-	i I	E= F=	45 1 G	ij	-]				
	Fall=(BitSe	0.1 psec q=X		•••		Ì	÷		:		Ì	:	:	;	- - -	•	•	÷	•	Ì	-	•		:		:	•	•	-
111	ĺ	с с с С	RANSI	ENT	i					-	•									:	•		-		•		-	•	-
		Tran Tran1				ļ	÷			-						,	,			÷	ł							•	
		StopTin MaxTim	ne=300 n eStep=0	sec 01 nst	80	-				-										-	-		-		-		-	•	
X="101	01010	100000	0000000	000000	1000	0000	0000	0000	0000	000	0000	000	111	011	010	010	111	011	101	111	110	110	101	010	101	1010)101	101	010

Eye Diagram - ADS Simulation

Eye Diagram of 10 GHz Data Transmition over an Ideal 50 ohm, mismatched Line with via

Bit-Error Rate

- The Bit-error rate (BER) quantifies the likelihood of a bit being interpreted at the receiver incorrectly due to jitter- or amplitude-induced degradation on the received signal
- No higher than a 10⁻¹⁶ BER is tolerable → no more than 1 error out of 10¹⁶ bits.
- BER can be measured directly or quantified with statistical calculations
- Deterministic jitter(DJ) can be easily measured via Sparameters obtained in the frequency domain

