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• Attenuation & Loss (skin effect, on-chip loss)
• Crosstalk (interconnect proximity, coupling)
• Dispersion (frequency dependence of parameters)
• Reflection (unmatched loads, reactive loads, ISI)
• Distortion (nonlinear loads)
• Interference & Radiation (EMI/EMC)
• Rise time degradation
• Clock skew (different electrical path lengths)

Signal Integrity
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The Interconnect Bottleneck
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Chip-Level Interconnect Delay
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Signal Integrity

Crosstalk  Dispersion  Attenuation

Reflection   Distortion  Loss

Delta I Noise Ground Bounce Radiation

Sense Line

Drive Line

Drive Line

Interconnect Bottleneck
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Reflection in Transmission Lines
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Metallic Conductors

Length

σ
Area

Resist an ce : R

Package level:
W=3 mils
R=0.0045 Ω/mm

R = 
Leng th
σ  Area 

Submicron level:
W=0.25 microns
R=422 Ω/mm


Metallic Conductors
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Resistance : R



Package level:


W=3 mils


R=0.0045 /mm



R =  EQ \f(Length,s Area) 


Submicron level:


W=0.25 microns


R=422 /mm
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Metal                                 Conductivity
                                                 σ (Ω-1 m−1 ×10-7)

Silver 6.1
Copper 5.8
Gold 3.5
Aluminum 1.8
Tungsten 1.8
Brass 1.5
Solder 0.7
Lead 0.5
Mercury 0.1

Metallic Conductors 
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RF 
SOURCE

Loss in Transmission Lines
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δ

Low Frequency High Frequency Very High Frequency

Skin Effect in Transmission Lines
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. .

Magnitude of current density
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Skin Effect in Microstrip
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The electric field  in a material medium propagates as

z

Eoe−γz = Eoe−αze− jβz

where γ = α + jβ.  We also have

γ = ω µε(1+j
σ

ωε) .

Skin Effect
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 =   EQ \r(me(1+j\f(s,we))) .
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Current density varies as 

J = Joe−y / δe− jy / δ 

Note that the phase of the current density varies as a function of y.  The total 

current is given by: 

/ /

0 1
y jy o

o
J wI J we e dy

j
δ δ δ∞

− −= =
+∫  

o
o o o

JE J Eσ
σ

= ⇒ =  

The voltage measured over a section of the conductor of length L is: 

o
o

J DV E D
σ

= =  

Skin effect and internal inductance


Current density varies as







Note that the phase of the current density varies as a function of y.  The total current is given by:
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The voltage measured over a section of the conductor of length L is:
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The “skin effect” impedance is therefore 

(1 ) (1 )o
skin

o

J DV j DZ j f
I J w w

π µρ
σ δ

+
= = = +  

where ρ =
1
σ

 is the bulk resistivity of the conductor 

Zskin = Rskin + jXskin  

with 

skin skin
DR X f
w

π µρ= =  

Skin effect and internal inductance


The “skin effect” impedance is therefore
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−
∂V
∂z

=  (R+ jωL)I =  ZI

−
∂I
∂z

=  (G+ jωC)V =  YV

Lossy Transmission Line
L

∆z

C

I

V

+

-

G

R

Telegraphers Equation
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z

R, L, G, C,

Lossy Transmission Line

forward wave

backward wave
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Coupled Lines and Crosstalk

εr

w s
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50 Ω
line 1

line 2
50 Ω

line 1

line 2

50 Ω
line 1

line 2

line 1

line 2

Crosstalk noise depends on termination


[image: image1.wmf]


[image: image1.wmf]


[image: image1.wmf]


[image: image1.wmf]



ECE 451 – Jose Schutt-Aine 20

50 Ω
line 1

line 2

50 Ω

line 1

line 2

line 1

line 2

tr = 1 ns tr = 7 ns

Crosstalk depends on signal rise time
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tr = 1 ns tr = 7 ns

Crosstalk depends on signal rise time
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line 2

line 1

line 2

line 1

line 2
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ALS04 ALS240
Drive Line 1

Drive Line 2

z=0 z=l

Drive Line 3

Sense Line 4

Drive Line 5

Drive Line 6

Drive Line 7

ALS04

ALS04

ALS04

ALS04

ALS04

ALS240

ALS240

ALS240

ALS240

ALS240

7-Line Coupled-Microstrip System

Ls = 312 nH/m;    Cs = 100 pF/m;

Lm = 85 nH/m;     Cm = 12 pF/m.
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Multiconductor Simulation
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• Signal launched on a transmission line can be 
affected by previous signals as result of reflections

• ISI can be a major concern especially if the signal 
delay is smaller than twice the time of flight

• ISI can have devastating effects

• Noise must be allowed to settled before next signal 
is sent

Intersymbol Interference (ISI)
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Intersymbol Interference
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• Minimize reflections on the bus by avoiding 
impedance discontinuities

• Minimize stub lengths and large parasitics from 
package sockets or connectors

• Keep interconnects as short as possible (minimize 
delay)

• Minimize crosstalk effects

Minimizing ISI
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• Timing uncertainties in digital transmission systems
• Utmost importance because timing uncertainties cause bit errors
• There are different types of jitter

Jitter Definition

Jitter is difference in time of when something
was ideally to occur and when it actually did occur. 

Some devices specify the amount of marginal jitter and total
 jitter that it can take to operate correctly. If the cable adds 
more jitter than the receiver’s allowed marginal jitter and total 
jitter the signal will not be received correctly. In this case the 
jitter is measured as in the below diagram 
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• Jitter is a signal timing deviation referenced to a 
recovered clock from the recovered bit stream

• Measured in Unit Intervals and captured visually with 
eye diagrams

• Two types of jitter
– Deterministic (non Gaussian)
– Random

• The total jitter (TJ) is the sum of the random (RJ) and 
deterministic jitter(DJ)

Jitter Characteristics
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Types of  Jitter

• Deterministic Jitter (DDJ)
Data-Dependent Jitter (DDJ)
Periodic Jitter (PJ)
Bounded Uncorrelated Jitter (BUJ)

• Random Jitter (RJ)
Gaussian Jitter
 f−α Higher-Order Jitter 
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Bandwidth Limitations
 Cause intersymbol interference (ISI)
 ISI occurs if time required by signal to completely charge is longer 

than bit interval
 Amount of ISI is function of channel and data content of signal

Jitter Effects

Oscillator Phase Noise
 Present in reference clocks or high-speed clocks
 In PLL based clocks, phase noise can be amplified
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Jitter Statistics
Most common way to look at jitter is in statistical 

domain
Because one can observe jitter histograms directly 

on oscilloscopes
No instruments to measure jitter time waveform or 

frequency spectrum directly

Jitter Histograms and Probability Density Functions (PDF)
Built directly from time waveforms 
Frequency information is lost
Peak-to-peak value depends on observation time
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Total Jitter Time Waveform

The total jitter waveform is the sum of individual components

TJ(t)     =   PJ(t)     +    RJ(t)
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Jitter Statistics

TJ(x)     =   PJ(x)     *    RJ(x)

The total jitter PDF is the convolution  of individual components



ECE 451 – Jose Schutt-Aine 37

An eye diagram is a time-folded representation of  a 
signal that carries digital information

Eye Diagram
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Eye Diagram Construction

Eye diagram construction in real-time oscilloscope is 
based on hardware clock recovery and trigger circuitry



ECE 451 – Jose Schutt-Aine 39

Eye Diagram Construction
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1. Capture of the Waveform Record

2. Determine the Edge Times

Eye Diagram Construction
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Eye Diagram Construction

3. Determine the Bit Labels
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4. Clock Recovery

Eye Diagram Construction
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Eye Diagram Construction

5. Slice Overlay

6. Display



ECE 451 – Jose Schutt-Aine 44

Eye Diagram Measurements
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Reference Levels
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Eye Height
Eye Height is the measuremnt of  the eye height in 
volts

( ) ( )3 3PTop PTop PBase PBaseEye Height µ σ µ σ= − − +

PTopµ

PBaseσ
PBaseµ
PTopσ

: mean value of eye top

: standard deviation of eye top

: mean value of eye base

: standard deviation of eye base
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Eye Width
Eye Width is the measuremnt of  the eye width in 
seconds

( ) ( )2 2 1 13 3TCross TCross TCross TCrossEyeWidth µ σ µ σ= − − +

( )
( )

1Crossing Percent 100%PCross PBase

PTop PBase

µ µ
µ µ

−
= ×

−

Crossing percent measurement is the eye crossing 
point expressed as a percentage of  the eye height
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Eye Diagram Specifications

PCI Express 2.0 eye diagram specification for 
full and deemphasized signals
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Margin Testing

Eye diagram with low margin
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Eye Pattern Analysis
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Typical Eye Diagrams

Eye Diagram
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Eye Diagram - ADS Simulation 
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Eye Diagram - ADS Simulation
Ideal Matched Line 
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Eye Diagram - ADS Simulation
5 GHz Data Transmission 
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Eye Diagram - ADS Simulation
5 GHz Data Transmission 
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Eye Diagram - ADS Simulation
10 GHz Data Transmission 
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Eye Diagram - ADS Simulation 
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• The Bit-error rate (BER) quantifies the likelihood of a 
bit being interpreted at the receiver incorrectly due to 
jitter- or amplitude-induced degradation on the 
received signal

• No higher than a 10-16 BER is tolerable no more than 
1 error out of 1016 bits.

• BER can be measured directly or quantified with 
statistical calculations

• Deterministic jitter(DJ) can be easily measured via S-
parameters obtained in the frequency domain

Bit-Error Rate
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