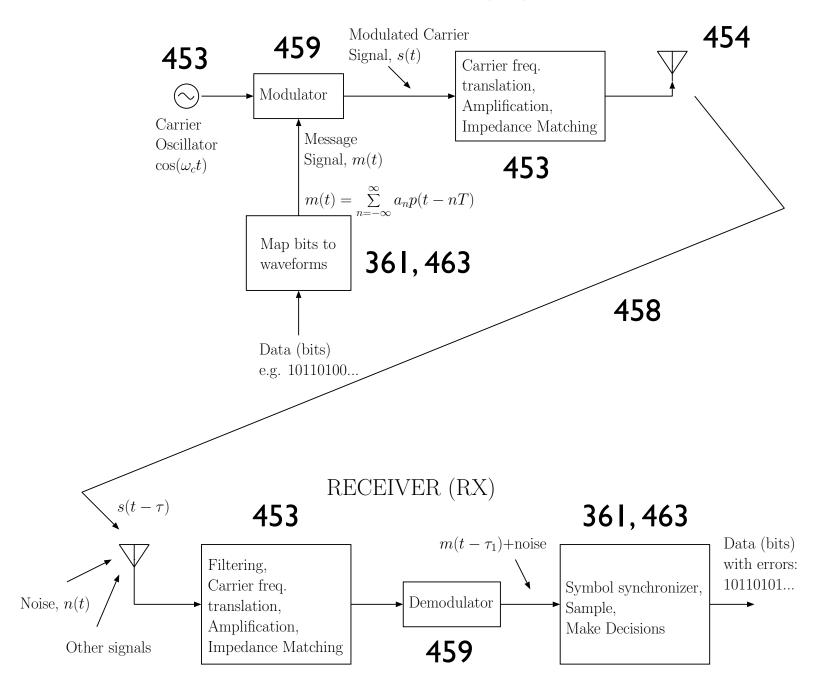
ECE453 Spring 2019 Course Info

- •Instructor: Professor Steven Franke
- •Office: 5048 ECEB, <u>s-franke@illinois.edu</u>
- •Office Hours: 10-11am M-F
- •Purchase Course Notes from ECE Store or download from 453 web site

Course Grading Policy

- •Hour Exams (2): 20% each. (One 8.5"x11" sheet of notes allowed per exam)
 - •Exam 1: Friday, March 1 (in class)
 - •Exam 2: Friday, April 12 (in class)
- •Homework: 5%
- •Final Exam: 30% (Tues, May 7, 7-10 pm, 2015 ECEB --- 3 sheets of notes allowed.)
- •Lab Grade: 25% (assigned by your lab instructor)

TRANSMITTER (TX)



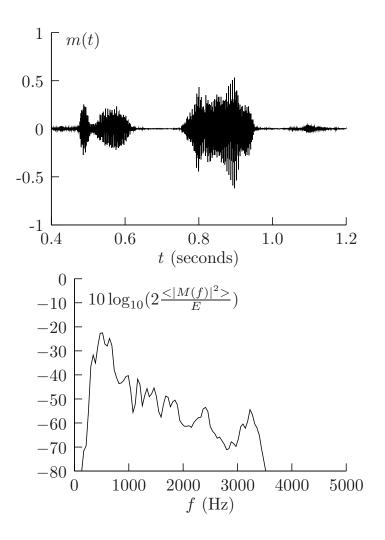


Figure 1.7: Top: message signal consisting of 0.8 seconds of audio from a radio talk show. Bottom: normalized average energy spectrum (in dB) of a 15-second segment of audio from the same talk show. The average energy spectrum was calculated by segmenting the original time series, sampled at 44.1 ksamples/s, into 512 point segments. The discrete Fourier transform (DFT) was calculated for each segment, and the squared magnitude of each DFT was averaged.

In a digital communication system the message signal will typically be formed from a superposition of pulses with amplitudes chosen to represent a sequence of information bits. In this case m(t) can be written

$$m(t) = \sum_{n} a_n p(t - nT)$$

where:

p(t) is a pulse function chosen to control the shape of the spectrum of m(t)

 a_n is a sequence of pulse amplitudes chosen from a finite set of possible values

T is the signaling interval, and T^{-1} is then the signaling rate — the rate at which pulses are transmitted.

 $a_n \in \{-1, 1\}$: binary pulse amplitudes, $\log_2(2) = 1$ bit of information per pulse $\rightarrow \frac{1}{T}$ bits/sec

 $a_n \in \{-1,0,1\}$: ternary pulse amplitudes, $\log_2(3) = 1.585$ bits per pulse $\rightarrow \frac{1.585}{T}$ bits/sec

 $a_n \in \{-1.5, -0.5, 0.5, 1.5\}$: 4-ary pulse amplitudes, $\log_2(4) = 2$ bits per pulse $\rightarrow \frac{2}{T}$ bits/sec

 $a_n \in \{-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5\}$: 8-ary pulse amplitudes, $\log_2(8) = 3$ bits per pulse $\rightarrow \frac{3}{T}$ bits/sec

bits per second = pulses per second x bits per pulse

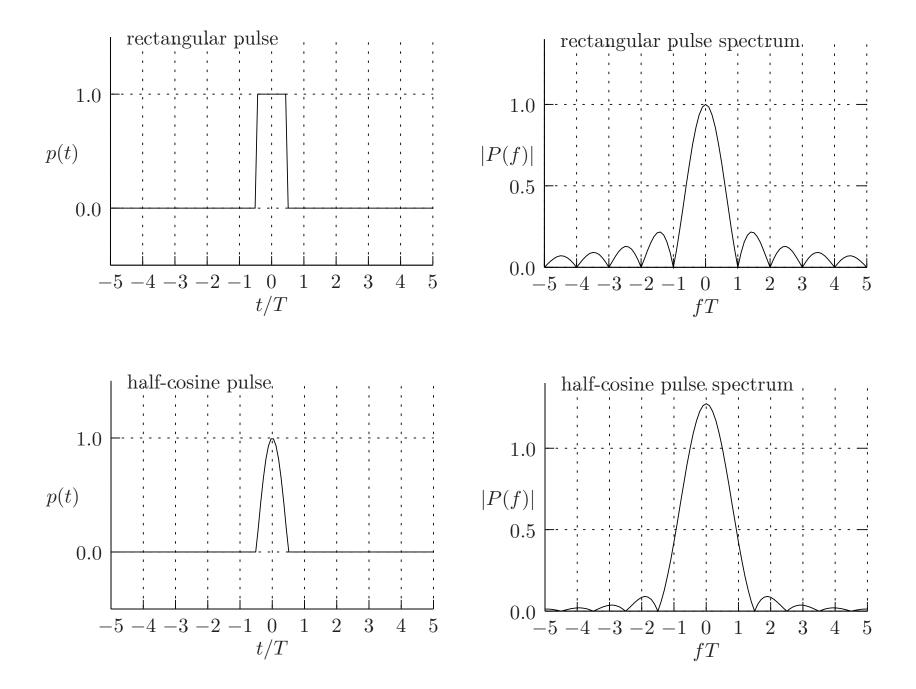
$$\mathcal{F}(m(t)) = M(f) = \int_{-\infty}^{\infty} m(t)e^{-j2\pi ft}dt$$

$$M(f) = \int_{-\infty}^{\infty} \left[\sum_{n} a_n p(t - nT)\right] e^{-j2\pi ft} dt$$

$$M(f) = P(f) \sum_{n} a_n e^{-j2\pi f nT}$$

$$<|M(f)|^{2}>=|P(f)|^{2}<|\sum_{n}a_{n}e^{-j2\pi fnT}|^{2}>$$
a constant

If the pulses, p(t), have bandwidth W then the message signal, m(t), will also have bandwidth W.



In practice, communication channels have finite bandwidth, W, so it is best to use pulses that have finite bandwidth.

If pulses are bandlimited, then successive pulses in the message signal $m(t) = \sum a_n p(t - nT)$ will overlap. This is called *intersymbol interference*.

In 1928 Harry Nyquist showed that:

it is possible to design bandlimited (finite bandwidth) pulse waveforms that go to zero at multiples of T seconds, so that inter symbol interference vanishes at discrete times $0, T, 2T, \ldots$ Pulses that pass through zero at multiples of T are called *Nyquist pulses*.

given a channel with bandwidth W, it is possible to send pulses at a maximum rate of 2W pulses per second with no intersymbol interference using Nyquist pulses.

if we want to send pulses at a given rate, say 1/T pulses per second, then the minimum bandwidth required for no intersymbol interference is 1/2T Hz.

Nyquist's 1928 signaling-rate results were cited by Claude Shannon in 1945 when Shannon derived the Nyquist-Shannon sampling theorem.

Certain Topics in Telegraph Transmission Theory BY H. NYQUIST¹

Member, A. I. E. E.

Synopsis.—The most obvious method for determining the distortion of telegraph signals is to calculate the transients of the telegraph system. This method has been treated by various writers, and solutions are available for telegraph lines with simple terminal conditions. It is well known that the extension of the same methods to more complicated terminal conditions, which represent the usual terminal apparatus, leads to great difficulties.

The present paper attacks the same problem from the alternative standpoint of the steady-state characteristics of the system. This method has the advantage over the method of transients that the complication of the circuit which results from the use of terminal apparatus does not complicate the calculations materially. This method of treatment necessitates expressing the criteria of distortionless transmission in terms of the steady-state characteristics. Accordingly, a considerable portion of the paper describes and illustrates a method for making this translation.

A discussion is given of the minimum frequency range required for transmission at a given speed of signaling. In the case of carrier telegraphy, this discussion includes a comparison of single-sideband and double-sideband transmission. A number of incidental topics is also discussed.

* * * * *

SCOPE

THE purpose of this paper is to set forth the results of theoretical studies of telegraph systems which have been made from time to time. These results are naturally disconnected and in order to make a connected story it has been necessary to include a certain amount of material which is already well known to telegraph engineers. The following topics are discussed:

1. The required frequency band is directly proportional to the signaling speed.

2. A repeated telegraph signal (of any length) may be considered as being made up of sinusoidal components. When the amplitude and phase, or real and imaginary parts, of these components are plotted as ordinates with their frequencies as abscissas, and when the frequency axis is divided into parts each being a frequency band of width numerically equal to the speed of signaling, it is found that the information conveyed in any band is substantially identical with is shown that the usual carrier telegraph requires twice as much frequency range as the corresponding d-c. telegraph, other things being equal.

8. A discussion is given of two alternative methods for overcoming this inefficiency of carrier telegraphy, namely, the use of phase discrimination and of a single sideband.

9. After the d-c. and carrier waves have thus been analyzed a corresponding analysis is given of an arbitrary wave shape, including these two as special cases. Calculations are given on the shaping of the transmitted wave so as to make the received wave perfect.

10. A discussion is given of the dual aspect of the telegraph wave. The wave may be looked on either as a function of ω , requiring the so-called steady-state method of treatment, or as a function of t requiring the so-called method of transients. It is shown that the steady-state theory can be made to yield the information necessary to specify the characteristics of an

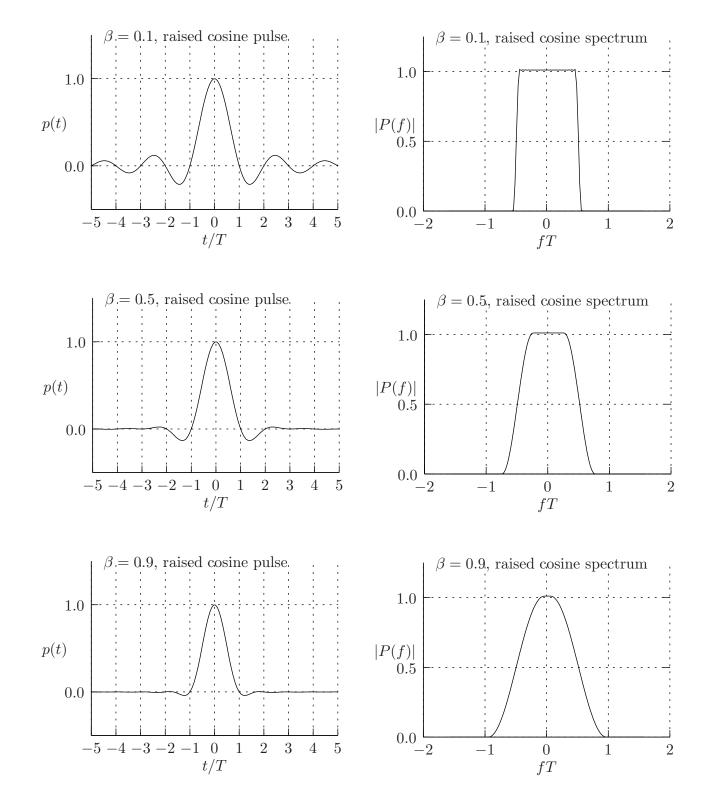
A very useful family of pulses with finite bandwidth is obtained by defining the pulse such that its Fourier transform transitions from a constant (flat) central region to zero through a smooth transition region having a raised cosine shape. These pulses are called *raised-cosine pulses* (Figure 1.8(c-e)). The Fourier transform of the raised-cosine pulse is

$$P(f) = \begin{cases} T & |fT| \leq \frac{1}{2}(1-\beta) \\ \frac{T}{2} \{1 + \cos[\frac{\pi}{\beta}(|fT| - \frac{1}{2}(1-\beta)]\} & \frac{1}{2}(1-\beta) < |fT| \leq \frac{1}{2}(1+\beta) \\ 0 & |fT| > \frac{1}{2}(1+\beta) \end{cases}$$
(1.6)

where $0 \le \beta \le 1$. The dimensionless parameter β controls the width of the raised-cosine transition region. The time-domain pulse shape of the raised-cosine pulse is

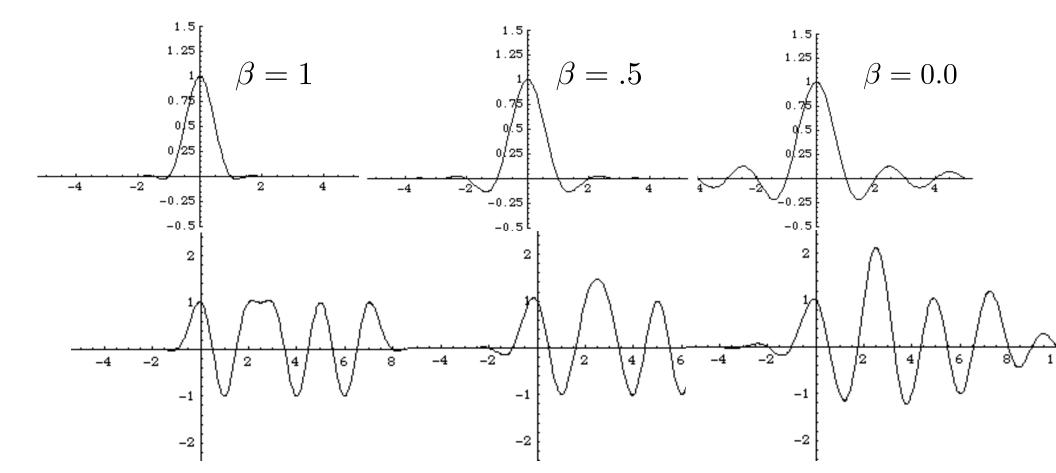
$$p(t) = \frac{\sin(\pi t/T)}{\pi t/T} \frac{\cos(\pi \beta t/T)}{1 - (2\beta t/T)^2}.$$
(1.7)

The bandwidth of these pulses is $W = \frac{1}{2T}(1+\beta)$. The parameter β is called the fractional *excess bandwidth* and it is often expressed as a percentage. The minimum possible bandwidth results when $\beta = 0$ which results in $W = \frac{1}{2T}$. In this case, the spectrum becomes rectangular and the pulse shape is a sinc function with relatively large sidelobes that extend over many signaling intervals on either side of the center of the pulse. For $0 < \beta \leq 1$, the amplitude spectrum exhibits a gradual transition to zero. As β increases, the sidelobes are increasingly damped and the time-domain pulse becomes more compact and extends over fewer signaling intervals.



Message signal
$$m(t) = \sum_{n=-\infty}^{\infty} a_n p(t - nT)$$

Raised – cosine (spectrum) pulse $p(t) = \frac{\sin(\frac{\pi t}{T})}{\frac{\pi t}{T}} \frac{\cos(\pi \beta \frac{t}{T})}{1 - 4\beta^2(\frac{t}{T})^2}$



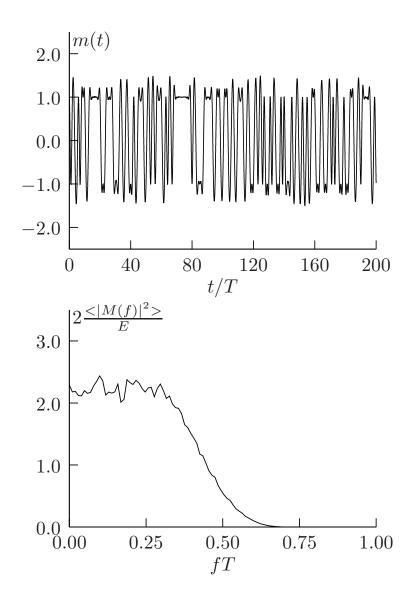


Figure 1.9: Top: A message signal produced using a random data sequence and raisedcosine pulses with $\beta = 0.5$. Bottom: Normalized average energy spectrum of m(t) computed numerically using the following procedure: a message signal of length 32768T was generated using a random sequence of bits. The long message signal was divided into short segments of length approximately 100T. The energy spectrum of each short segment was computed, and all spectra were averaged. The average spectrum was normalized so that the area under the spectrum is 1.0. Note that the shape of the energy spectrum exhibits the raised-cosine shape of the pulses. Since $\beta = 0.5$, the bandwidth of the spectrum is $WT = \frac{1}{2}(1+0.5) = 0.75$.

bits per second = pulses per second x bits per pulse

- Given a channel with bandwidth W (Hz), maximum pulse rate is 2W (Nyquist).
- Maximum number of bits per pulse?
 In practice, the energy per pulse will be limited by hardware constraints.
 Thus, peak pulse amplitude (largest value of |a_n|) is limited.
- To increase bits per pulse when peak amplitude is limited, must decrease the spacing between amplitudes. If the difference between pulse amplitudes becomes smaller than rms noise, then the receiver can't tell the difference between amplitudes. So bits per pulse is limited by channel signal to noise ratio (SNR).
- If SNR is large, can use a large set of pulse amplitudes and hence many bits per pulse.

Summary - bits per pulse is limited by signal to noise ratio on the channel The Shannon Channel Capacity theorem tells us what is possib

$$C = W \log_2(1 + SNR)$$

C = channel capacity in bits per second W = channel bandwidth in Hz SNR = signal to noise power ratio

Apparently, for the signaling scheme that we have been discusnumber of bits per pulse is:

$$\frac{1}{2}\log_2(1+SNR)$$

e.g. 1MBit/s in a 20 kHz channel SNR=2^(C/W)-1 = 2^(10^6/2(10^4))-1=2^50-1=10^15 (150 dB)

100kBit/s in same channel SNR=2^5-1 = 31 (15 dB)

```
SNR=1 => 1/2 bit per pulse ?
Need to send two symbols to convey
one bit (FEC).
```

Digital Television (DTV) message signal:

$$m(t) = \sum_{n} a_n p(t - nT)$$

 $a_n \in (-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5)$

8 possible pulse amplitudes: $log_2(8) = 3$ bits/pulse

Signaling rate $T^{-1} = 10.762238$ Mpulses/sec, or 3 bits/pulse $\times 10.762238 \simeq 32.387$ Mbits/sec.

About 40 percent of the bits are used to provide forward error correction, so that actual data rate is approximately $0.60 \times 32.387 = 19.4$ Mbits/sec.

Pulses, p(t), are square-root raised-cosine with $\beta = 0.0575$ (5.75% excess bandwidth).

Pulse bandwidth (and message signal bandwidt $W = \frac{1}{2T}(1 + \beta) = 5.69$ MHz.

Min SNR for 20 Mbit/s in 6 MHz channel is: SNR=2^20/6-1=9 (10log10(9)=9.5 dB)

In practice, need about 16 dB.

Modulation - overview

carrier:
$$A\cos(\omega_c t + \theta)$$
 \longrightarrow Modulator \longrightarrow modulated carrier signal: $s(t)$
message signal: $m(t)$

1. Amplitude Modulation (linear):

amplitude, A, varies in response to m(t), i.e. $A \to A(t) = Am(t) + B$

linear in the following sense: if $m_1(t)$ results in $s_1(t)$ and $m_2(t)$ results in $s_2(t)$, then $m_1(t) + m_2(t)$ results in $s_1(t) + s_2(t)$.

2. Angle Modulation (nonlinear):

phase, θ , varies in response to m(t), i.e. $\theta \to \theta(t) = k_p m(t)$ or $\frac{d\theta}{dt} = k_f m(t)$ nonlinear because $m_1(t) + m_2(t)$ does not yield $s_1(t) + s_2(t)$.

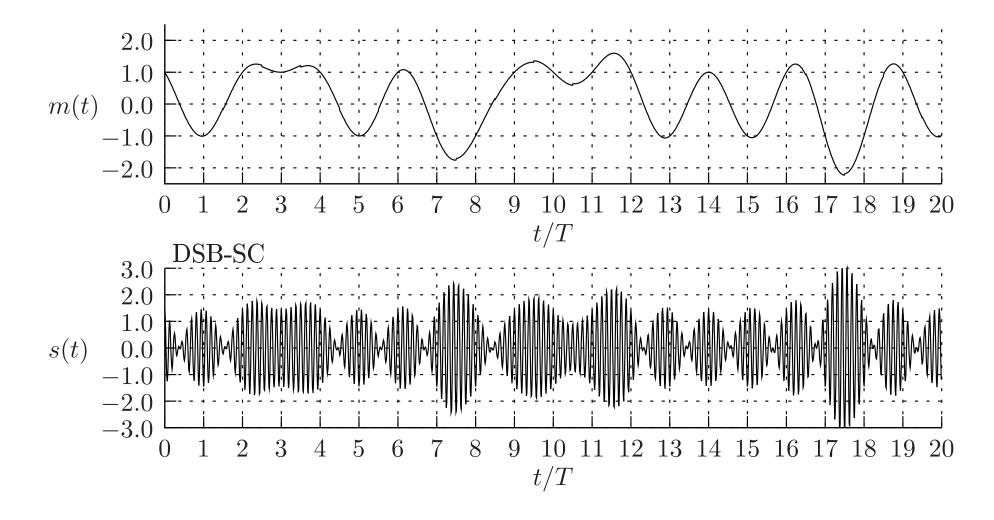


Figure 1.8: Top: message signal representing 20 information bits generated using raisedcosine pulses with $\beta = 0.1$. Bottom: DSB-SC signal, s(t), normalized such that $\langle s^2(t) \rangle = 1$.

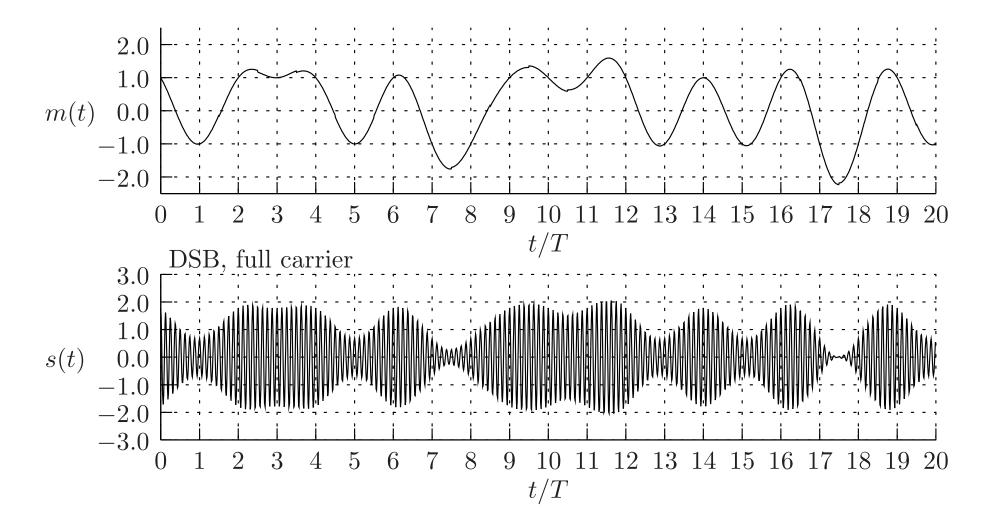


Figure 1.17: Top: message signal representing 20 information bits generated using raised-cosine pulses with $\beta = 0.1$. Bottom: DSB with full-carrier signal, s(t), normalized such that $\langle s^2(t) \rangle = 1$. Compare the bottom plot with the corresponding plot in Figure 1.9.

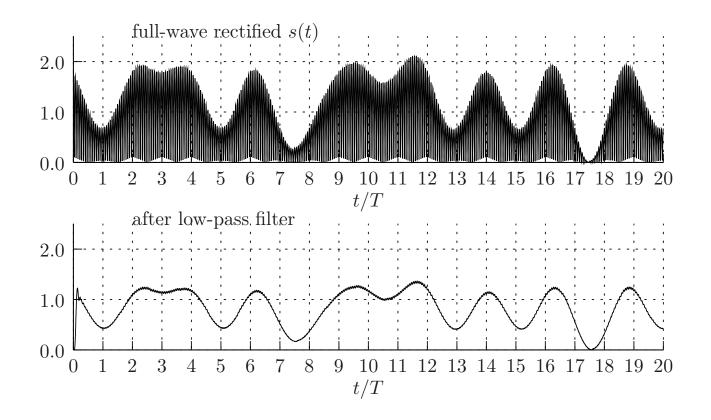


Figure 1.18: Upper plot shows |s(t)|, which is the result of passing s(t) through a full-wave rectifier. The lower plot was obtained by passing the signal shown in the upper plot through a low-pass filter with cutoff frequency larger than the bandwidth of m(t) (W) and smaller than $f_c - W$. The transient at the beginning of the lower plot is the start-up transient of the digital lowpass filter used to produce the simulated signal.

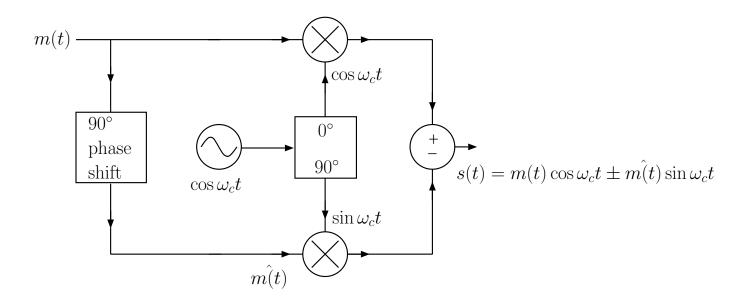
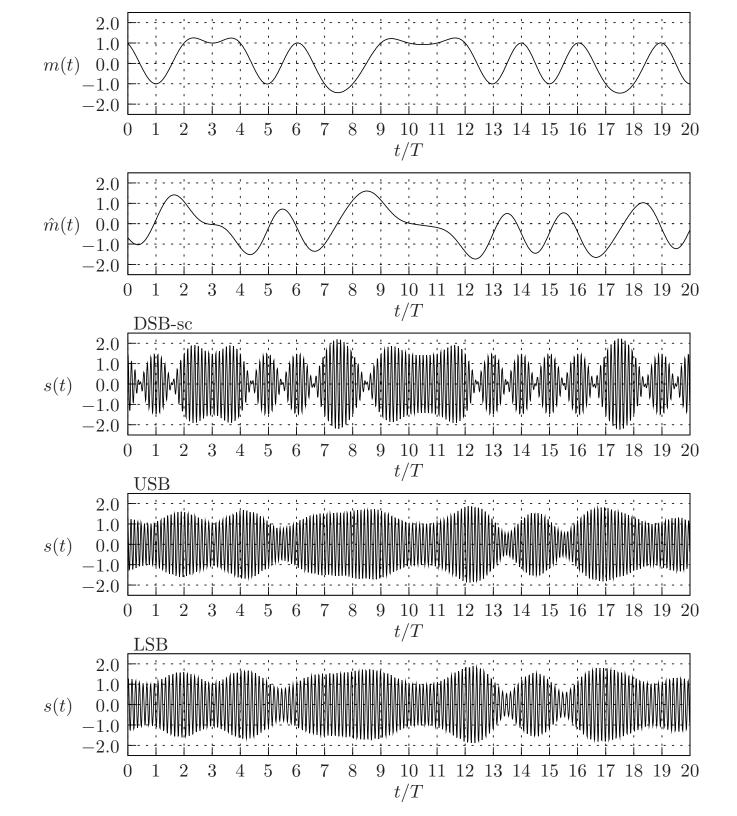


Figure 1.22: Phasing method for generation of an SSB signal.



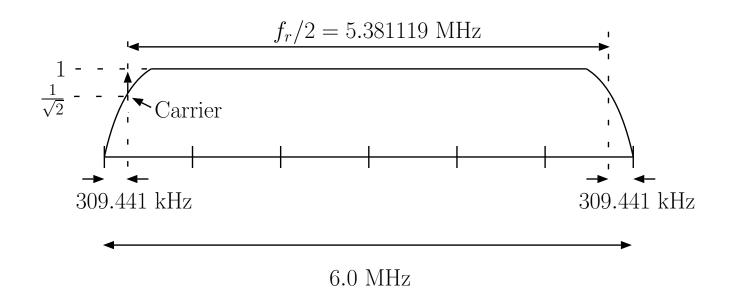
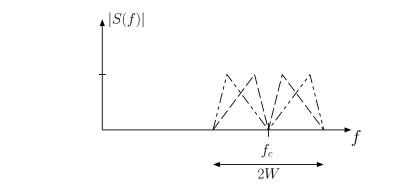


Figure 1.26: The spectrum of a television signal as transmitted for digital television (DTV) using the ATSC (Advanced Television Systems Committee) 8VSB system.



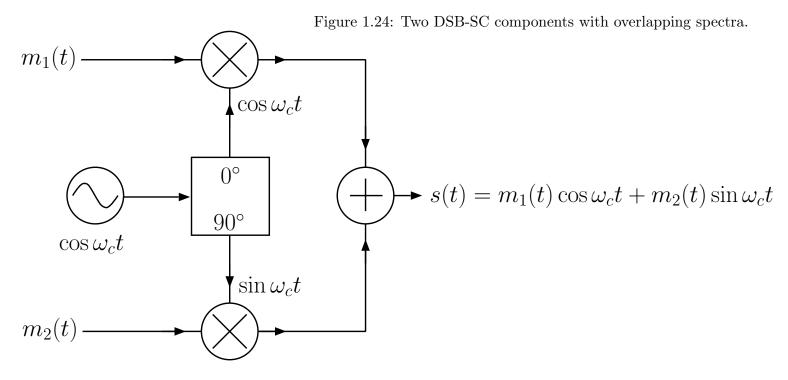


Figure 1.23: Quadrature multiplexer/modulator.

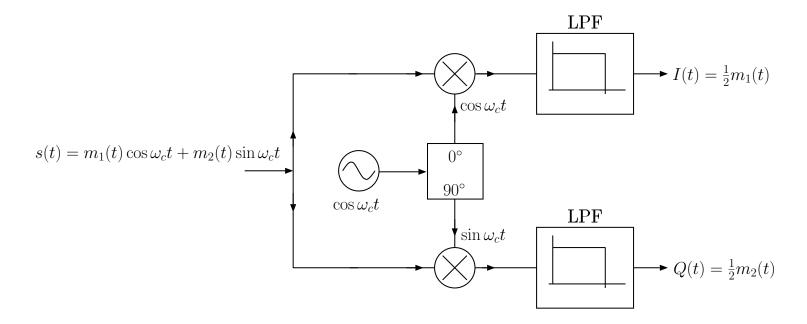


Figure 1.25: De-multiplexing of quadrature-multiplexed signals.

Summary of Amplitude (Linear) Modulation

DSB:
$$s(t) = (Am(t) + B)\cos(\omega_c t)$$

$$B = 0 \rightarrow$$
 Suppressed carrier (DSB-SC)
 $Am(t) + B > 0 \forall t \rightarrow$ Full carrier

SSB:
$$s(t) = Am(t)\cos(\omega_c t) + A\hat{m}(t)\sin(\omega_c t);$$

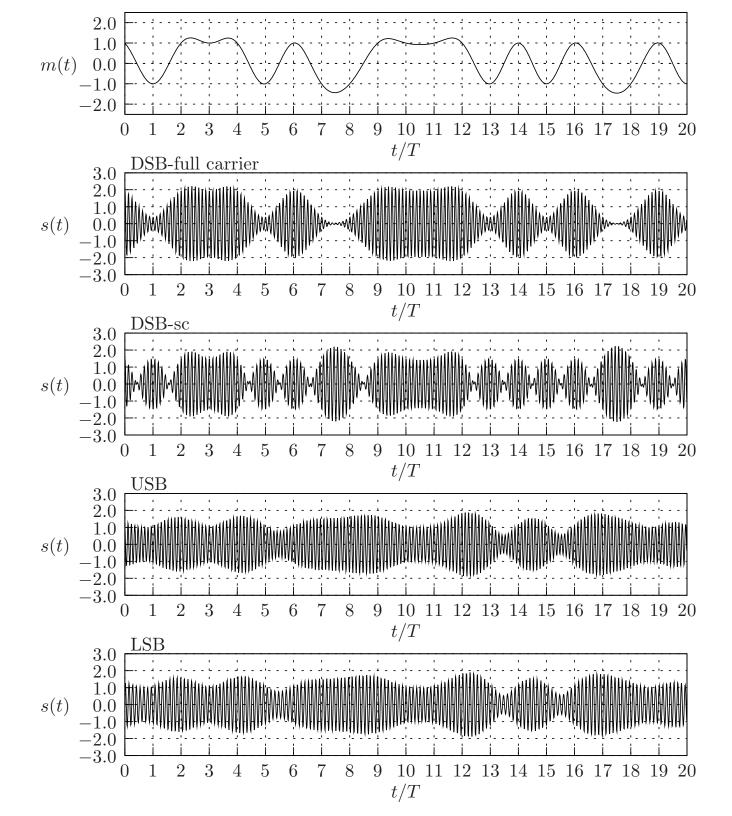
$$\hat{m}(t) = \mathcal{F}^{-1}[-j \operatorname{sgn}(\omega) M(\omega)],$$

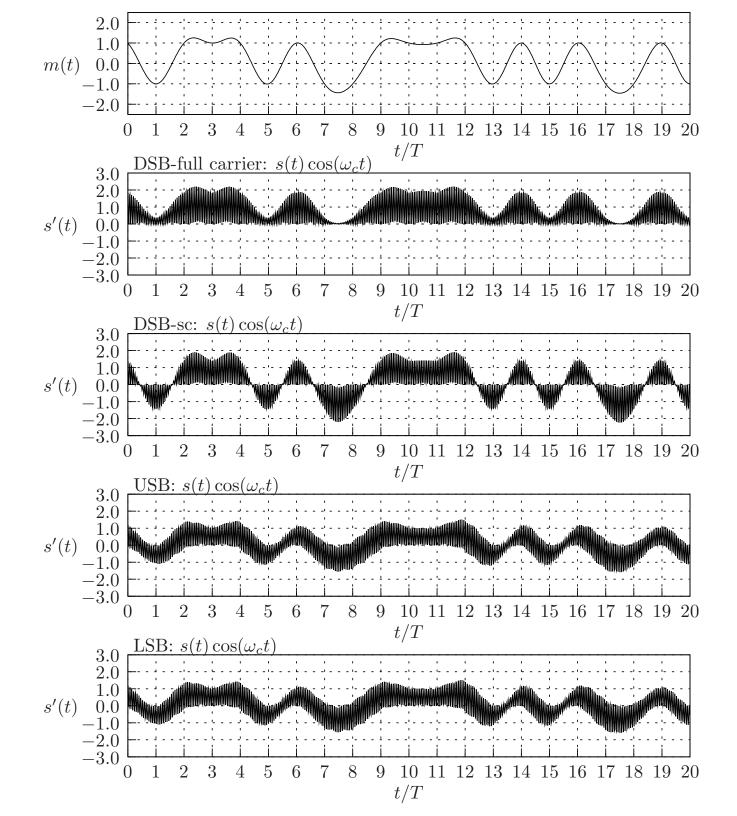
where $-j \operatorname{sgn}(\omega)$ is the Hilbert Transform filter

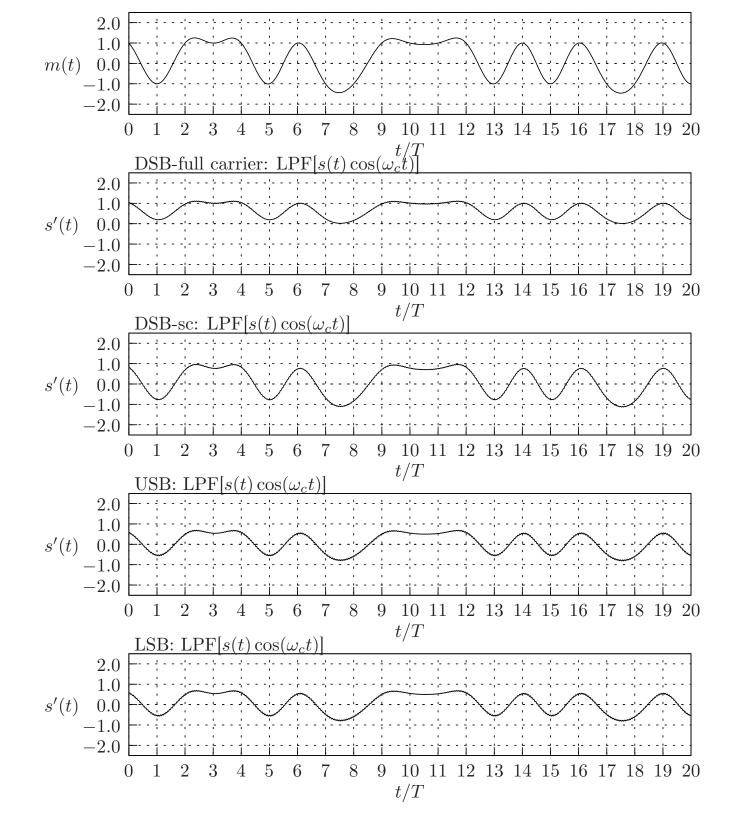
VSB:
$$s(t) = Am(t)\cos(\omega_c t) + A\hat{m}(t)\sin(\omega_c t);$$

 $\hat{m}(t) = \mathcal{F}^{-1}[H(\omega)M(\omega)];$ where $H(\omega)$ is a modified Hibert Transform filter

Quadrature multiplexed signal: $s(t) = Am_1(t)\cos(\omega_c t) + Am_2(t)\sin(\omega_c t)$







$$S(\omega) = \pi A_c \sum_{n=-\infty}^{\infty} [J_n(\beta)\delta(\omega - \omega_c - n\omega_m) + J_n(\beta)\delta(\omega + \omega_c + n\omega_m)]$$

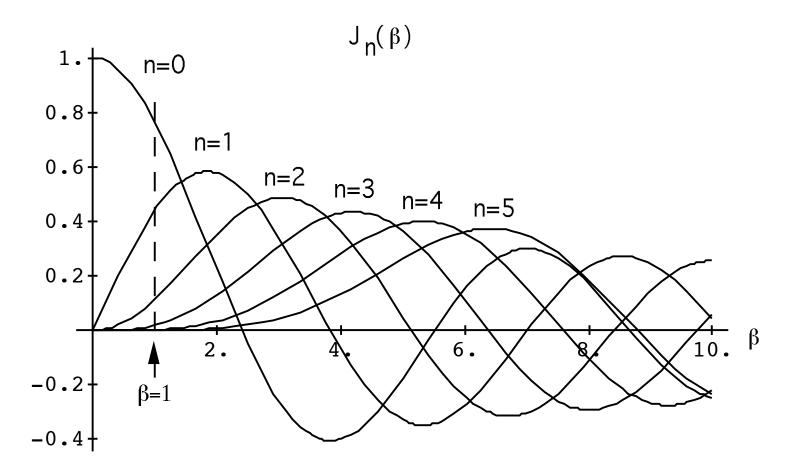
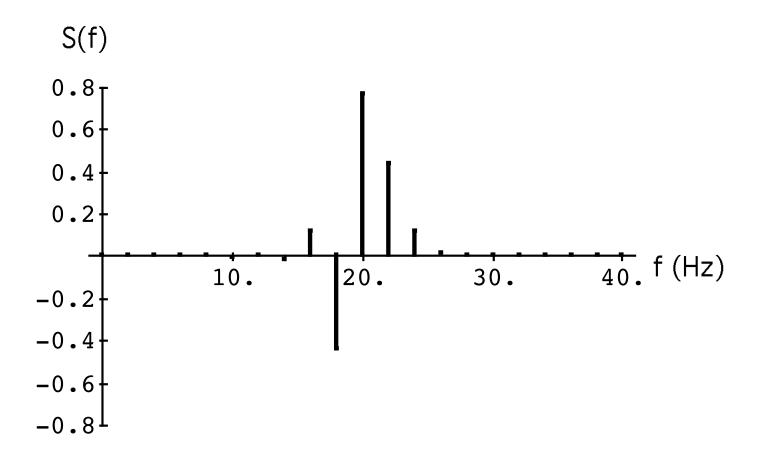
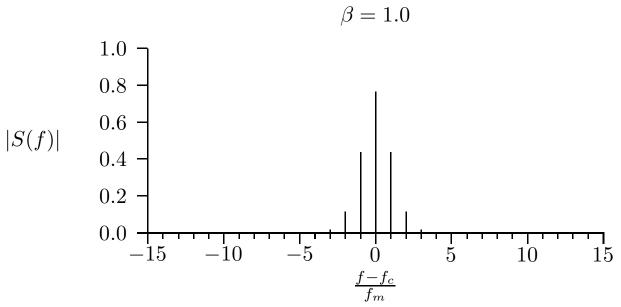


Figure 1.28: Bessel functions of order n for n=0,1,2,3,4,5.

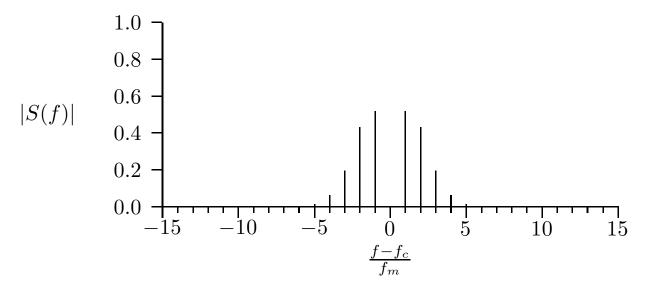
$$J_{-n}(x) = (-1)^n J_n(x)$$

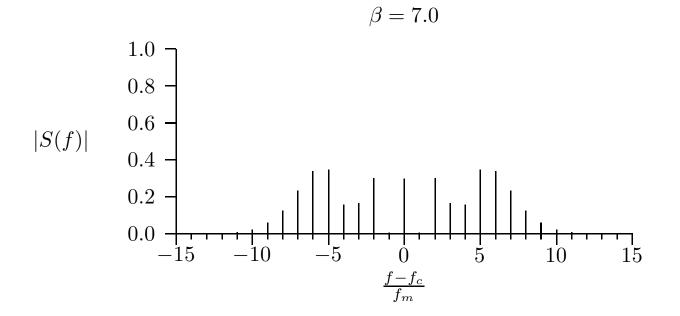
$$s(t) = A_c \cos(2\pi 20t + \sin(2\pi 2t))$$



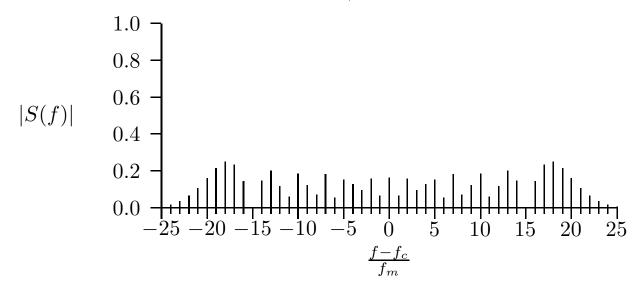


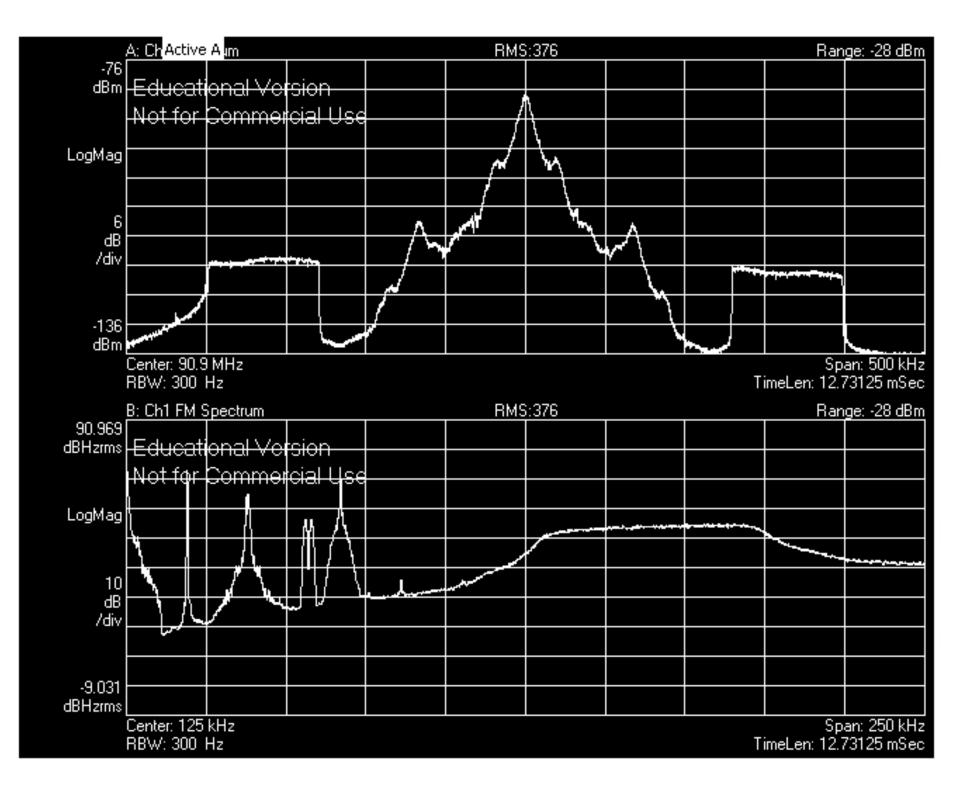
$$\beta = 2.4$$





$$\beta = 20.0$$





Continuous phase Frequency-Shift-Keying (FSK) modulation:

$$s(t) = \cos(2\pi f_c t + 2\pi h \int_{-\infty}^t m(t')dt');$$
$$m(t) = \sum_n a_n p(t - nT)$$
$$p(t) \text{ is normalized so that } \int_0^T p(t)dt = 0.5$$

If p(t) is a rectangular pulse, and if $a_n = [\dots -1, 1, -1, 1, -1, 1, \dots]$ then m(t) will be a square wave with peak amplitude $\pm \frac{1}{2T}$.

The associated time-varying phase will be a triangle wave that ramps from 0 up to πh , then down to 0, etc.

The instantaneous frequency during the phase ramps will be constant. The frequency deviation will be:

$$\Delta f(t) = \pm \frac{h}{2T}$$

Bluetooth uses $\frac{1}{T} = 1$ Mbit/s and h = 0.315, so the peak frequency deviation is $\pm \frac{h}{2T} = \pm 157.5$ kHz.

To limit the bandwidth of the message signal, Bluetooth systems filter the rectangular pulses using a Gaussian filter with -3 dB bandwidth:

$$B = 0.5(\frac{1}{T}) = 500$$
 kHz.

This is usually described as a BT = 0.5 Gaussian-filtered pulse and Bluetooth is said to utilize Gaussian Frequency Shift Keying, or GFSK.

Simulation example

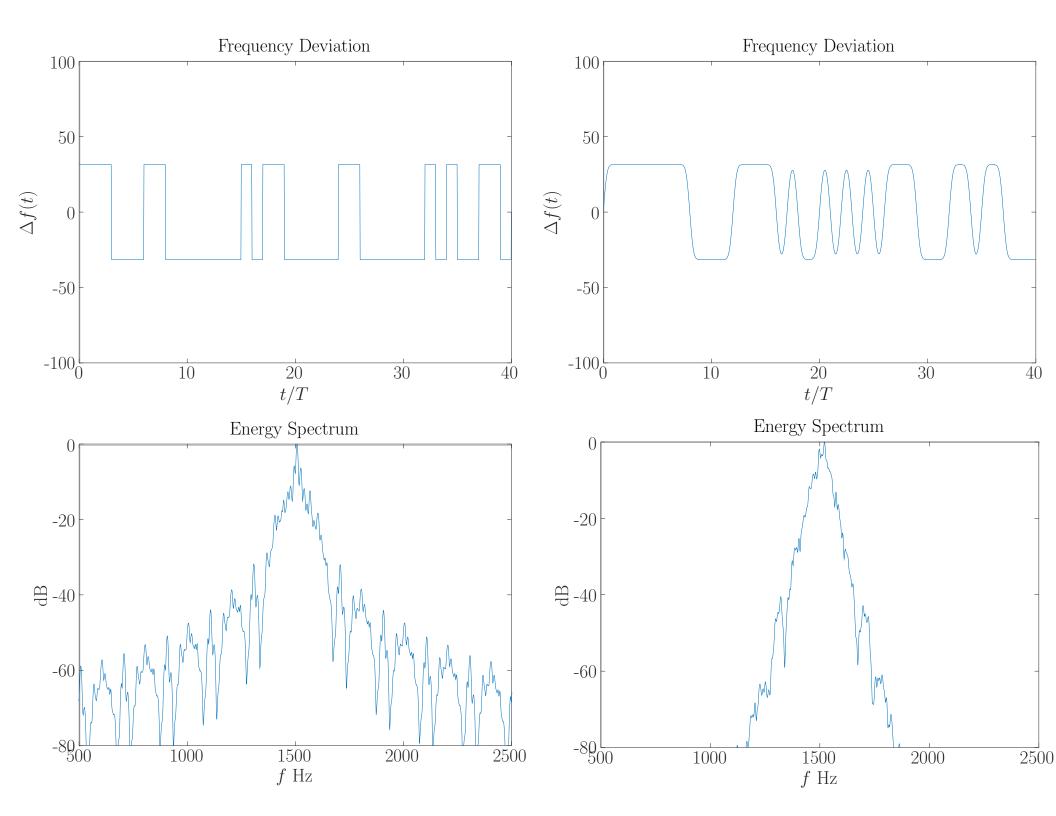
Two cases, continuous-phase frequency-shift keying with:

(a) rectangular pulses

(b) Gaussian-filtered pulses with BT = 0.5 (like Bluetooth pulse).

Carrier frequency: $f_c = 1500$ Hz Modulation index: h = 0.315Symbol rate: $1/T = 200 \,\mathrm{s}^{-1}$

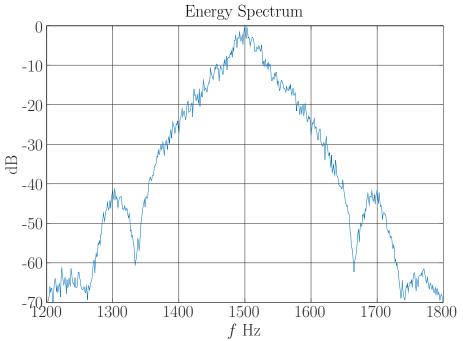
Peak frequency deviation: $\Delta f_{max} = \frac{h}{2T} = 0.315 * 100 \simeq 32$ Hz



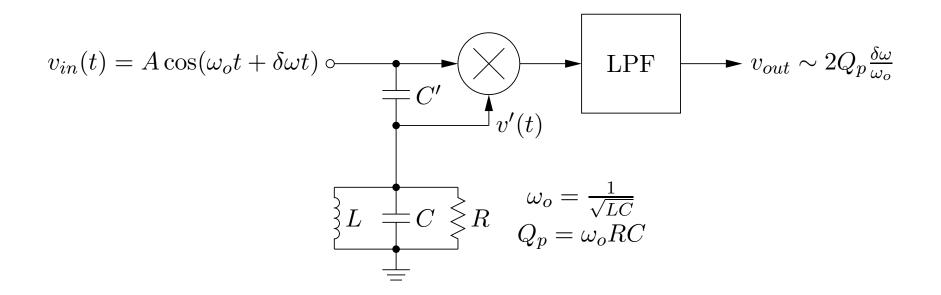
Carson's Rule says:

$$BW \simeq 2(\Delta f_{max} + W)$$
$$BW \simeq 2(\frac{h}{2T} + \frac{1}{2T})$$
$$BW \simeq \frac{1}{T}(1+h)$$

e.g. for GFSK with h = 0.315 and 1/T = 200 bit/s, Carson's rule predicts $BW \simeq 260$ Hz. In practice, the bandwidth that contains 99% of the signal power is closer to $\frac{1}{T} = 200$ Hz. (For Bluetooth, then, 99% bandwidth is $\simeq 1$ MHz.)



Quadrature FM Demodulator

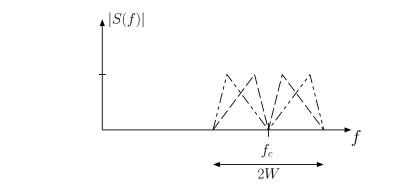


• The demodulator operates with the RLC circuit tuned to resonance at the carrier frequency of v_{in} , ω_o .

• The voltage divider consisting of C' and the resonant RLC circuit converts small frequency deviations in v_{in} to phase shifts of v' relative to v_{in} .

• For small frequency deviations, $\delta\omega$, v' is phase shifted by $\pi/2 - 2Q_p \frac{\delta\omega}{\omega_o}$.

• The multiplier and LPF act as a phase comparator, producing output proportional to $2Q_p \frac{\delta \omega}{\omega_0}$ for small frequency deviations, $\delta \omega$.



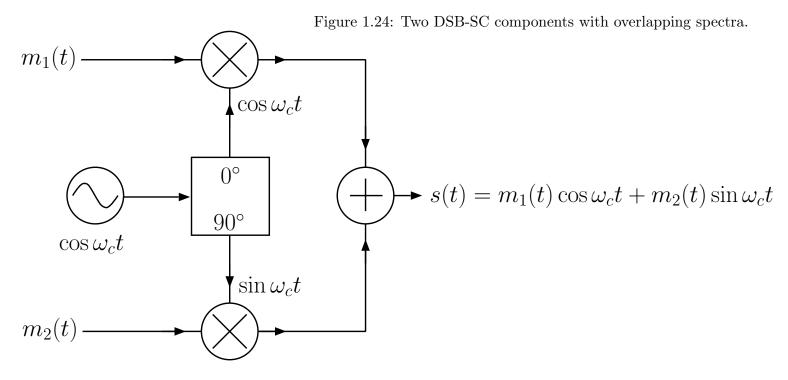


Figure 1.23: Quadrature multiplexer/modulator.

The quadrature modulator can be used to generate any type of modulation.

Consider a signal that is both amplitude and angle modulated:

$$s(t) = A(t)\cos(\omega_c t + \theta(t))$$

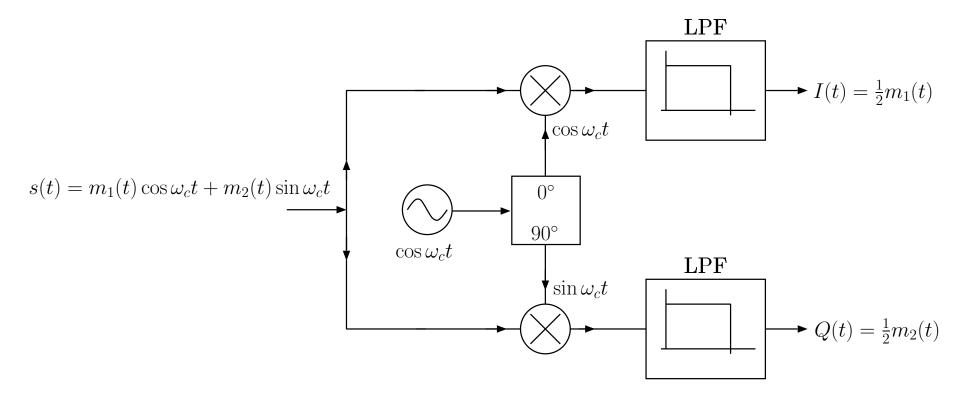
Using a trigonometric identity, this can be written in terms of in-phase and quadrature components:

$$s(t) = A(t)\cos(\theta(t))\cos(\omega_c t) - A(t)\sin(\theta(t))\sin(\omega_c t)$$
$$s(t) = m_1(t)\cos(\omega_c t) + m_2(t)\sin(\omega_c t)$$

where

$$m_1(t) = A(t)\cos(\theta(t))$$
$$m_2(t) = -A(t)\sin(\theta(t))$$

Similarly, the quadrature demodulator can be used to demodulate any type of modulation. (Additional signal processing is required).



With perfect carrier recovery:

$$I(t) = \frac{1}{2}m_1(t) = \frac{1}{2}A(t)\cos(\theta(t))$$
$$Q(t) = \frac{1}{2}m_2(t) = -\frac{1}{2}A(t)\sin(\theta(t))$$

Outputs from quadrature demodulator are:

$$I(t) = \frac{1}{2}m_1(t) = \frac{1}{2}A(t)\cos(\theta(t))$$
$$Q(t) = \frac{1}{2}m_2(t) = -\frac{1}{2}A(t)\sin(\theta(t))$$

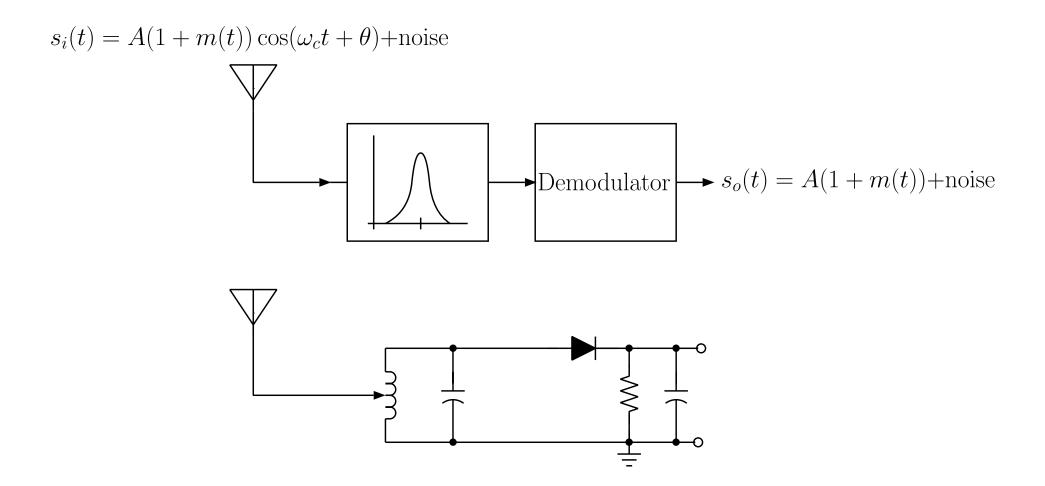
Can recover A(t) and $\theta(t)$ unambiguously as long as $A(t) \ge 0$ (positive envelope):

$$A(t) = 2\sqrt{I^2(t) + Q^2(t)}$$
$$\theta(t) = -\arctan(\frac{Q(t)}{I(t)})$$

If the signal is frequency modulated, then instantaneous frequency is proportional to the message signal:

$$\frac{d\theta(t)}{dt} = \frac{-1}{I^2 + Q^2} \left(I \frac{dQ}{dt} - Q \frac{dI}{dt} \right)$$

Tuned Demodulator



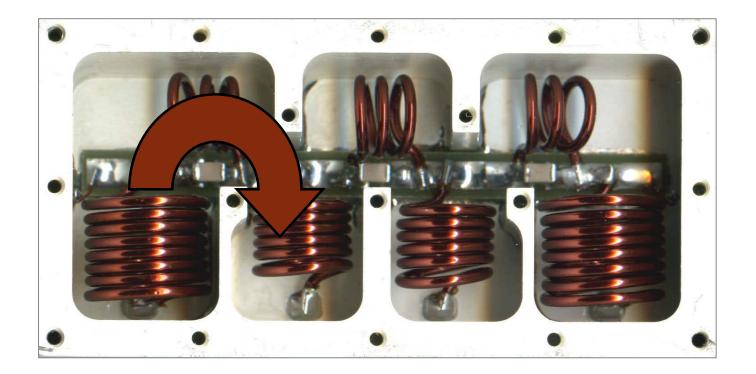
Filter facts

- Physical limitations of filters play a dominant role in receiver design.
- Analog filters are based on resonators.
 - electromagnetic resonators: LC circuits, T-line stubs, waveguide/cavity, and combinations thereof.
 - electro-mechanical resonators use a transducer to couple electrical signals into and out of a mechanical resonator. Transduction occurs naturally in piezo-electric materials such as quartz and certain ceramics.
- Achieving a good shape factor (frequency response close to rectangular) requires many resonators.
- Tunable filters require tunable resonators and tunable coupling between resonators. Tuning only possible with electromagnetic resonators, and is only convenient with LC resonators. Not practical to tune filters with more than 2 or 3 resonators.
- Minimum fractional bandwidth of practically realizable tunable filters based on LC resonators is 1%, and shape factor will be poor (large). Hence, tunable filters are not suitable for channel selection.

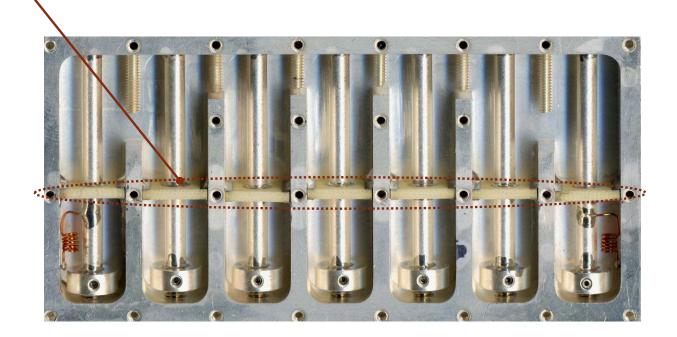
•At low frequencies (< 100 MHz) can use electromechanical resonators to realize singlefrequency filters with fractional bandwidth as small as 0.01%. At moderate frequencies (up to a few GHz) can use surface-acoustic-wave (SAW) filters to realize single-frequency filters with fractional bandwidth smaller than 1%.

	Carrier Frequency, f _c	Channel Bandwidth, BW	Fractional Bandwidth, BW/f _c
AM Broadcast	I MHz	l0 kHz	0.01(1%)
FM Broadcast	I00 MHz	200 kHz	0.002 (0.2%)
DTV	600 MHz	6 MHz	0.01 (1%)
WiFi 802.11n	5 GHz	40 MHz	0.008 (0.8%)
Bluetooth	2.4 GHz	80 MHz (all channels)	0.033 (3.3%)
4G Cellphone uplink (typical)	I.8 GHz	5 MHz	0.0028 (0.3%)
SDARS (Sirius/XM)	2.326 GHz	I2.5 MHz	0.0054 (0.5%)

Our custom package concepts provide additional shielding for better ultimate rejection



We can incorporate a unique low dielectric constant stabilizing structure to reduce overall sensitivity to shock and vibration



RF & MICROWAVE COMPONENTS AND SYSTEMS BUSINESS

Filters | Tubular Filters

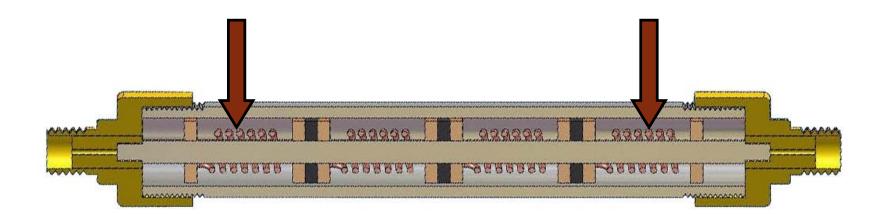
• Tubular Advantages

- 30 MHz to 5 GHz
- Broad stopbands
- Ideal for harmonic rejection
- Moderate bandwidths (2% to 50%)
- Chebyshev transfer functions
- High power handling capability

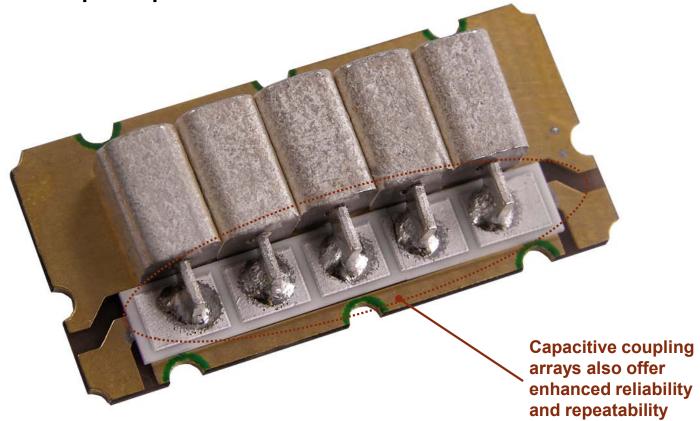
Applications and Technology Trends

- Mature technology - most current military applications are better served through LC or cavity filters

We have experience in high power tubular designs up to 5000 watts



Alternative coupling structures offers design flexibility and superior performance



Surface Acoustic Wave (SAW) filters are commonly used for frequencies in the range 50-2000 MHz.

Finger spacing, d, determines the wavelength that is:(i) strongly excited by the input transducer and(ii) produces a large response at the output transducer.

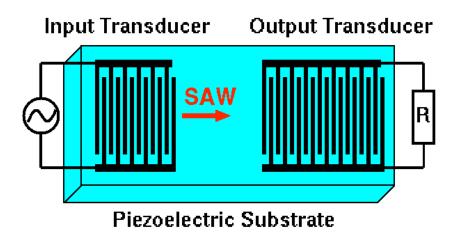
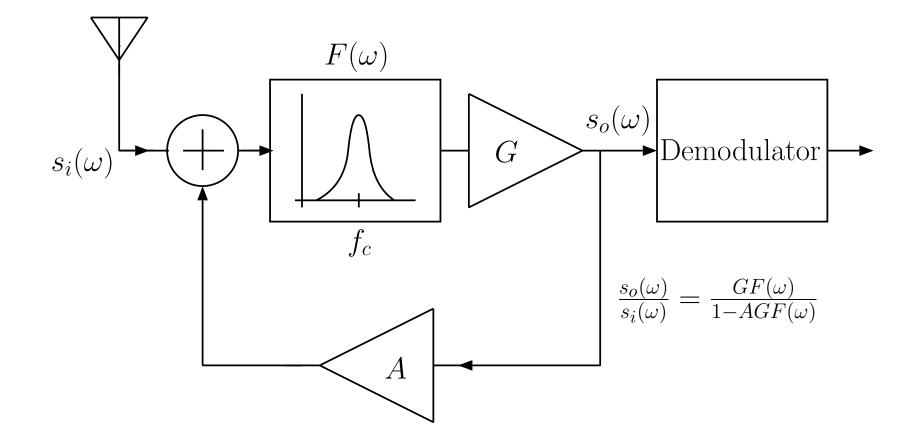


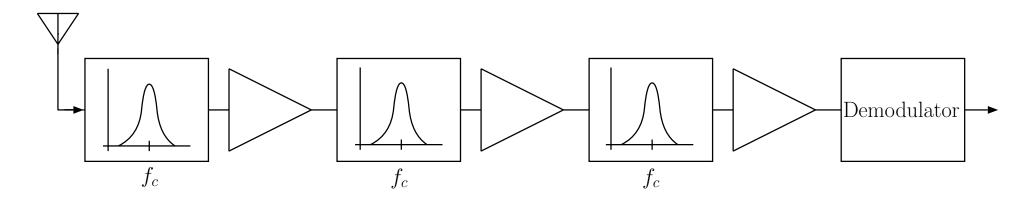
Figure taken from Wikipedia

Regenerative amplifier -> demodulator



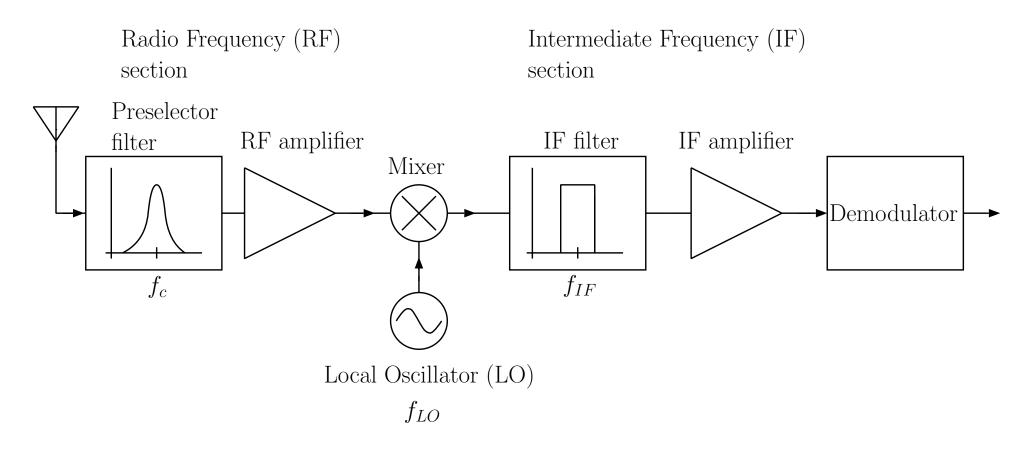
Invented by Edwin Armstrong (1912) while he was an undergraduate at Columbia

Tuned-radio-frequency (TRF) receiver



Each filter must be tuned to the same center frequency.

Superheterodyne Receiver

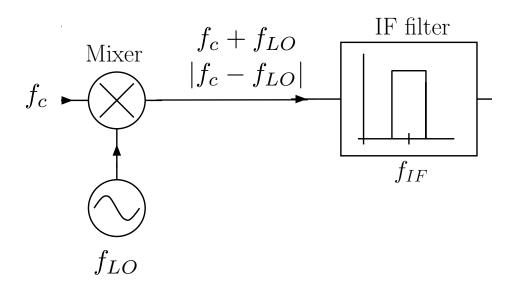


Invented by Major Edwin Armstrong (1917) while he was in the Army Signal Corps

Frequency translation is performed by the mixer/LO.

$$A(t)\cos(\omega_{c}t + \theta(t)) \leftarrow \underbrace{\frac{1}{2}}_{Cos}A(t)\cos((\omega_{c} - \omega_{LO})t + \theta(t)) + \frac{1}{2}A(t)\cos((\omega_{c} + \omega_{LO})t + \theta(t))}_{Cos(\omega_{LO}t)}$$

two output signals at carrier frequencies $|f_c \pm f_{LO}|$ modulation is preserved without distortion on both signals



 f_{LO} is adjusted so that either

$$f_c + f_{LO} = f_{IF}$$

or

$$|f_c - f_{LO}| = f_{IF}$$

If $f_{IF} > f_c$ then the conversion is called "up-conversion". If $f_{IF} < f_c$ then the conversion is called "down-conversion"

"High LO" and "Low LO"

Given f_c and f_{IF} , there are 2 choices for f_{LO} which will convert (or "mix") $f_c \rightarrow f_{IF}$:

$$f_{LO} = |f_c - f_{IF}| \qquad \text{Low LO} f_{LO} = f_c + f_{IF} \qquad \text{High LO}$$

Image response

Given f_{IF} and f_{LO} , there are 2 input frequencies that will be mixed to f_{IF} :

$$f_{c1} = f_{LO} + f_{IF}$$
$$f_{c2} = |f_{LO} - f_{IF}|$$

One of these is the desired carrier frequency. The other is called the "image frequency", f_{IM} .

The image response represents a potential source of interference. The purpose of the pre-selector filter is to reject signals at the image frequency.



BB207

FM variable capacitance double diode

Rev. 02 - 27 April 2004

Product data sheet

1. Product profile

1.1 General description

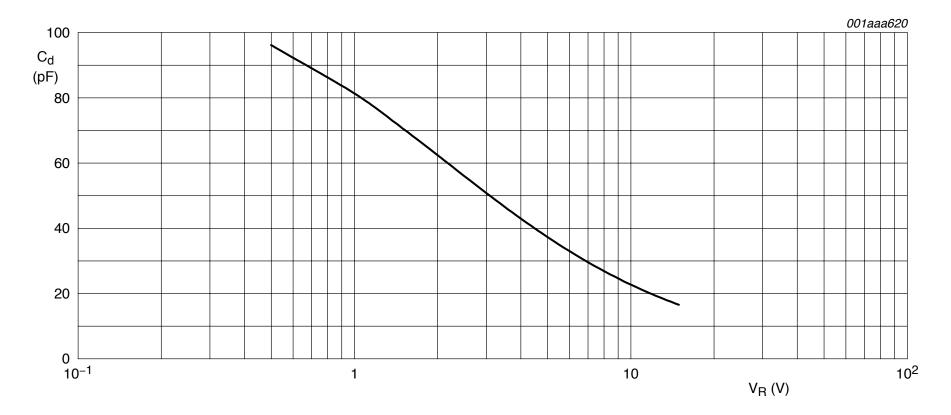
The BB207 is a variable capacitance double diode with a common cathode, fabricated in silicon planar technology, and encapsulated in the SOT23 small plastic SMD package.

1.2 Features

- Excellent linearity
- C_{d(1V)}: 81 pF; C_{d(7.5V)}: 27.6 pF
- C_{d(1V)} to $C_{d(7.5V)}$ ratio: min. 2.6
- Very low series resistance
- Small plastic SMD package.

1.3 Applications

Electronic tuning in FM-radio.



 $f = 1 \text{ MHz}; T_j = 25 \text{ °C}.$

Fig 1. Diode capacitance as a function of reverse voltage; typical values.

Introducing the Spectre ELITE Radar Detector Detector

Next generation technology in radar detector detection

Federal law prohibits drivers of commercial motor vehicles from using radar detectors. In fact, Federal Motor Carrier Safety Administration Regulation 392.71 prohibits these drivers from even possessing a radar detector. Plus, radar detectors are illegal in all vehicles in Washington, D.C., Virginia, and on all U.S. military installations.

Selectable Filter Switch

The Spectre ELITE features electronic circuit design enhancements and a new selectable filter switch for easier target acquisition and greater range. And although many radar detector manufacturers may say that their devices are undetectable, the Spectre ELITE detects hundreds of radar detector models in use all over the U.S. That's because all radar detectors, including those that feature "cloaking" or "Spectre Alert," operate - and are detected - in the same way.

The Spectre ELITE detects radar detectors by sensing electromagnetic "leakage" from a component common to every radar detector, the local oscillator. Some manufacturers try to evade detection by suppressing local oscillator leakage with shielding; others try to adjust the leakage to a frequency that the ELITE isn't designed to detect, while others turn off the local oscillator when they detect the Spectre. In most cases, the ELITE can detect these "stealthy" detectors before they can detect the ELITE and shut down.

Four types of single-conversion superhets

(1) Up - conversion:
$$\mathbf{f_{IF}} > \mathbf{f_{cmax}} > \mathbf{f_{cmin}}$$

High LO (1a) $\mathbf{f_{LO}} = \mathbf{f_{IF}} + \mathbf{f_c}$ $f_{IM} = f_c + 2f_{IF}$ $|f_{IM} - f_c| = 2f_{IF}$
Low LO (1b) $\mathbf{f_{LO}} = \mathbf{f_{IF}} - \mathbf{f_c}$ $f_{IM} = 2f_{IF} - f_c$ $|f_{IM} - f_c| = 2f_{LO}$

(2)	Down - conversion:	${ m f_{IF}} < { m f_{cmin}} < { m f_{cmax}}$			
High LO	(2a) $\mathbf{f_{LO}} = \mathbf{f_{IF}} + \mathbf{f_c}$	$f_{IM} = f_c + 2f_{IF}$	$ f_{IM} - f_c = 2f_{IF}$		
Low LO	(2b) $\mathbf{f_{LO}} = \mathbf{f_c} - \mathbf{f_{IF}}$	$f_{IM} = f_c - 2f_{IF} $	$ f_{IM} - f_c = 2f_{IF}$	if	$f_c > 2f_{IF}$
			$ f_{IM} - f_c = 2f_{LO}$	if	$f_c < 2f_{IF}$

Note: In cases (1a) and (1b) (i.e. upconversion) $f_{IM} > f_{cmax}$. This means that images are always above the highest carrier frequency of interest and therefore outside the band of interest. A fixed preselector filter can be used to pass the entire band of interest while still rejecting images.

A single frequency conversion is not always enough.

For example, suppose we want to receive signals with $f_c \simeq 5$ GHz and BW = 5 kHz.

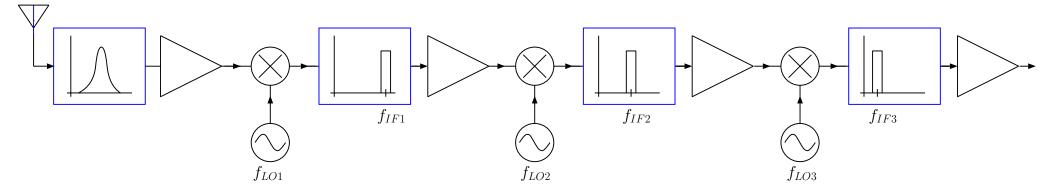
The bandwidth of the IF filter should be 5 kHz, so fractional bandwidth of IF filter is $\frac{5e3}{f_{IF}}$.

To reject the 1/2-IF response, preselector bandwidth must be smaller than f_{IF} , so fractional preselector bandwidth is $\frac{f_{IF}}{5e9}$.

Suppose we want both fractional bandwidths > 0.01:

$$\frac{5e3}{f_{IF}} > 0.01 \rightarrow f_{IF} < 5e5$$
$$\frac{f_{IF}}{5e9} > 0.01 \rightarrow f_{IF} > 5e7$$

Can't satisfy both constraints. Need to use more than one conversion or image-reject mixer.



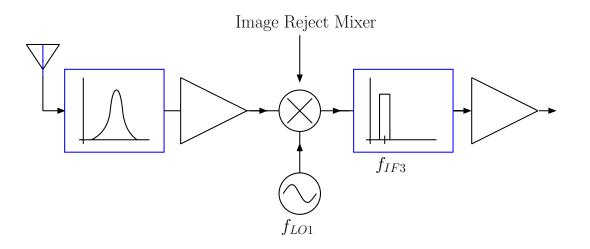
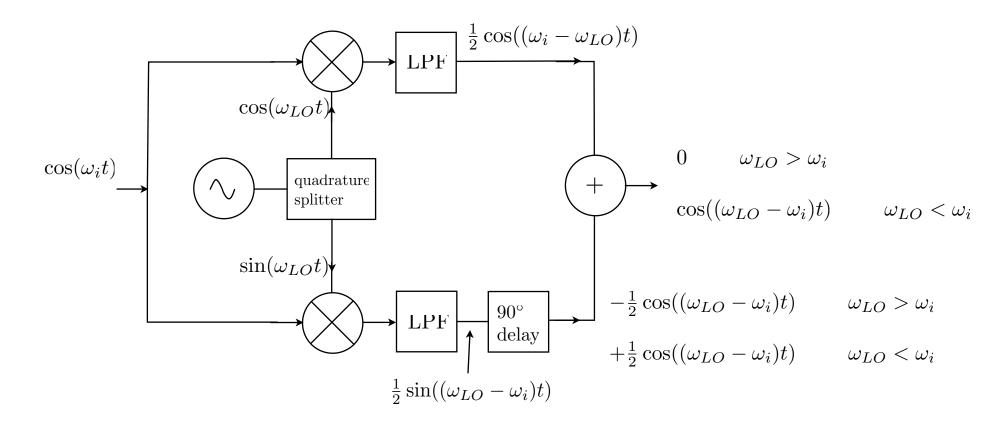
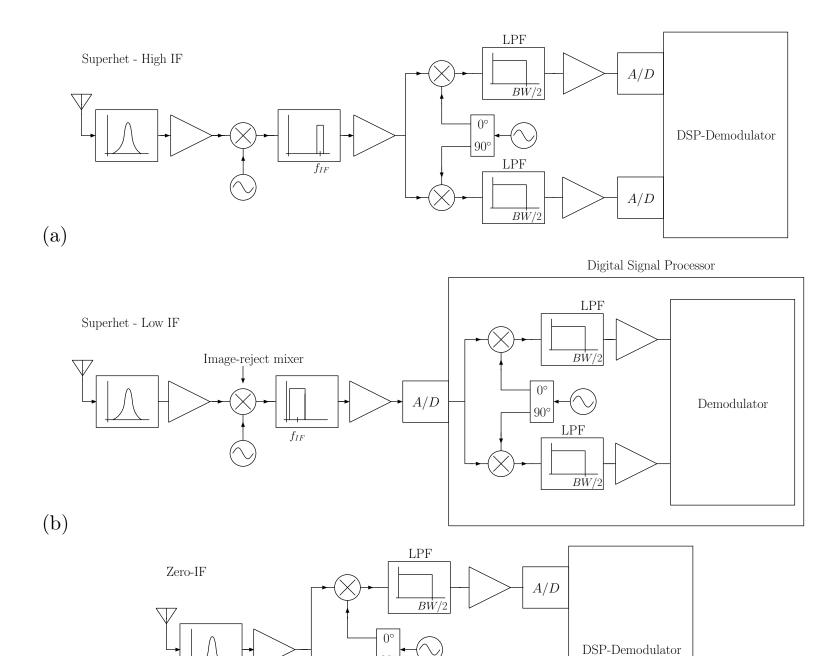


Image-reject mixer



An input signal with frequency smaller than the LO produces no output, and an input signal with frequency greater than f_{LO} produces output at the difference frequency $|f_i - f_{LO}|$.

This configuration is an "image-reject" mixer for downconversion and low-LO.



90°

LPF

BW/2

A/D

High IF, Low IF, and "zero IF"

Superhet with High IF

- Quadrature demod circuitry operates at relatively low frequency
- A/D converters operate at low frequency/sampling-rate

Superhet with Low-IF

- Only I A/D converter
- Quadrature demod is done in DSP perfect I/Q channel balance.
- May need "image-reject" mixer to attenuate the image response.

Zero-IF (direct conversion)

- Fewest components
- Quadrature demod operates at carrier frequency (need high frequency quadrature splitter and 2 high frequency mixers)
- LO leakage causes DC offsets in I/Q channels. I and Q channel output spectrum has a (possibly large) "spike" at DC. Can saturate DC-coupled amplifiers - must be removed. Desired signal's DC component will also be removed.
- Phase noise from LO is a problem. High gain at baseband means that downconverted phase noise is more troublesome than in topologies with less gain.

315MHz Low-Power, +3V Superheterodyne Receiver

General Description

The MAX1470 is a fully integrated low-power CMOS superheterodyne receiver for use with amplitude-shift-keyed (ASK) data in the 315MHz band. With few required external components, and a low-current power-down mode, it is ideal for cost- and power-sensitive applications in the automotive and consumer markets. The chip consists of a 315MHz low-noise amplifier (LNA), an image rejection mixer, a fully integrated 315MHz phase-lock-loop (PLL), a 10.7MHz IF limiting amplifier stage with received-signal-strength indicator (RSSI) and an ASK demodulator, and analog baseband data-recovery circuitry.

The MAX1470 is available in a 28-pin TSSOP package.

Applications

- Remote Keyless Entry
- Garage Door Openers
- **Remote Controls**
- Wireless Sensors
- Wireless Computer Peripherals
- Security Systems
- Toys
- Video Game Controllers
- Medical Systems

Features

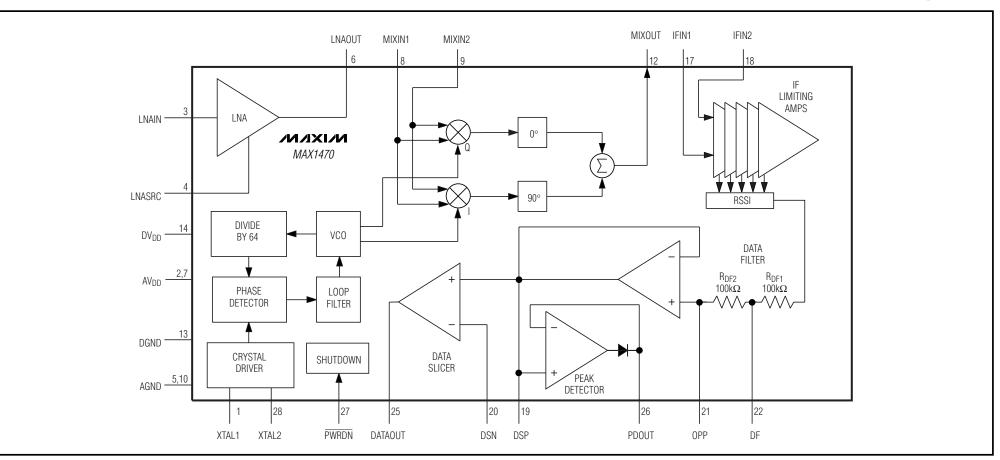
- Operates from a Single +3.0V to +3.6V Supply
- Built-In 53dB RF Image Rejection
- -115dBm Receive Sensitivity*
- ♦ 250µs Startup Time
- Low 5.5mA Operating Supply Current
- ♦ 1.25µA Low-Current Power-Down Mode for Efficient Power Cycling
- 250MHz to 500MHz Operating Band (Image Rejection Optimized at 315MHz)
- Integrated PLL with On-Board Voltage-Controlled Oscillator (VCO) and Loop Filter
- Selectable IF Bandwidth Through External Filter
- Complete Receive System from RF to Digital Data Out

*See Note 2, AC Electrical Characteristics.

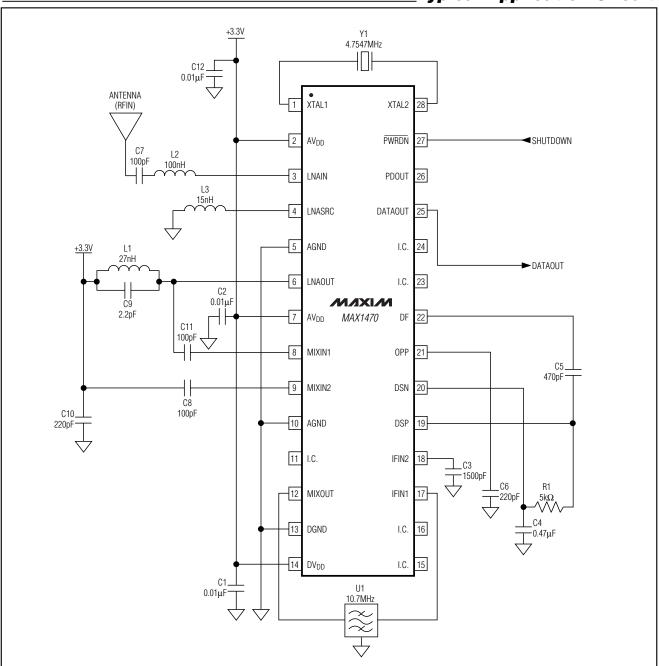
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1470EUI	-40°C to +85°C	28 TSSOP

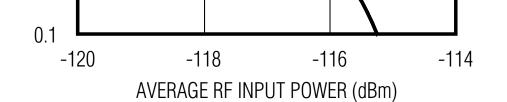
Typical Application Circuit appears at end of data sheet. Pin Configuration appears at end of data sheet.



Functional Diagram



Typical Application Circuit



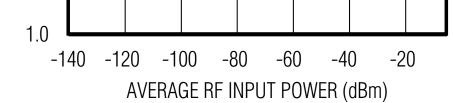
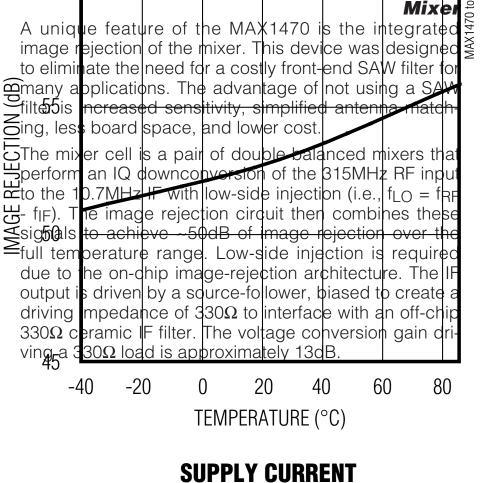


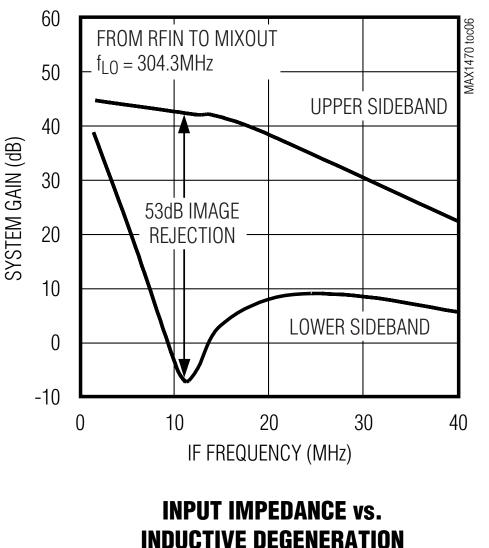
IMAGE REJECTION vs. TEMPERATURE

60



SUPPLY CURRENT vs. LO FREQUENCY

SYSTEM GAIN vs. IF FREQUENCY



19-3123; Rev 1a; 9/04

Complete SDARS Receiver

General Description

The MAX2140 complete receiver is designed for satellite digital audio radio services (SDARS). The device includes a fully monolithic VCO and only needs a SAW at the IF and a crystal to generate the reference frequency.

To form a complete SDARS radio, the MAX2140 requires only a low-noise amplifier (LNA), which can be controlled by a baseband controller. The small number of external components needed makes the MAX2140-based platform the lowest cost and the smallest solution for SDARS.

The receiver includes a self-contained RF AGC loop and baseband-controlled IF AGC loop, effectively providing a total dynamic range of over 92dB.

Channel selectivity is ensured by the SAW filter and by on-chip monolithic lowpass filters.

The fractional-N PLL allows a very small frequency step, making possible the implementation of an AFC loop. Additionally, the reference is provided by an external XTAL and on-chip oscillator. A reference buffer output is also provided.

A 2-wire interface (l^2C^{TM} bus compatible) programs the circuit for a wide variety of conditions, providing features such as:

- Programmable gains
- •Lowpass filters tuning
- Individual functional block shutdown

The MAX2140 minimizes the requirement on the baseband controller. No compensation or calibration procedures are required. The device is available in a 7mm \times 7mm 44-pin thin QFN package.

Applications

Satellite Digital Audio Radio Services (SDARS) 2.4GHz ISM Radios

l^2C is a trademark of Philips Corp.

Purchase of l^2C components from Maxim Integrated Products, Inc., or one of its sublicensed Associated Companies, conveys a license under the Philips l^2C Patent Rights to use these components in an l^2C system, provided that the system conforms to the l^2C Standard Specification as defined by Philips.

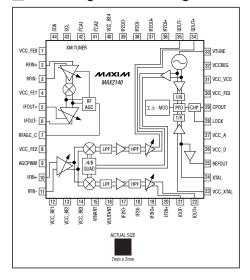
Features

- Integrated Receiver, Requires Only One SAW Filter
- Self-Contained RF AGC Loop
- Differential I/Q Interface
- Complete Integrated Frequency Generation
- Bias Supply for External LNAs
- Overcurrent Protection
- Low-Power Standby Mode
- Very Small 44-Pin Thin QFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2140ETH	-40°C to +85°C	44 Thin QFN-EP*
*EP = Exposed paddle.		

_Block Diagram/Pin Configuration



WIXIW

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX2140

19-3123; Rev 3; 10/05

Complete SDARS Receiver

General Description

The MAX2140 complete receiver is designed for satellite digital audio radio services (SDARS). The device includes a fully monolithic VCO and only needs a SAW at the IF and a crystal to generate the reference frequency.

To form a complete SDARS radio, the MAX2140 requires only a low-noise amplifier (LNA), which can be controlled by a baseband controller. The small number of external components needed makes the MAX2140-based platform the lowest cost and the smallest solution for SDARS.

The receiver includes a self-contained RF AGC loop and baseband-controlled IF AGC loop, effectively providing a total dynamic range of over 92dB.

Channel selectivity is ensured by the SAW filter and by on-chip monolithic lowpass filters.

The fractional-N PLL allows a very small frequency step, making possible the implementation of an AFC loop. Additionally, the reference is provided by an external XTAL and on-chip oscillator. A reference buffer output is also provided.

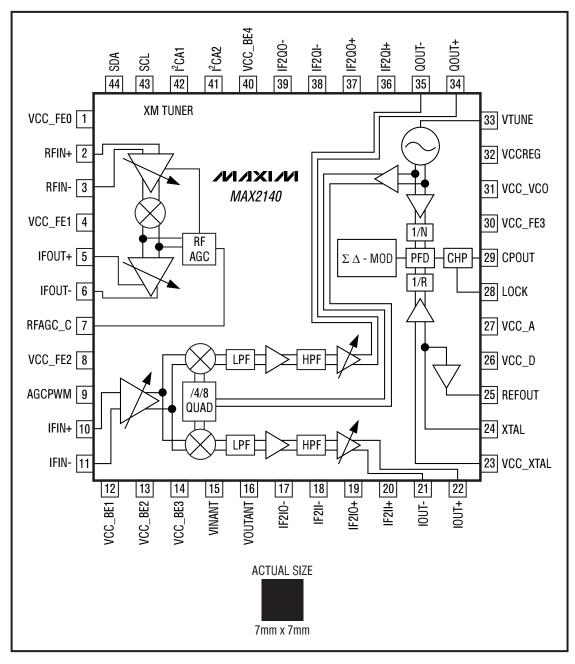
Features

- Integrated Receiver, Requires Only One SAW Filter
- Self-Contained RF AGC Loop
- ◆ Differential I/Q Interface
- Complete Integrated Frequency Generation
- Bias Supply for External LNAs
- Overcurrent Protection
- Low-Power Standby Mode
- Very Small 44-Pin Thin QFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2140ETH	-40°C to +85°C	44 Thin QFN-EP*
MAX2140ETH+	-40°C to +85°C	44 Thin QFN-EP*

Block Diagram/Pin Configuration



Detailed Description

Front End

The front end of the MAX2140, which downconverts the RF signal to IF, is defined from the differential RF inputs (pins RFIN+ and RFIN-) to the output (pins IFOUT+ and IFOUT-) to the SAW filter.

The front end includes a self-contained analog RF AGC loop. The engagement threshold of the loop can be programmed from -35dBm to -15dBm referred to the RF input in 1dB steps using the RF4–RF0 programming bits. The time constant of the loop is set externally by the capacitor connected to RFAGC_C.

The image reject first mixer ensures a good image and half IF rejection.

The front-end gain can be reduced by programming bits PM3–PM0 over a 22dB range, with a step of 2dB. This allows the selections of SAW filters with different insertion loss.

The IF output is nominally 900Ω differentially and requires pullup inductors to V_{CC}, which can be used as part of the matching network to the SAW filter impedance.

Back End

The back end, which downconverts the IF signal to quadrature baseband, is defined from the SAW filter inputs (pins IFIN+ and IFIN-) to the baseband outputs (pins IOUT+, IOUT-, QOUT+, QOUT-).

The back end contains an IF AGC loop, which is closed by the baseband controller. The IF AGC control voltage is applied at the AGCPWM pin. The gain can be reduced over 53dB (typ) and exhibits a log-linear characteristic.

The back end also contains individual lowpass filters on each channel. The lowpass-filter bandwidth is the useful SDARS downconverted bandwidth (6.25MHz). The lowpass-filter performance is factory trimmed. The bit IOT switches between the factory-trimmed set and the control through the I^2C -compatible bus using bits B4–B1. Even when using the factory-trimmed set, the user can still slightly modify the cutoff frequency (by ±250kHz) by varying bits LP1/LP0.

Highpass filters are also inserted in the back-end signal paths. Their purpose is to remove the DC offset. They are designed for a low corner frequency so as not to degrade the SDARS content. Their exact cutoff frequency is set by the external capacitors connected between IF2 access pins, given by the following equation:

$f_{cutoff} = 1/(2 \times \pi \times R \times C) [Hz]$

where R = 8000 Ω , C = external capacitor to be connected.

Finally, the HPF bit allows an increase to the back-end gain by 4dB at the slight expense of a degraded inband linearity.

Frequency Generation

An on-chip VCO and a low-step fractional-N PLL ensure the necessary frequency generation. The 1st mixer's LO is at the VCO frequency itself, while the 2nd mixer's LO is the VCO frequency divided by 4 or by 8 (bit D48). Hence, the two possible IF frequencies for SDARS are 467MHz and 259MHz. Typical applications are based on 259MHz IF frequency.

The reference divider path in the PLL can either use an external crystal and the on-chip crystal oscillator or an external TCXO that can overdrive the on-chip crystal oscillator. A reference division ratio of 1 or 2 is set by the REF bit. The crystal oscillator (or TCXO) signal is available at pin REFOUT. The output is either at the same frequency as the reference signal, or divided by two, based on the setting of bit RFD.

The VCO main division ratio is set by bits N6–N0 (for the integer part) and bits F19–F00 (for the fractional part). The minimum step is below 30Hz, small enough for effective AFC to be implemented by the baseband.

The charge-pump (pin CPOUT) is to be connected to the VCO tuning input (pin VTUNE) through an appropriate loop filter.

Overcurrent Protection

This DC function allows external circuitry consuming up to 150mA and connected to the pin VOUTANT to sink current from a V_{CC} line (pin VINANT) through overcurrent-protection circuitry.

When no overcurrent is present, a low dropout voltage exists between pins VINANT and VOUTANT. In overcurrent conditions (including short-circuit from VOUTANT to GND), the current is limited to approximately 300mA and bit ACP in the READ byte status goes high.

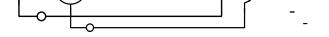
This circuit also senses if the current drawn at the pin VOUTANT is typically larger than 20mA, in which case the bit AND from the READ byte status goes high (the purpose is to inform the baseband controller if there is any device drawing current from VOUTANT).

AC ELECTRICAL CHARACTERISTICS

(MAX2140 EV kit, current drawn at VOUTANT, $I_{VOUTANT} = 150$ mA max, $V_{CC} = 3.1$ V to 3.6V, VINANT = 3.1V to 5.3V, $f_{RF} = 2320$ MHz to 2345MHz, $f_{LO} = 2076$ MHz, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C. Typical values are at $V_{CC} =$ VINANT = 3.3V, $f_{RF} = 2338$ MHz, $T_A = +25^{\circ}$ C, unless otherwise noted.) (Note 2)

Interstage (IF) 259MHz SAW filter specification: insertion loss = 19dB max, 9.3MHz to 12MHz from center attenuation = 24dB min, beyond 12MHz from center attenuation = 40dB min.

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
GENERAL RECEIVER						
Minimum Input RF Power to Produce 20mV _{P-P} (Differential) at I and Q Baseband Outputs	Pmin	IF AGC is set at maximum gain, bit HPF = 0 (Note 4)		-91	-84	dBm
Maximum Input RF Power to Produce 400mVp-p (Differential) at I and Q Baseband Outputs	Рмах	RF AGC threshold: RF_AGC_TRIP = -17dBm; IF AGC is set at minimum gain, bit HPF = 0 +3				dBm
	Plk_h	LO-related spurious > 2GHz		-66		dDm
LO to RF Input Leakage	PLK_L	LO-related spurious < 2GHz		-38		dBm
Noise Figure (Notes 3, 5)	NF	RF AGC is at maximum gain, IF AGC is at reference gain		8.5	10.4	d B
In-Band Input IP3 (Notes 5, 6)	I_IIP3	RF AGC is at maximum gain, IF AGC is at reference gain		-32		dBm
Out-of-Band Input IP3 (Notes 5, 7)	0_IIP3	RF AGC is at maximum gain, IF AGC is at reference gain		-9		dBm
In-Band Input IP2 (Notes 5, 6)	I_IIP2	RF AGC is at maximum gain, IF AGC is at reference gain		+1		dBm
Out-of-Band Input IP2 (Notes 5, 7)	0_IIP2	RF AGC is at maximum gain, IF AGC is at reference gain		+38		dBm
Opposite Sideband Rejection	OSR	Baseband frequencies = 100kHz (Note 4)	32	39		d B
Image Rejection	IRej	At fLO - fIF		54		d B
Half IF Rejection	HRej	At fLO + 0.5 x fIF		53		d B
RF AGC LOOP						
LNA Gain Reduction	RFAGC_ Range	(Note 4)	30	42		d B
Minimum RF AGC Trip Point	RFAGC_mi	Bits RF4/3/2/1/0 = 00000 (BIN)		-35		dBm
RF AGC Trip Point	RFAGC_int	Bits RF4/3/2/1/0 = 00010 (BIN) (Note 4)	-37	-33	-29	dBm
Maximum RF AGC Trip Point	RFAGC_m	Bits RF4/3/2/1/0 = 10100 (BIN)		-15		dBm
FRONT-END (FE) PROGRAMMAE	BLE GAIN					
FE Programmable Gain Range	FE_Rge	(Note 4)	19	22	26	d B
FE Programmable Gain Step	FE_Step			2		d B
IF FILTER INTERFACE						
IF Output Differential Admittance	Yout, IF	Between pins IFOUT+, IFOUT-, fIF = 259MHz and 467MHz		1/900 + j0		S
Input Differential Impedance Presented by the IC to the IF Filter Output	Zin, IF	Between pins IFOUT+, IFOUT-,150fIF = 259MHz and 467MHz+ j0				Ω



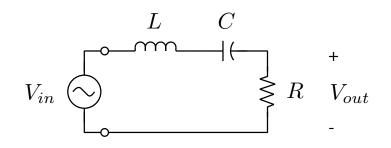


Figure 4.1: Series RLC circuit as a filter.

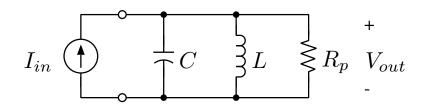
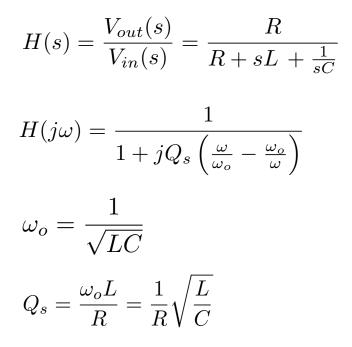


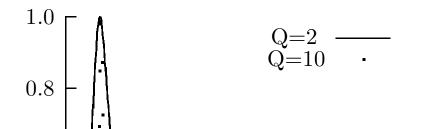
Figure 4.6: Parallel RLC as a filter



$$Z(s) = \frac{V_{out}(s)}{I_{in}(s)} = \left[\frac{1}{R_p} + \frac{1}{sL} + sC\right]^{-1}$$

$$Z(j\omega) = \frac{R_p}{1 + jQ_p \left(\frac{\omega}{\omega_o} - \frac{\omega_o}{\omega}\right)}$$

$$\omega_o = \frac{1}{\sqrt{LC}}$$
$$Q_p = \frac{R_p}{\omega_0 L}$$



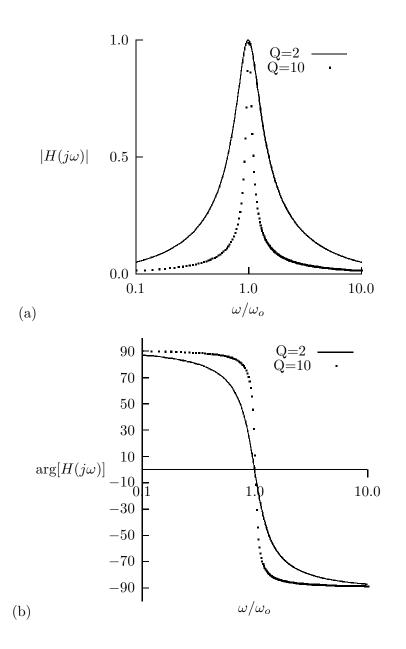
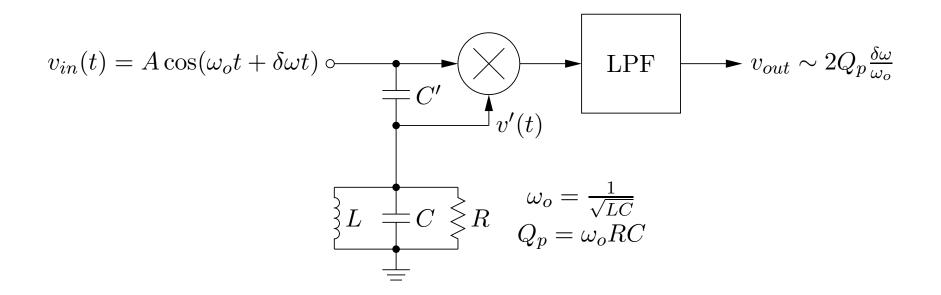


Figure 4.3: (a) Magnitude and (b) phase of the voltage transfer function for Q=2 (solid) and Q=10 (dotted) vs. ω/ω_o with a logarithmic frequency axis.

Quadrature FM Demodulator



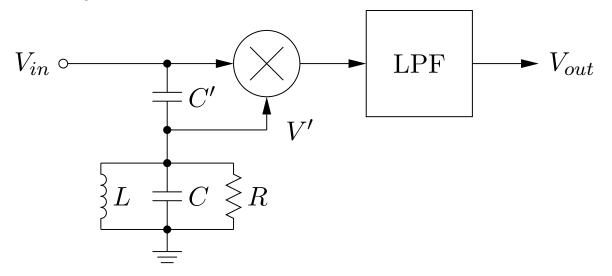
• The demodulator operates with the RLC circuit tuned to resonance at the carrier frequency of v_{in} , ω_o .

• The voltage divider consisting of C' and the resonant RLC circuit converts small frequency deviations in v_{in} to phase shifts of v' relative to v_{in} .

• For small frequency deviations, $\delta\omega$, v' is phase shifted by $\pi/2 - 2Q_p \frac{\delta\omega}{\omega_o}$.

• The multiplier and LPF act as a phase comparator, producing output proportional to $2Q_p \frac{\delta \omega}{\omega_0}$ for small frequency deviations, $\delta \omega$.

Quadrature FM Demodulator



Using upper-case symbols V_{in} , V' for phasors:

$$V' = \frac{Z_p}{Z_p + \frac{1}{j\omega C'}} V_{in}; \qquad Z_p = j\omega L ||\frac{1}{j\omega C}||R$$

If C' is small, such that $\frac{1}{\omega C'} \gg |Z_p|$, then $V' \simeq j\omega C' Z_p V_{in}$.

Let θ' , θ_p , and θ_{in} represent the phase angles of V', Z_p , and V_{in} , respectively. Then:

$$\theta' = \frac{\pi}{2} + \theta_p + \theta_{in}$$

Phase difference between V_{in} and V' is $\frac{\pi}{2} + \theta_p$ where θ_p is the phase angle of Z_p .

Impedance of a parallel RLC circuit is:

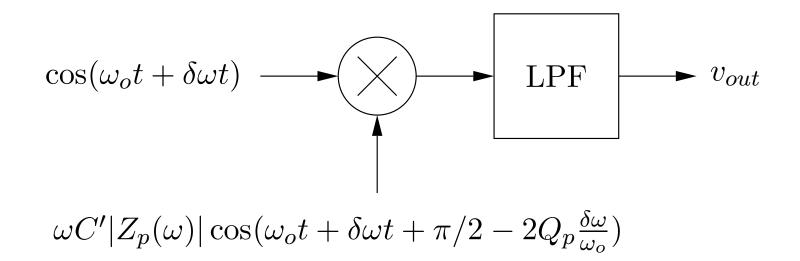
$$Z_p(\omega) = \frac{R}{1 + jQ_p(\frac{\omega}{\omega_o} - \frac{\omega_o}{\omega})} = |Z_p(\omega)| e^{j\theta_p(\omega)}$$

$$\theta_p(\omega) = -\tan^{-1}Q_p(\frac{\omega}{\omega_o} - \frac{\omega_o}{\omega})$$

Let
$$\omega = \omega_o + \delta \omega$$
. If $\delta \omega \ll \omega_o$, then

$$\theta_p(\omega) \simeq -2Q_p \frac{\delta\omega}{\omega_o}$$

For small frequency deviations away from resonance the phase of Z_p is proportional to the frequency deviation, $\delta\omega$.



The multiplier is usually configured such that the lower input is "saturated", in which case the output does not depend on the magnitude of the lower input.

The lowpass filter rejects the double-frequency term in the mixer output, leaving the cosine of the phase difference. The output is:

$$v_{out} \sim \cos(\frac{\pi}{2} - 2Q_p \frac{\delta\omega}{\omega_o}) = \sin(2Q_p \frac{\delta\omega}{\omega_o})$$

If $2Q_p \frac{\delta \omega}{\omega_o} \ll 1$, then $v_{out} \sim 2Q_p \frac{\delta \omega}{\omega_o}$.

• For small frequency deviations $(\delta\omega)$ away from ω_o , $v_{out} \sim 2Q_p \frac{\delta\omega}{\omega_o}$.

• For large frequency deviations, the output is a nonlinear function of deviation. See section 4.5 of the course notes for details.

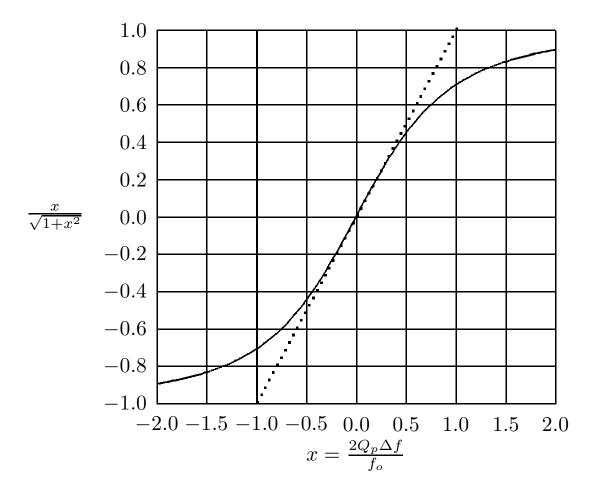
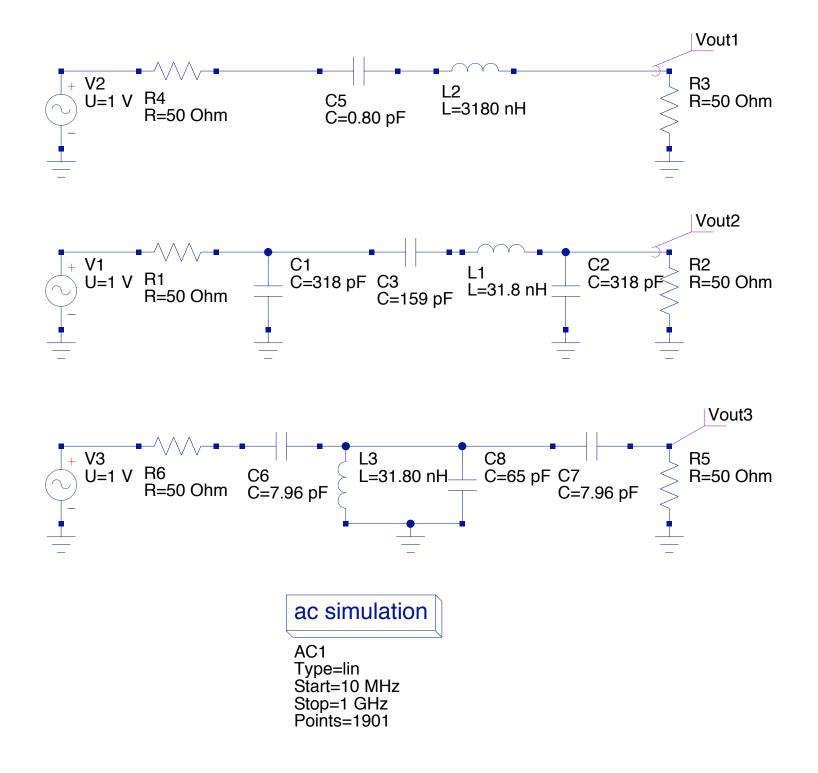
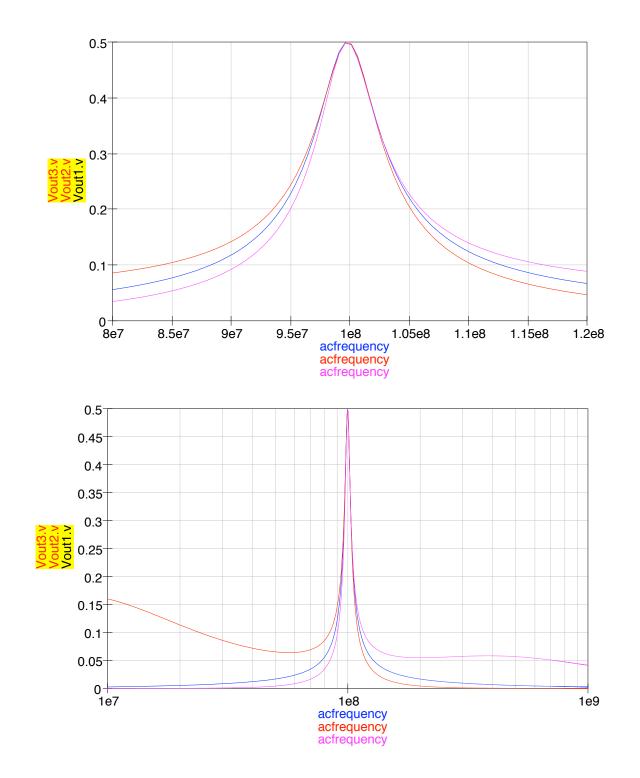


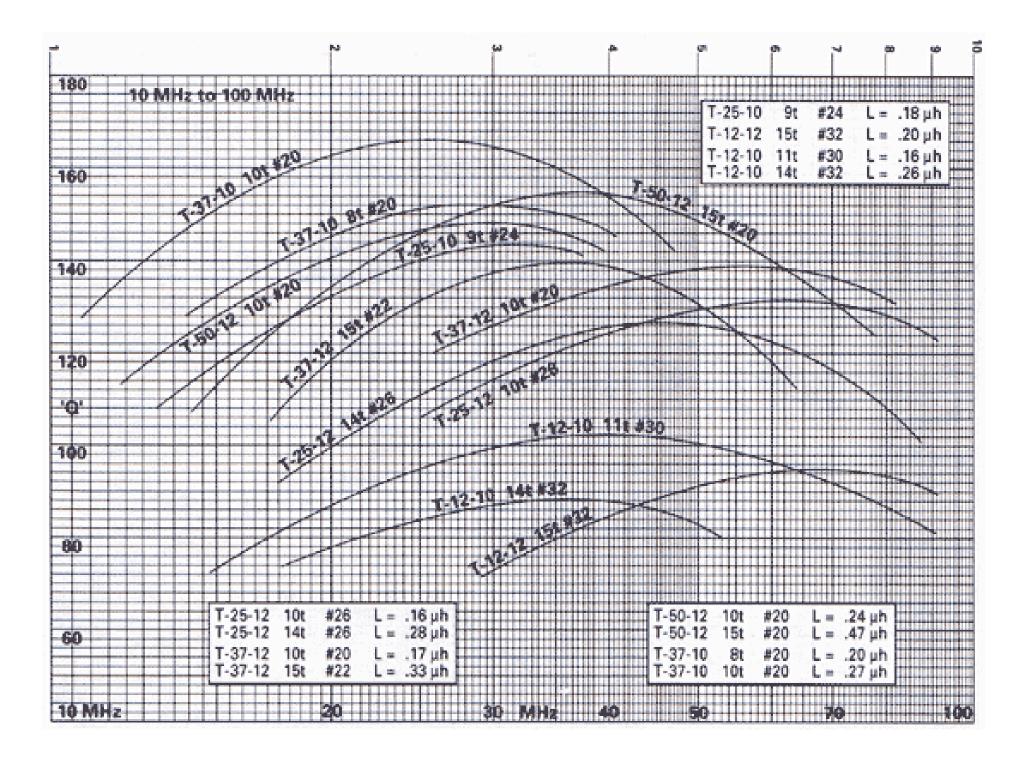
Figure 4.23: Output voltage verses normalized frequency deviation for a quadrature demodulator employing a saturated input for v'. The dotted line shows an ideal linear response with the same slope as the actual response at x = 0.



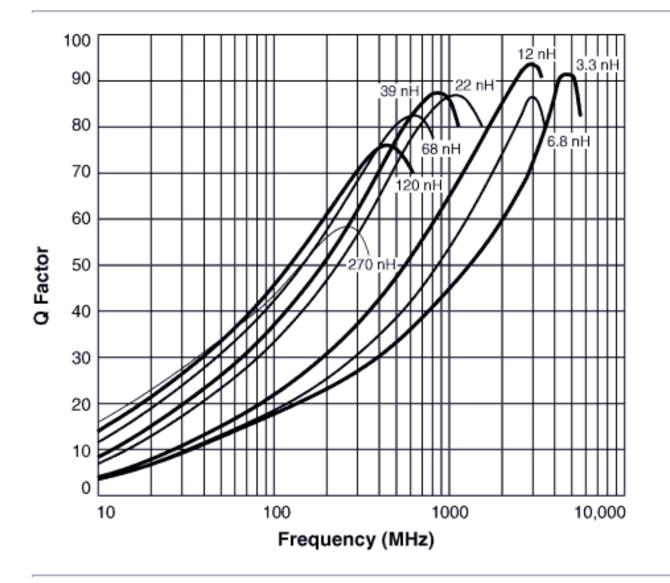


Optimum Frequencies for Amidon Toroidal Inductor Cores

					1.5.1.0			1232	1.000	
				1.4.5 1.4.5				1000		
								1957	0101	
									- 1631 F	
also "	7, BI	ue &	Yel							
		5e		1.230	49		14. S	5.6		
	also *	also # 17, Bl	also #17, Blue &	also #17, Blue & Yel	also # 17, Blue & Yel					



Q versus Frequency 0805CS Surface Mount Inductors



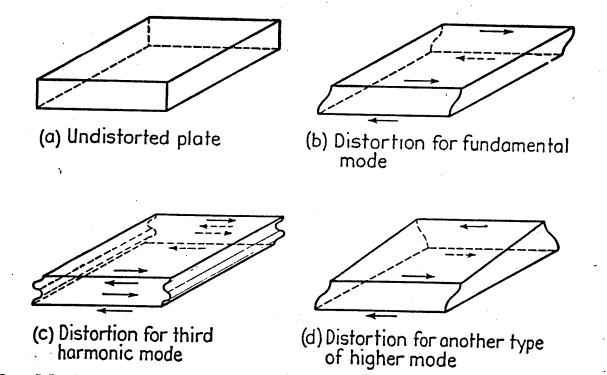


FIG. 8-10.—Motions associated with fundamental and higher modes of vibrations of the high-frequency shear type. For the sake of clarity, the extent of motion is great exaggerated. The arrows indicate the direction of motion.

Crystal 'cut'

Figure 1 shows many of the 'cut' orientations, which may be made from a single Z plate quartz crystal, related to the X, Y and Z axis.

Fig.3 Cut orientations from a single Z plate crystal

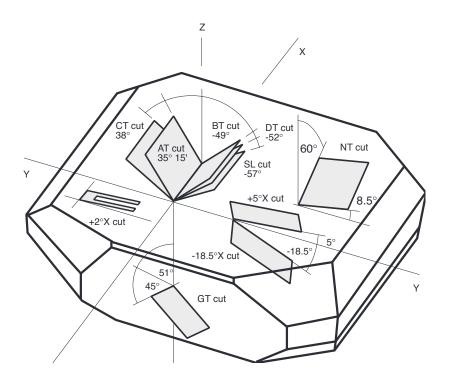
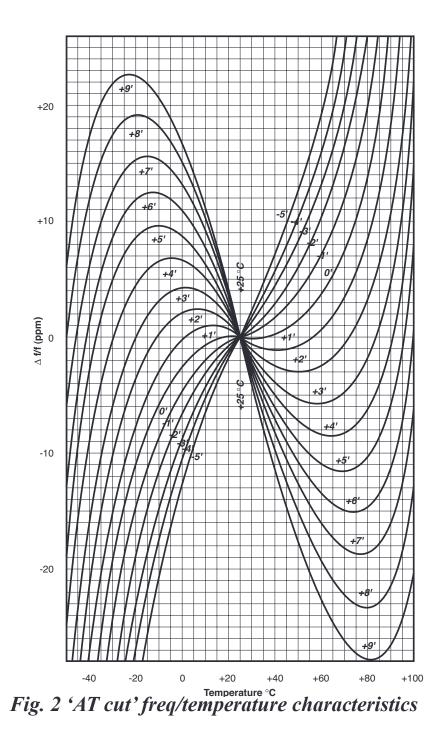


Fig. 1 Cut orientations from a Z plate quartz crystal



MQ (7.0 * 5.0 * 1.2 mm) Series

Features

- RoHS compliant and lead-free product
- 1.2 mm height. Ideal for space constraint applications such as PCMCIA
- Ceramic package with seam sealed kovar lid.
- The whole package is grounded via the topmetal lid and the two bottom pads .

General Specifications

Item / Type	MQ series(7.0 * 5.0 * 1.2 mm)				
Fraguency Pango & Crystal Cut	$6.000 \sim 50.000 \; \text{MHz}$, AT-cut , Fundamental Mode (see Table 1)				
Frequency Range & Crystal Cut	30.000 ~ 125.000 MHz ,AT-cut ,3rd overtone (see Table 1)				
Load Capacitance	Series Resonance or Parallel (8 to 32 pF typical)				
Drive Level	10μ W (100μ W max.)				
Frequency Tolerance	\pm 5 ppm , \pm 10 ppm , \pm 20 ppm or \pm 30 ppm at $$ 25°C				
Frequency Stability	See Table 2				
Aging	riangleF / F : ±3 ppm / year (max.)				
Storage Temperature Range	- 50°C to 105°C				

Table 1

Series Resistance (max.)

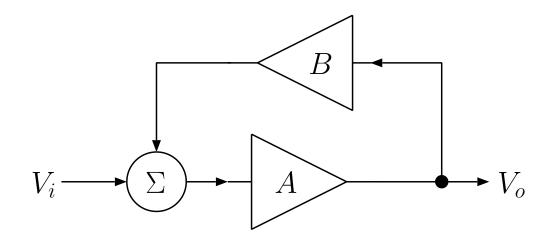
Freq.(MHz)	Osc. Mode	E.S.R.	Freq.(MHz)	Osc. Mode	E.S.R.
6.0 ~ 8.0	AT , Fund.	80 Ω	30.0~ 40.0	AT , 3rd	100 Ω
8.0 ~ 11.0	AT , Fund.	60 Ω	40.1~ 50.0	AT , 3rd	80 Ω
11.1~ 14.0	AT , Fund.	50 Ω	50.1~125.0	AT , 3rd	90 Ω
14.1~ 50.0	AT , Fund.	40 Ω			

Table 2

Frequency stability Vs Operating temperature range

Ter	np. (°C) \ ppm	± 5	± 10	± 15	± 20	± 25	± 30
х	-10 to 60°C	0	0	0	\bigcirc	0	\bigcirc
Y	-20 to 70°C		0	0	0	0	\bigcirc
Ι	-40 to 85°C			0	\bigcirc	0	\bigcirc

○: available ; ▲: contact Mercury

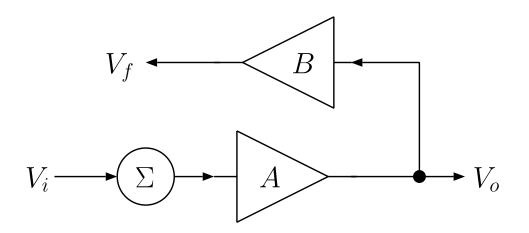


The voltage transfer function for this system is

$$\frac{V_o}{V_i} = \frac{A(s)}{1 - A(s)B(s)}$$

where the quantity A(s)B(s) is called the open loop gain of the system. Define

$$A_{lo} = A(s)B(s)$$



Loop gain is calculated by opening the feedback loop and taking the output at the point where the loop was opened, i.e.

$$A_{lo} = \frac{V_f}{V_i}.$$

Roots of the equation

$$1 - A_{lo}(s) = 0$$

are the pole locations.

When poles of the transfer function are on the $j\omega$ axis the system supports steady-state oscillation (neither decaying or growing).

A pole is on the $j\omega$ axis if the following equation is satisfied for some real value of frequency, denoted by ω_o :

$$A_{lo}(j\omega_o) = 1.$$

If $A_{lo}(j\omega_o) = 1$ can be satisfied for some real ω_o , then the system supports steady-state oscillation at frequency ω_o .

 A_{lo} is a complex quantity, so two conditions must be satisfied for steady-state oscillation to occur. They are called the *Barkhausen* Criteria for oscillation:

$$\arg[A_{lo}(\omega_o)] = 2n\pi$$
, for *n* an integer $|A_{lo}(\omega_o)| = 1$

Practical oscillator circuits are designed so that poles are actually in the RHP. The circuit is then unstable, and any small perturbation will result in an oscillation that grows exponentially, i.e. like $e^{\alpha t}$, $\alpha > 0$.

Thermal noise, or the transient caused by turning on the supply voltage provides the initial excitation that excites the growing oscillation.

When the oscillation amplitude is sufficiently large, nonlinear saturation of the amplifier (often a single transistor) effectively reduces the loop gain, moving the pole onto the $j\omega$ axis, and oscillation is limited at a finite value.

Initial oscillation will start and grow if

$$\arg[A_{lo}(\omega_o)] = 2n\pi$$
, for *n* an integer

and

 $|A_{lo}(\omega_o)| > 1$

Summary of procedure for loop gain design of oscillator circuits.

1. Identify feedback loop. Break the loop and terminate with the impedance that the feedback output normally sees when the loop is closed. Solve for loop gain function, $A_{lo}(s)$.

2. Solve $\arg[A_{lo}(\omega)] = 2n\pi$ to determine the potential frequency (or frequencies) of oscillation, ω_o . This will yield an expression for ω_o in terms of circuit parameters. Choose the parameters so that ω_o is the desired value.

3. Set $|A_{lo}(\omega_o)| = 1$. This will yield an expression for the minimum gain required for the amplifier. For example, when the amplifier is a single transistor, this will yield an expression for $g_{m,ss}$, which is the transconductance required for steady-state oscillation. Bias the transistor so that the actual transconductance is larger than $g_{m,ss}$ to ensure $|A_{lo}(\omega_o)| > 1$.

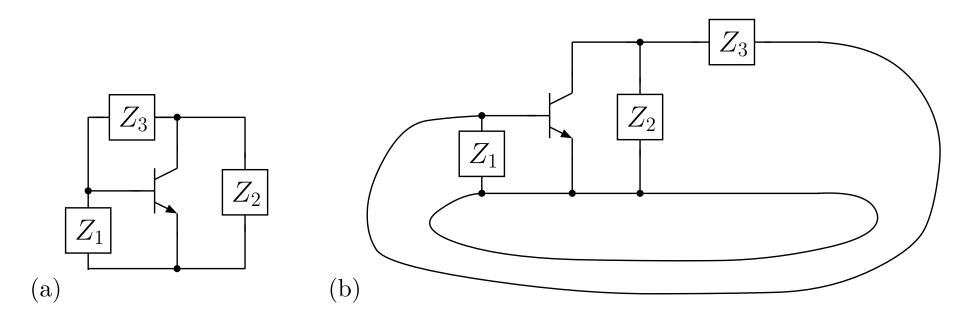


Figure 5.3: (a) Topology of one class of oscillator circuits. (b) Same as (a), redrawn to show the feedback path from output to input through Z_3 .

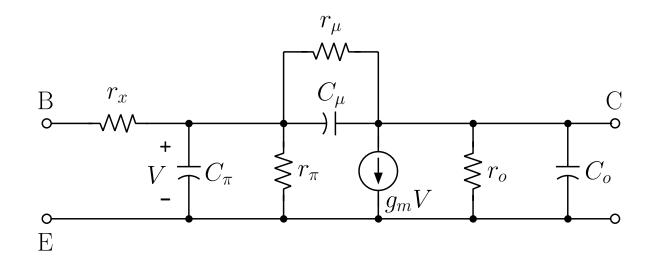


Figure A.2: Hybrid-pi small-signal model for BJT

$$r_{\pi} \simeq \frac{.025\beta}{I_{CQ}} \qquad g_m \simeq 40I_{CQ}$$

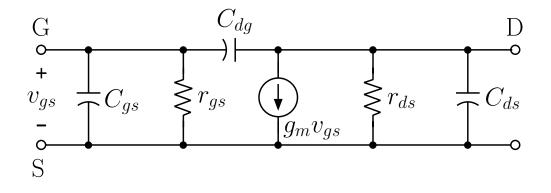


Figure A.3: Hybrid-pi equivalent circuit for the FET

$$g_m = \frac{2}{|V_P|} \sqrt{I_{DSS} I_D}$$

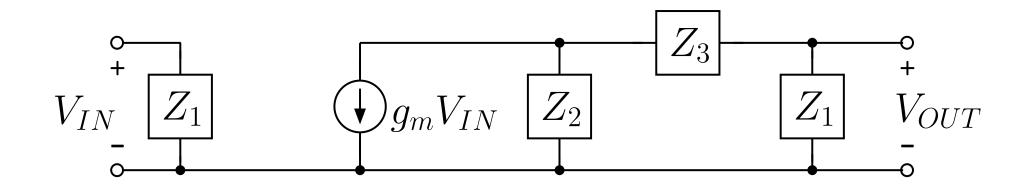
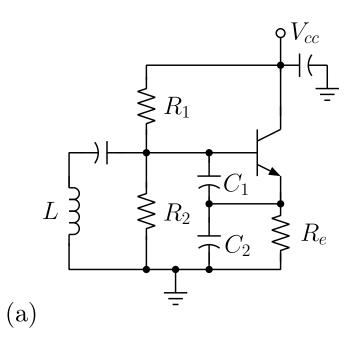
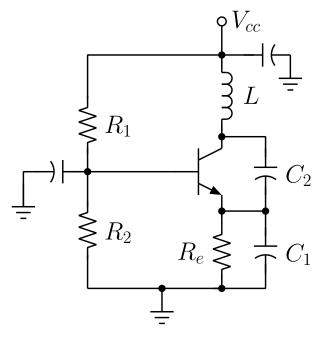


Figure 5.5: Feedback loop terminated with Z_1

$$A_{lo} = \frac{V_{OUT}}{V_{IN}} = -g_m Z_2 || (Z_1 + Z_3) \frac{Z_1}{Z_1 + Z_3} = \frac{-g_m Z_1 Z_2}{Z_1 + Z_2 + Z_3}$$





(b)

Double-balanced mixer and oscillator

SA612A

DESCRIPTION

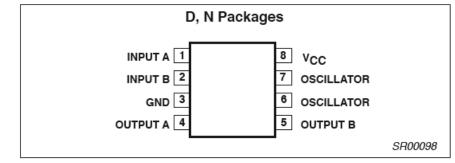
The SA612A is a low-power VHF monolithic double-balanced mixer with on-board oscillator and voltage regulator. It is intended for low cost, low power communication systems with signal frequencies to 500MHz and local oscillator frequencies as high as 200MHz. The mixer is a "Gilbert cell" multiplier configuration which provides gain of 14dB or more at 45MHz.

The oscillator can be configured for a crystal, a tuned tank operation, or as a buffer for an external L.O. Noise figure at 45MHz is typically below 6dB and makes the device well suited for high performance cordless phone/cellular radio. The low power consumption makes the SA612A excellent for battery operated equipment. Networking and other communications products can benefit from very low radiated energy levels within systems. The SA612A is available in an 8-lead dual in-line plastic package and an 8-lead SO (surface mounted miniature package).

FEATURES

- Low current consumption
- Low cost
- Operation to 500MHz
- Low radiated energy
- Low external parts count; suitable for crystal/ceramic filter
- Excellent sensitivity, gain, and noise figure

PIN CONFIGURATION



APPLICATIONS

- Cordless telephone
- Portable radio
- VHF transceivers
- RF data links
- Sonabuoys
- Communications receivers
- Broadband LANs
- HF and VHF frequency conversion
- Cellular radio mixer/oscillator

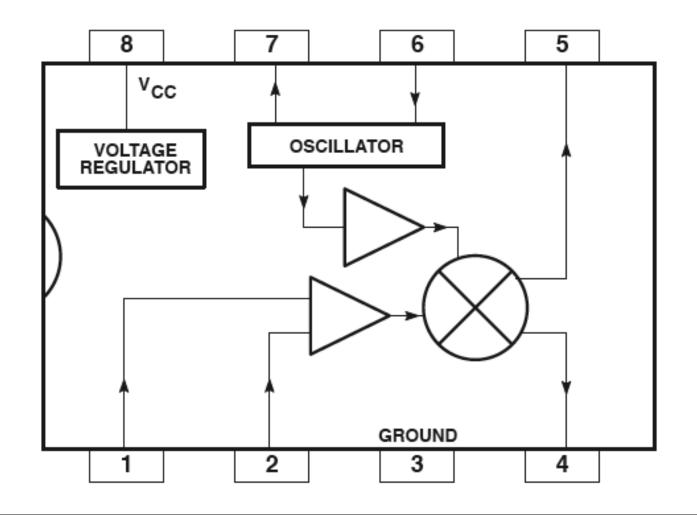


Figure 2. Block Diagram

TEST CONFIGURATION

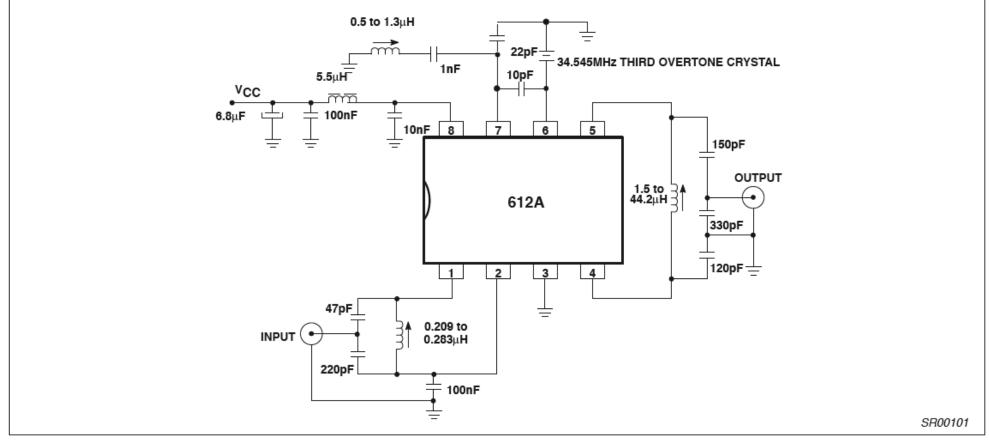


Figure 3. Test Configuration

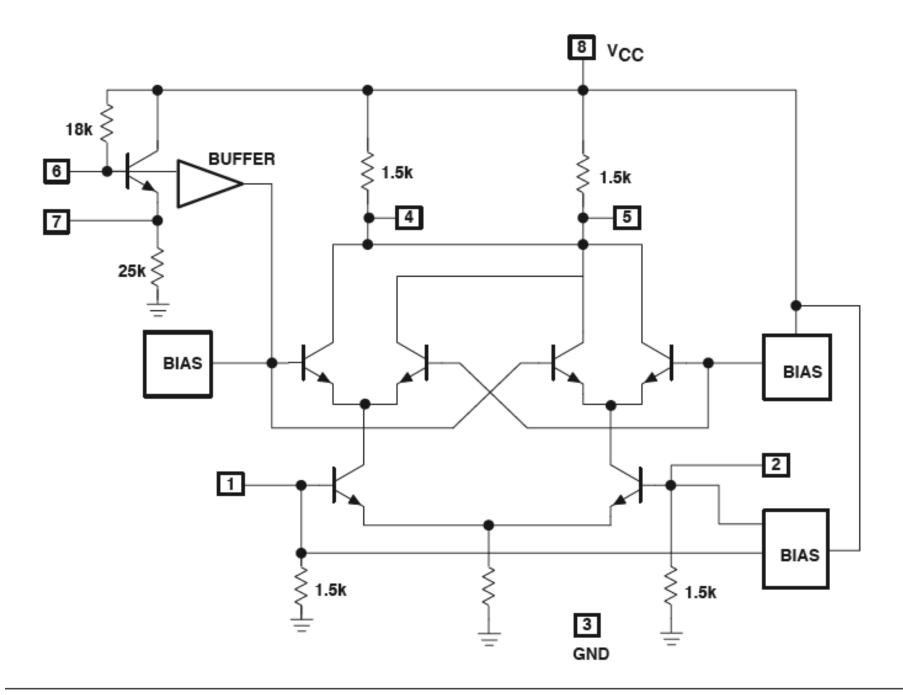
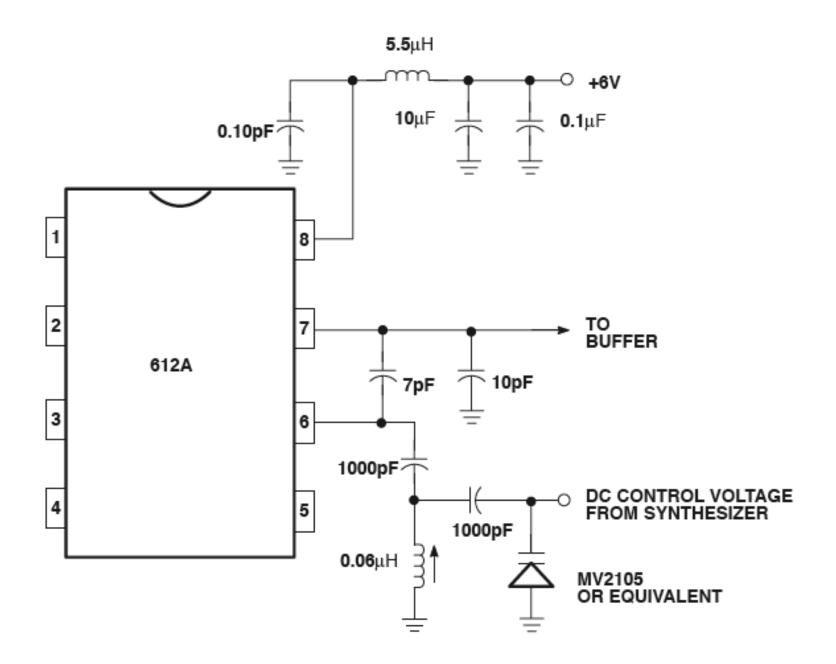


Figure 4. Equivalent Circuit



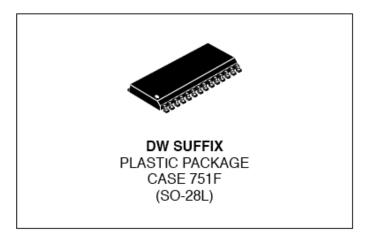
Low Power Dual Conversion FM Receiver

The MC3363 is a single chip narrowband VHF FM radio receiver. It is a dual conversion receiver with RF amplifier transistor, oscillators, mixers, quadrature detector, meter drive/carrier detect and mute circuitry. The MC3363 also has a buffered first local oscillator output for use with frequency synthesizers, and a data slicing comparator for FSK detection.

- Wide Input Bandwidth 200 MHz Using Internal Local Oscillator – 450 MHz Using External Local Oscillator
- RF Amplifier Transistor
- Muting Operational Amplifier
- Complete Dual Conversion
- Low Voltage: V_{CC} = 2.0 V to 6.0 Vdc
- Low Drain Current: I_{CC} = 3.6 mA (Typical) at V_{CC} = 3.0 V, Excluding RF Amplifier Transistor
- Excellent Sensitivity: Input 0.3 µV (Typical) for 12 dB SINAD Using Internal RF Amplifier Transistor
- Data Shaping Comparator
- Received Signal Strength Indicator (RSSI) with 60 dB Dynamic Range
- Low Number of External Parts Required
- Manufactured in Motorola's MOSAIC[®] Process Technology

LOW POWER DUAL CONVERSION FM RECEIVER

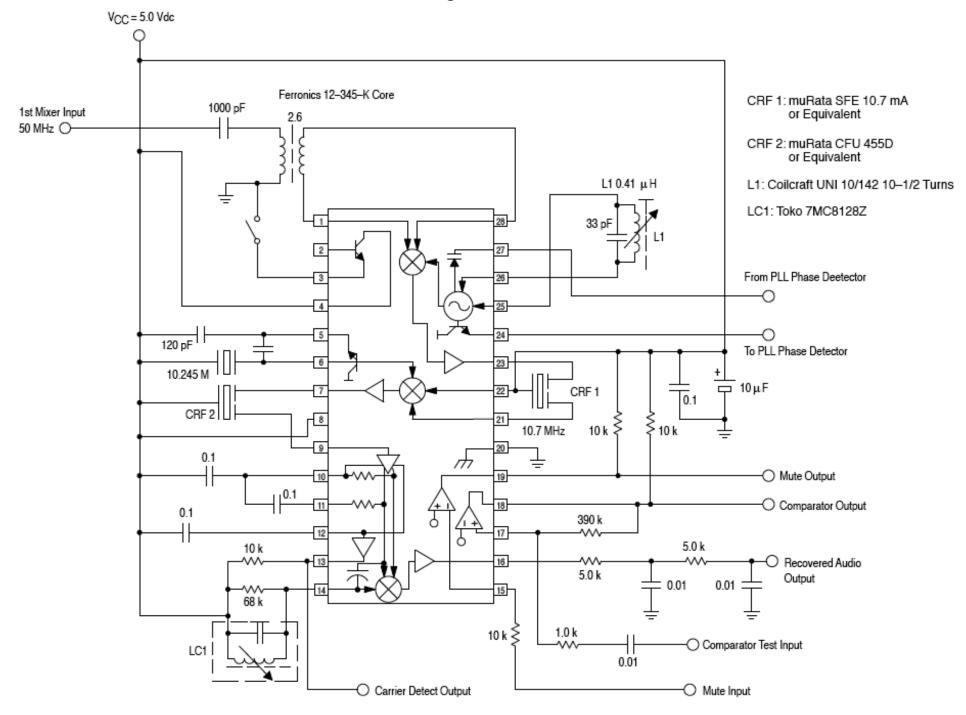
SEMICONDUCTOR TECHNICAL DATA

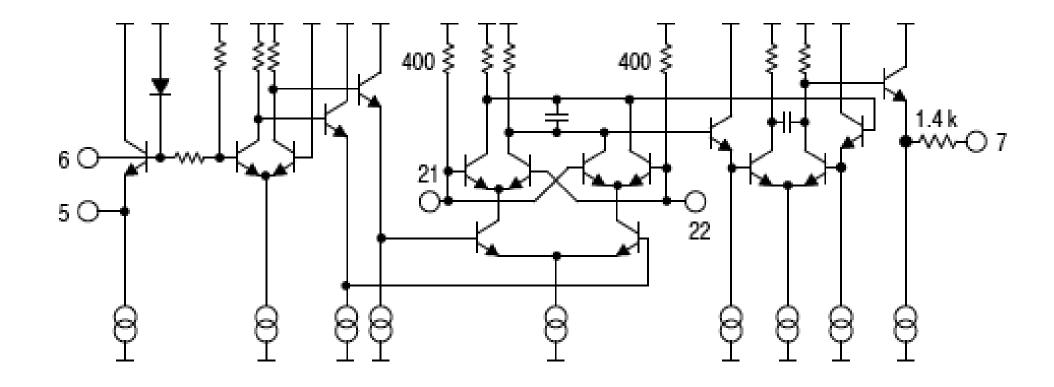


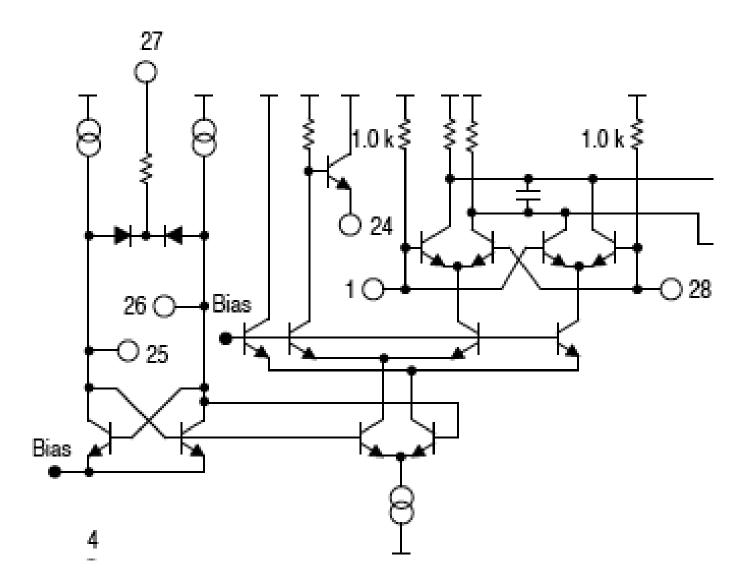
ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3363DW	$T_A = -40 \text{ to } +85^{\circ}\text{C}$	SO-28L

Figure 2. Test Circuit







FM Communications Receivers

The MC13135/MC13136 are the second generation of single chip, dual conversion FM communications receivers developed by Motorola. Major improvements in signal handling, RSSI and first oscillator operation have been made. In addition, recovered audio distortion and audio drive have improved. Using Motorola's MOSAIC[™] 1.5 process, these receivers offer low noise, high gain and stability over a wide operating voltage range.

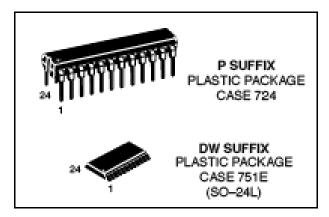
Both the MC13135 and MC13136 include a Colpitts oscillator, VCO tuning diode, low noise first and second mixer and LO, high gain limiting IF, and RSSI. The MC13135 is designed for use with an LC quadrature detector and has an uncommitted op amp that can be used either for an RSSI buffer or as a data comparator. The MC13136 can be used with either a ceramic discriminator or an LC quad coil and the op amp is internally connected for a voltage buffered RSSI output.

These devices can be used as stand-alone VHF receivers or as the lower IF of a triple conversion system. Applications include cordless telephones, short range data links, walkie-talkies, low cost land mobile, amateur radio receivers, baby monitors and scanners.

- · Complete Dual Conversion FM Receiver Antenna to Audio Output
- Input Frequency Range 200 MHz
- Voltage Buffered RSSI with 70 dB of Usable Range
- Low Voltage Operation 2.0 to 6.0 Vdc (2 Cell NiCad Supply)
- Low Current Drain 3.5 mA Typ
- Low Impedance Audio Output < 25 Ω
- VHF Colpitts First LO for Crystal or VCO Operation
- Isolated Tuning Diode
- Buffered First LO Output to Drive CMOS PLL Synthesizer

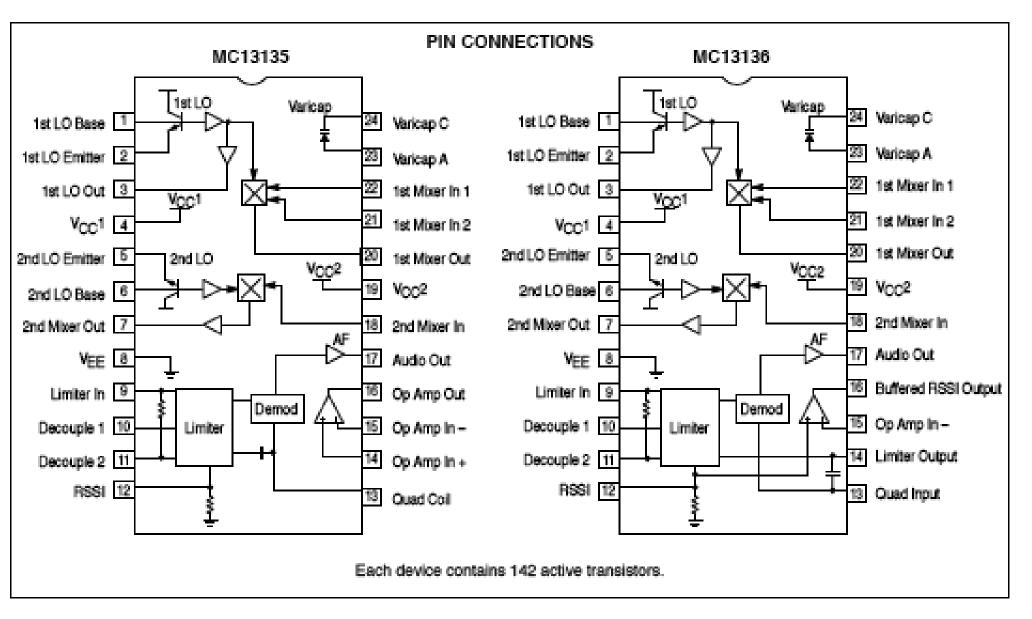
MC13135 MC13136

DUAL CONVERSION NARROWBAND FM RECEIVERS



ORDERING INFORMATION

Device	Operating Temperature Range	Package	
MC13135P		Plastic DIP	
MC13135DW	T _A = - 40° to +85°C	SO-24L	
MC13136P		Plastic DIP	
MC13136DW		SO-24L	



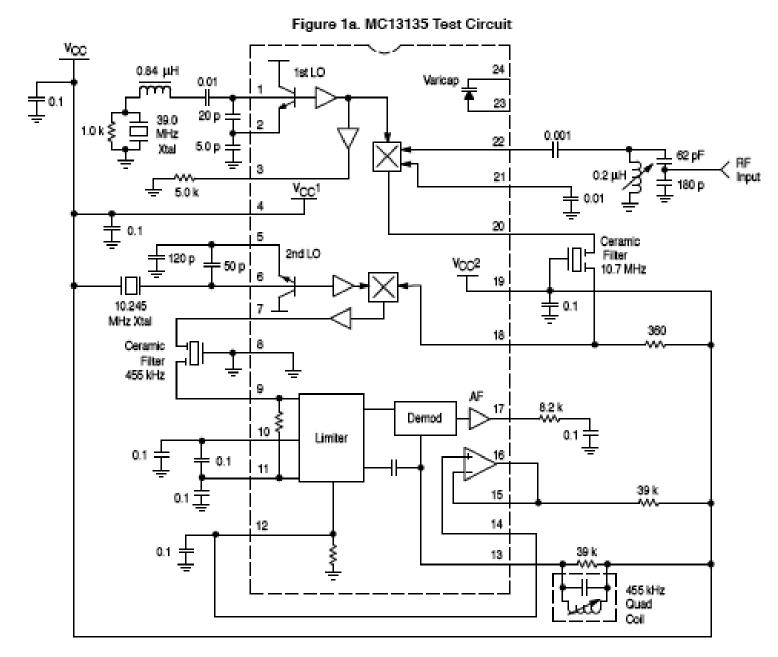
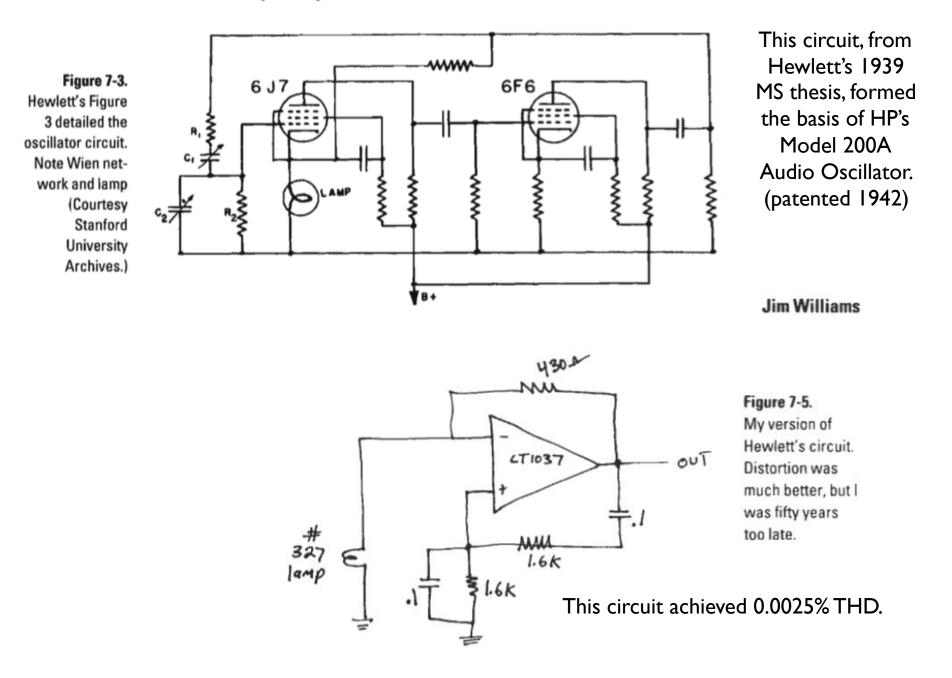


Figure 1b. MC13136 Quad Detector Test Circuit

From: Analog Circuit Design: Art, Science, and Personalities

Max Wien, Mr. Hewlett, and a Rainy Sunday Afternoon



the collector current at a nearly constant value. Suppose that the time-varying component of the base-emitter voltage is sinusoidal, i.e.,

$$V_{be} = V_{DC} + v_1 cos\omega t \tag{A.13}$$

and let $x = v_1 q/kT = v_1/25$ mV (at room temperature). Then

$$I_C = I_S \exp[V_{DC}q/kT] \exp[x \cos\omega t]$$
(A.14)

The term $\exp[x \cos \omega t]$ is a non-sinusoidal periodic function of time and can be expanded in a Fourier series. The series is

$$\exp[x\,\cos\,\omega t] = I_o(x) + 2\,\sum_{n=1}^{\infty} I_n(x)\cos(n\omega t) \tag{A.15}$$

where the coefficients $I_n(x)$ are values of the modified Bessel function of the first kind. Using this relationship, the collector current waveform can be written as

$$I_{C} = I_{DCo} \left[I_{o}(x) + 2 \sum_{n=1}^{\infty} I_{n}(x) \cos(n\omega t) \right]$$
(A.16)

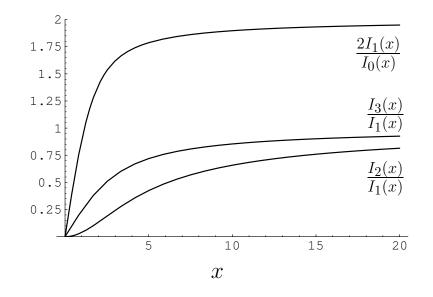


Figure A.5: $2I_1(x)/I_o(x)$ is the relative amplitude of the fundamental component of the collector current. The other curves show the ratio of second and third harmonic amplitudes to the fundamental amplitude.

small-signal transconductance can be obtained in the limit as x approaches 0, i.e.,

$$g_m = \lim_{x \to 0} I_{DC} \frac{2 I_1(x)}{v_1 I_0(x)} = \frac{I_{DC}}{kT/q}$$
(A.19)

At room temperature $kT/q = 25 \,\mathrm{mV}$, so

$$g_m = \frac{I_{DC}}{25 \,\mathrm{mV}} \approx 40 I_{DC} \tag{A.20}$$

The large signal transconductance is

$$G_m(x) = I_{DC} \frac{2I_1(x)}{v_1 I_0(x)} = I_{DC} \frac{q}{kT} \frac{2I_1(x)}{x I_0(x)} = g_m \frac{2}{x} \frac{I_1(x)}{I_0(x)}$$
(A.21)

The ratio of the large signal to small-signal transconductance is shown in Figure A.6. This

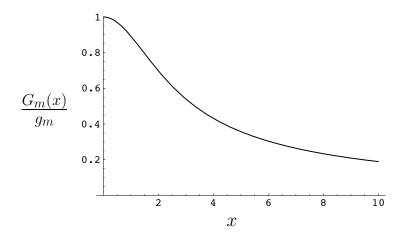
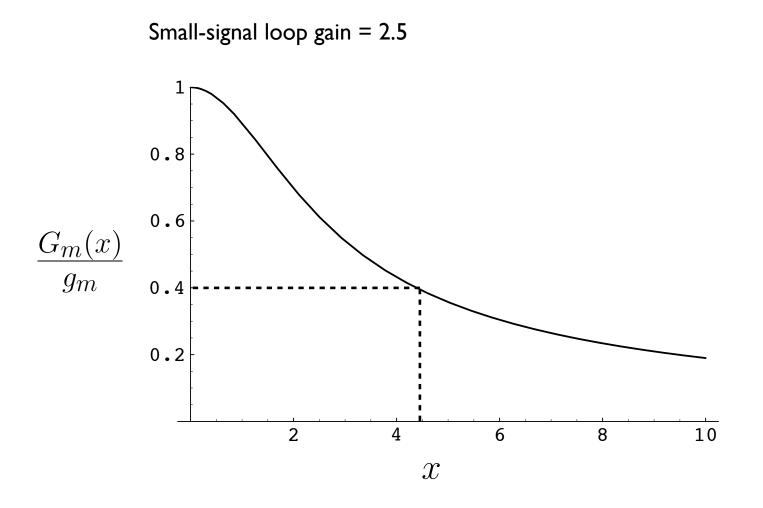


Figure A.6: Ratio of large signal to small-signal transconductance



Base-emitter voltage, x=Vbe/(25 mV), grows until transconductance is reduced by the factor 1/2.5=0.4, which occurs with x=4.5. Hence, steady-state base-emitter voltage amplitude is 4.5*25 mV, or about 112 mV.

Case	C_1	C_2	$g_{m,ss}$	$g_m/g_{m,ss}$
1	$2500 \ \mathrm{pF}$	20.4 pF	$45.3 \mathrm{mS}$	0.88
2	1000 pF	20.6 pF	$18.1 \mathrm{mS}$	2.2
3	$500 \ \mathrm{pF}$	21.1 pF	$9.42 \mathrm{~mS}$	4.4
4	200 pF	22.5 pF	$3.77 \mathrm{~mS}$	11.0
5	$100 \ \mathrm{pF}$	$25.4 \mathrm{ pF}$	$1.83 \mathrm{~mS}$	21.8
6	22.5 pF	$200~\mathrm{pF}$	$2.23 \mathrm{~mS}$	17.9

the period 0.9-1.0 μ s after the initial transient. For the cases where oscillation occurs, the expanded plots show the current and voltage waveforms when the circuit is undergoing steady-state oscillation.

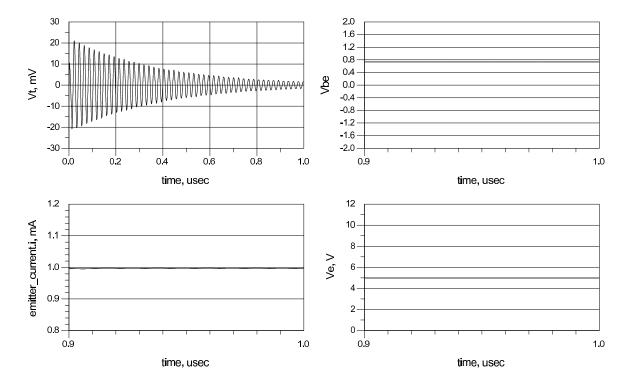


Figure 5.12: Case 1 - loop gain is 0.88, which is less than one, so oscillation does not start.

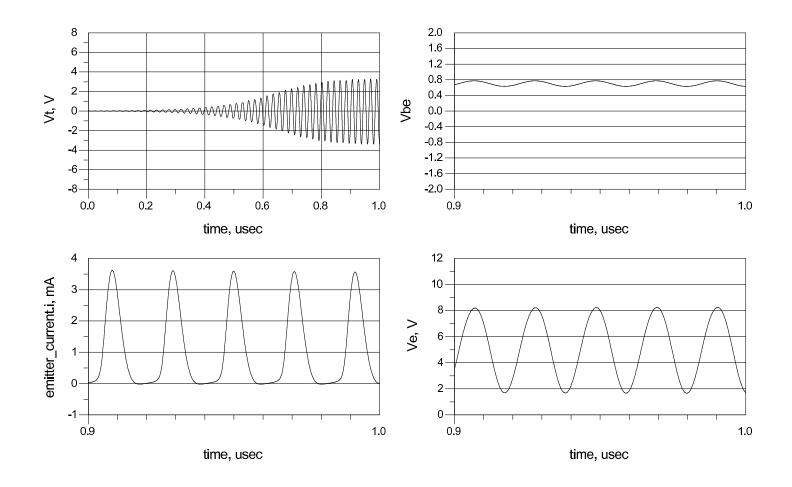
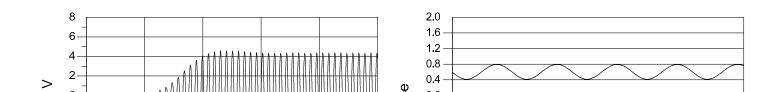


Figure 5.13: Case 2 - $g_m/g_{m,ss} = 2.2$.



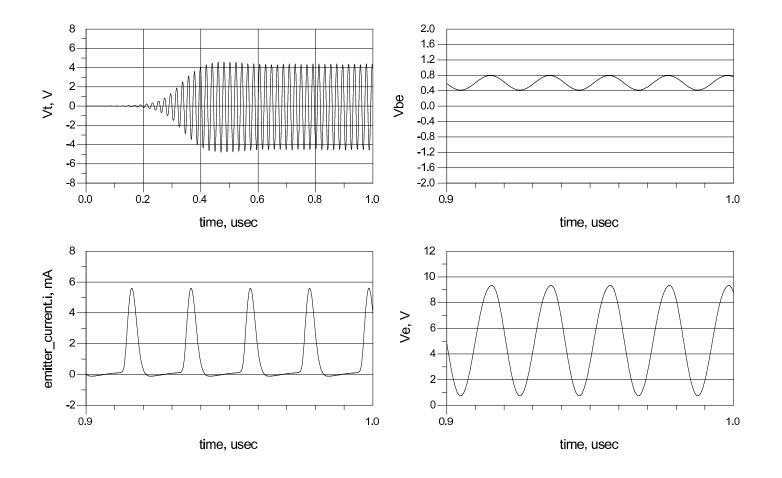


Figure 5.14: Case 3 - $g_m/g_{m,ss} = 4.4$.

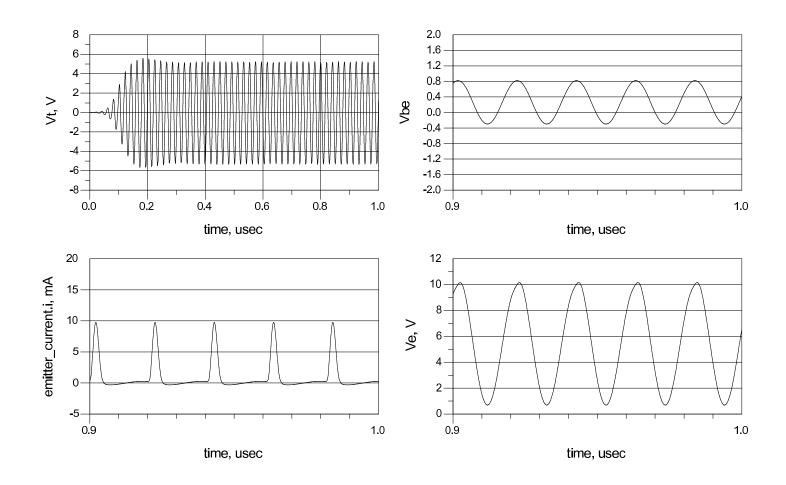
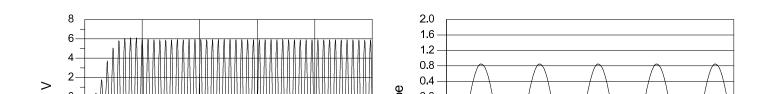
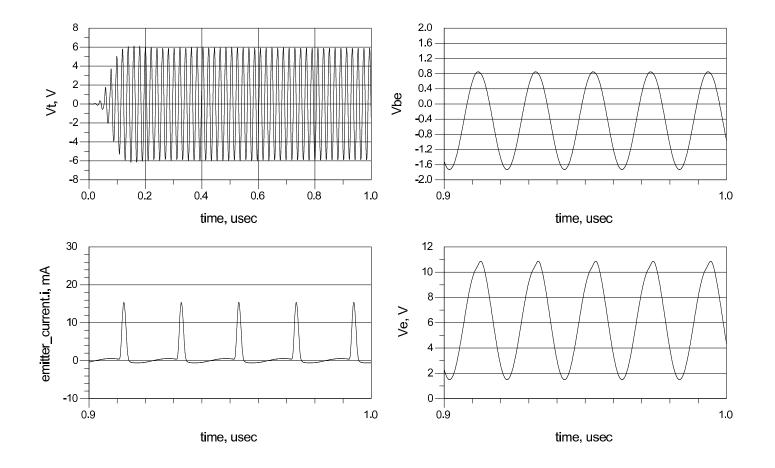


Figure 5.15: Case 4 - $g_m/g_{m,ss} = 11.0$.



•••

....



....

•.•

Figure 5.16: Case 5 - $g_m/g_{m,ss} = 21.8$.

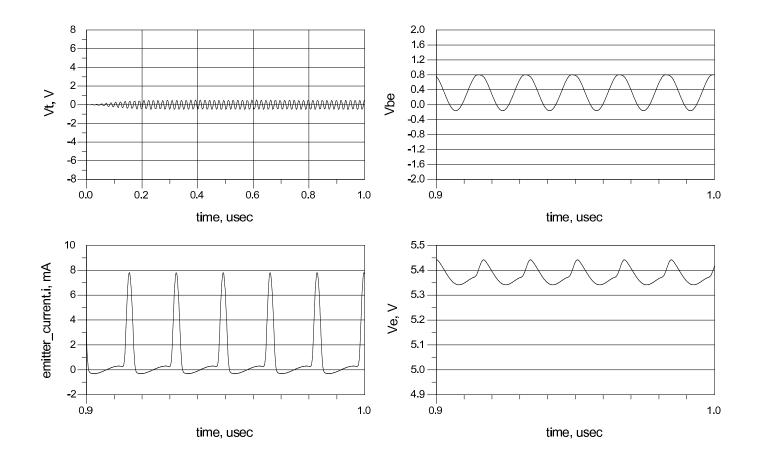
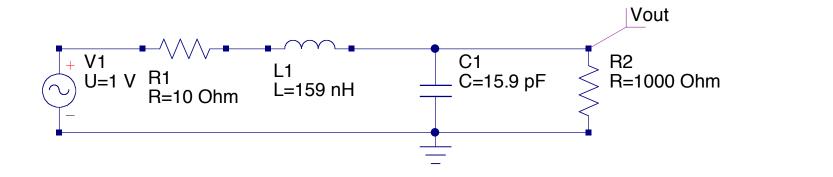
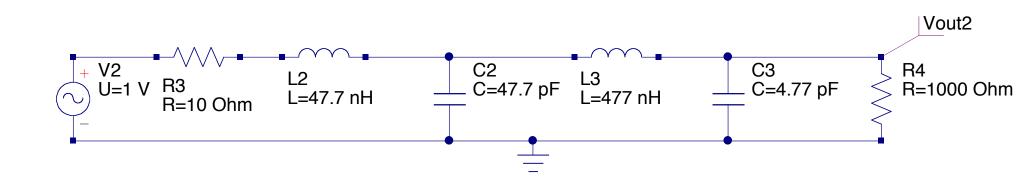


Figure 5.17: Case 6 - $g_m/g_{m,ss} = 17.9$.

Table 5.3: Comparison between predicted and simulated $|V_{be}|$ and $|V_e|/|V_{be}|$ ratio.

Case	$g_m/g_{m,ss}$	$ V_{be} $ pred.	$ V_{be} \operatorname{sim.}$	$ V_e $ sim.	C_{1}/C_{2}	$ V_e / V_{be} $
1	0.88	-	-	-	122.5	_
2	2.2	94 mV	$71 \mathrm{mV}$	$3.27 \mathrm{~V}$	48.5	46.1
3	4.4	207 mV	185 mV	$4.30 \mathrm{V}$	23.7	23.2
4	11.0	$537 \mathrm{mV}$	554 mV	$4.70 \mathrm{~V}$	8.9	8.5
5	21.8	$1.08 \mathrm{~V}$	$1.29 \mathrm{~V}$	$5.40 \mathrm{~V}$	3.9	4.2
6	17.9	882 mV	$483~\mathrm{mV}$	*	0.11	*





ac simulation

AC1 Type=lin Start=10 MHz Stop=200 MHz Points=101 Equation

Eqn1 Pavs=1/80

Equation

Eqn2 Gt=0.5*abs(Vout.v)^2/1000/Pavs

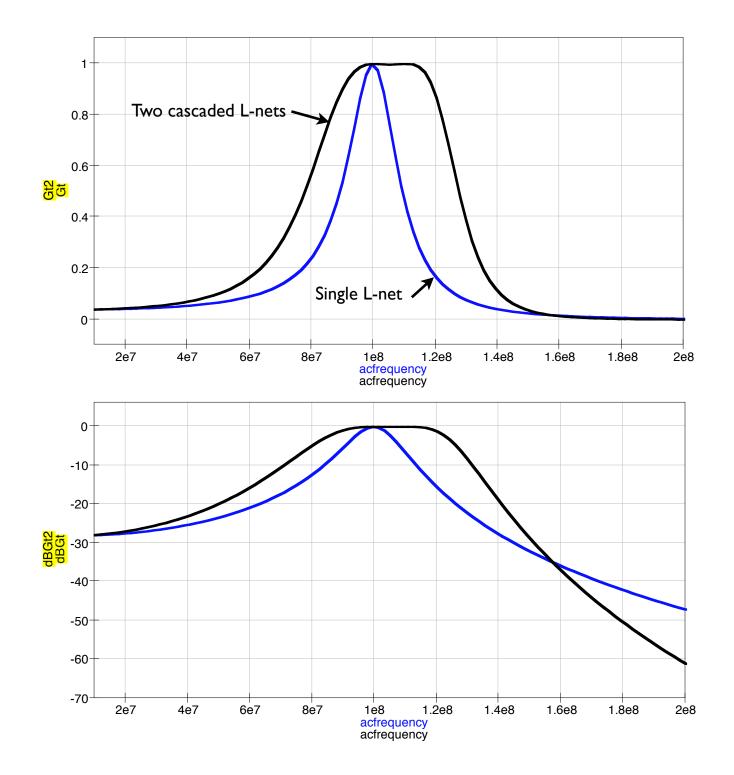
Equation

Eqn4 dBGt=dB(Gt) Equation

Eqn3 Gt2=0.5*abs(Vout2.v)^2/1000/Pavs

Equation

Eqn5 dBGt2=dB(Gt2)



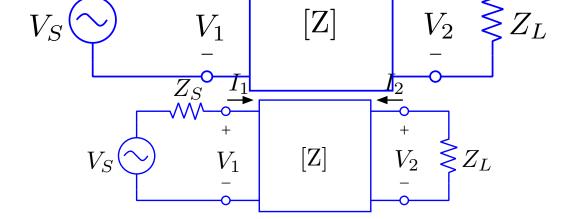


Figure 7.9: A system consisting of source, 2-port, and a load.

 $V_1 = Z_{11}I_1 + Z_{12}I_2$ $V_2 = Z_{21}I_1 + Z_{22}I_2$

$$A_V = \frac{V_2}{V_1} = \frac{Z_{21}Z_L}{Z_{11}Z_L + Z_{11}Z_{22} - Z_{12}Z_{21}}$$

Consider the two-winding transformer shown in Figure 7.11.

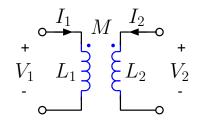


Figure 7.11: 2-winding transformer.

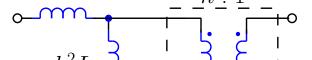
Ignoring losses, the equations that describe this device are

$$V_1 = j\omega L_1 I_1 + j\omega M I_2 \tag{7.59}$$

$$V_2 = j\omega M I_1 + j\omega L_2 I_2 \tag{7.60}$$

where L_1 and L_2 are the self inductances of the transformer windings and M is the mutual inductance. The "dot" convention is such that if current flows into the dotted terminals, the magnetic fluxes linking the two coils will reinforce each other. With this convention, M will be a positive number. The 2-winding transformer is completely described by its open-circuit impedance matrix,

$$[Z] = \begin{bmatrix} j\omega L_1 & j\omega M \\ & & \\ j\omega M & j\omega L_2 \end{bmatrix}$$



Since the circuit operation of the transformer is completely described by this impedance matrix, any network having the same defining equations can be substituted for the transformer. One useful equivalent circuit is shown in Figure 7.12.

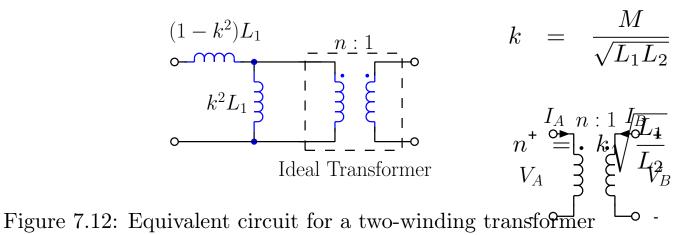


Figure 7.13: Terminal relations for the ideal transformer $I_A n : 1 I_B$ $V_B = \frac{V_A}{n}$ $V_B = -nI_A$ $I_B = -nI_A$

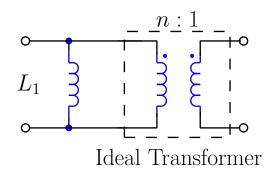
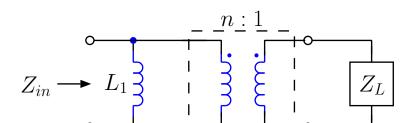


Figure 7.14: Equivalent circuit when k approaches 1. In this case, the effective turns ratio is, approximately, $n = \sqrt{L_1/L_2}$.



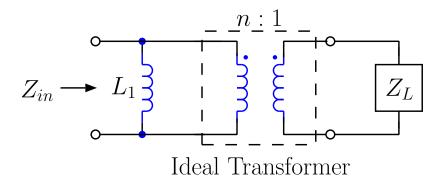


Figure 7.15: Tightly-coupled transformer used as impedance transformer

$$[Z] \simeq \begin{bmatrix} j\omega L_1 & j\omega L_1/n \\ \\ j\omega L_1/n & j\omega L_1/n^2 \end{bmatrix}$$

$$Z_{IN} = Z_{11} - \frac{Z_{12}Z_{21}}{Z_{22} + Z_L} = j\omega L_1 - \frac{(j\omega L_1/n)^2}{j\omega L_1/n^2 + Z_L} = \frac{j\omega L_1Z_Ln^2}{j\omega L_1 + Z_Ln^2}$$

The tightly-coupled transformer will behave essentially like an ideal transformer if $\omega L_1 \gg |Z_L n^2|$ or, since $n^2 = L_1/L_2$, if $\omega L_2 \gg |Z_L|$. In this case

$$Z_{IN} \approx n^2 Z_L.$$

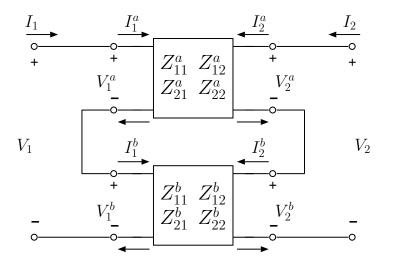


Figure 7.5: Two 2-ports interconnected such that the input and output ports are in series.

The series connection results in the relationships:

$$I_1 = I_1^a = I_1^b, \ I_2 = I_2^a = I_2^b$$
$$V_1 = V_1^a + V_1^b, \ V_2 = V_2^a + V_2^b$$

In vector notation the voltage and current vectors must satisfy

$$\mathbf{I} = \mathbf{I}^a = \mathbf{I}^b \tag{7.24}$$

$$\mathbf{V} = \mathbf{V}^a + \mathbf{V}^b. \tag{7.25}$$

The voltage and current vectors for the individual 2-ports must satisfy:

$$\mathbf{V}^a = \mathbf{Z}^a \mathbf{I}^a \tag{7.26}$$

$$\mathbf{V}^b = \mathbf{Z}^b \mathbf{I}^b \tag{7.27}$$

Equations 7.24, 7.26, and 7.27 can be used in equation 7.26 to show:

$$\mathbf{V} = \{\mathbf{Z}^a + \mathbf{Z}^b\}\mathbf{I}.\tag{7.28}$$

Thus, the Z-parameter matrix for the series combination of 2-ports is the sum of the constituent Z-parameter matrices.

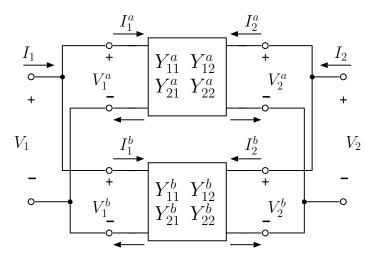


Figure 7.4: Two 2-ports interconnected such that the input and output ports are in parallel.

The parallel connection results in the following relationships:

$$V_1 = V_1^a = V_1^b, \ V_2 = V_2^a = V_2^b \tag{7.17}$$

$$I_1 = I_1^a + I_1^b, \ I_2 = I_2^a + I_2^b.$$
(7.18)

equations 7.17 and 7.18 can be written as:

$$\mathbf{V} = \mathbf{V}^a = \mathbf{V}^b \tag{7.19}$$

$$\mathbf{I} = \mathbf{I}^a + \mathbf{I}^b. \tag{7.20}$$

The voltage and current vectors associated with the individual 2-ports must satisfy

$$\mathbf{I}^a = \mathbf{Y}^a \mathbf{V}^a \tag{7.21}$$

$$\mathbf{I}^b = \mathbf{Y}^b \mathbf{V}^b. \tag{7.22}$$

Equations 7.19, 7.21, and 7.22 can be used in equation 7.20 to show that

$$\mathbf{I} = \{\mathbf{Y}^a + \mathbf{Y}^b\}\mathbf{V}.\tag{7.23}$$

Thus, the Y-parameter matrix for the parallel combination of 2-ports is the sum of the constituent Y-parameter matrices.

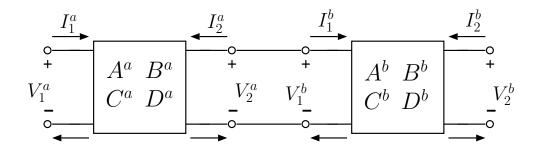


Figure 7.6: Two 2-ports in cascade.

The cascade connection results in the following relationships:

$$V_2^a = V_1^b, \ I_2^a = -I_1^b \tag{7.29}$$

Define the input vector $\mathbf{IN} = \begin{bmatrix} V_1 \\ I_1 \end{bmatrix}$, output vector $\mathbf{OUT} = \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$, and chain parameter matrix $\mathbf{ABCD} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$. Then the relationships given in equation 7.29 can be written as: $\mathbf{OUT}^a = \mathbf{IN}^b$ (7.30)

The following equations are satisfied by the individual 2-ports:

$$IN^{a} = ABCD^{a}OUT^{a}$$
(7.31)

$$\mathbf{IN}^b = \mathbf{ABCD}^b \mathbf{OUT}^b \tag{7.32}$$

Using equation 7.32 in equation 7.30, and then using the result in equation 7.31 we find

$$\mathbf{IN}^{a} = \mathbf{ABCD}^{a} \mathbf{ABCD}^{b} \mathbf{OUT}^{b}.$$
(7.33)

7.7.1 Converting to Y-parameters

$$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} \frac{Z_{22}}{D_Z} & -\frac{Z_{12}}{D_Z} \\ & & \\ -\frac{Z_{21}}{D_Z} & \frac{Z_{11}}{D_Z} \end{bmatrix} = \begin{bmatrix} \frac{1}{h_{11}} & -\frac{h_{12}}{h_{11}} \\ & & \\ \frac{h_{21}}{h_{11}} & \frac{D_h}{h_{11}} \end{bmatrix} = \begin{bmatrix} \frac{D}{B} & -\frac{D_{ABCD}}{B} \\ & & \\ -\frac{1}{B} & \frac{A}{B} \end{bmatrix}$$

7.7.2 Converting to Z-parameters

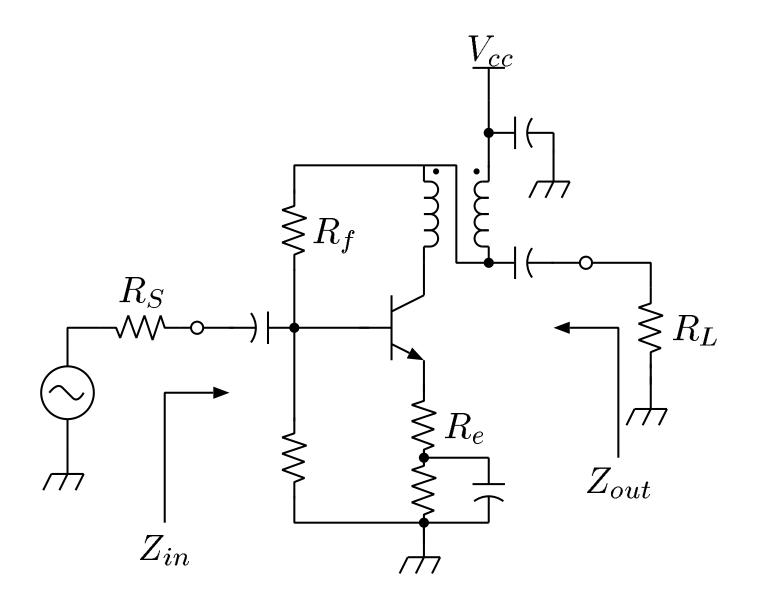
$$\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} = \begin{bmatrix} \frac{Y_{22}}{D_Y} & -\frac{Y_{12}}{D_Y} \\ & & \\ -\frac{Y_{21}}{D_Y} & \frac{Y_{11}}{D_Y} \end{bmatrix} = \begin{bmatrix} \frac{D_h}{h_{22}} & \frac{h_{12}}{h_{22}} \\ & & \\ -\frac{h_{21}}{h_{22}} & \frac{1}{h_{22}} \end{bmatrix} = \begin{bmatrix} \frac{A}{C} & \frac{D_{ABCD}}{C} \\ & & \\ \frac{1}{C} & \frac{D}{C} \end{bmatrix}$$

7.7.3 Converting to h-parameters

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} = \begin{bmatrix} \frac{D_Z}{Z_{22}} & \frac{Z_{12}}{Z_{22}} \\ & & \\ -\frac{Z_{21}}{Z_{22}} & \frac{1}{Z_{22}} \end{bmatrix} = \begin{bmatrix} \frac{1}{Y_{11}} & -\frac{Y_{12}}{Y_{11}} \\ & & \\ \frac{Y_{21}}{Y_{11}} & \frac{D_Y}{Y_{11}} \end{bmatrix} = \begin{bmatrix} \frac{B}{D} & \frac{D_{ABCD}}{D} \\ & & \\ -\frac{1}{D} & \frac{C}{D} \end{bmatrix}$$

7.7.4 Converting to ABCD-parameters

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \frac{Z_{11}}{Z_{21}} & \frac{D_Z}{Z_{21}} \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}} \end{bmatrix} = \begin{bmatrix} -\frac{Y_{22}}{Y_{21}} & -\frac{1}{Y_{21}} \\ -\frac{D_Y}{Y_{21}} & -\frac{Y_{11}}{Y_{21}} \end{bmatrix} = \begin{bmatrix} -\frac{D_h}{h_{21}} & -\frac{h_{11}}{h_{21}} \\ -\frac{h_{22}}{h_{21}} & -\frac{1}{h_{21}} \end{bmatrix}$$



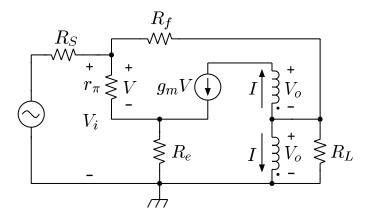


Figure 7.22: Small signal model of amplifier with series and shunt feedback and 4:1 output transformer.

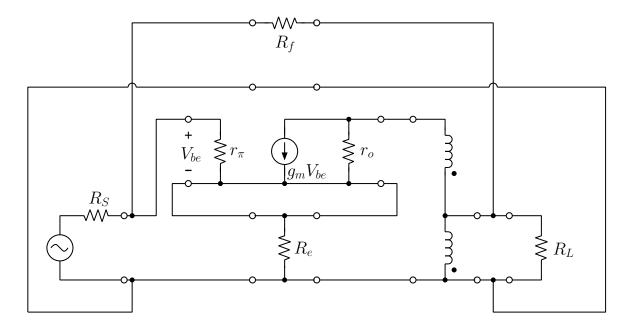
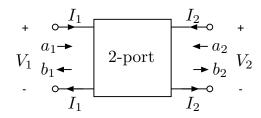


Figure 7.23: Feedback amplifier drawn as a set of interconnected 2-ports.

8.4 Summary of useful S-parameter formulas



Relationship between impedance Z_X (X can be in, out, S, L) and reflection coefficient Γ_X :

$$\Gamma_X = \frac{Z_X - Z_o}{Z_X + Z_o} \quad Z_X = Z_o \frac{1 + \Gamma_X}{1 - \Gamma_X}$$

Input reflection coefficient with arbitrary Z_L :

$$\Gamma_{in} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L}$$

Output reflection coefficient with arbitrary \mathbb{Z}_S :

$$\Gamma_{out} = S_{22} + \frac{S_{12}S_{21}\Gamma_S}{1 - S_{11}\Gamma_S}$$

Voltage gain with arbitrary Z_L (voltage gain does not depend on Z_S):

$$A_V = \frac{V_2}{V_1} = \frac{S_{21}(1+\Gamma_L)}{(1+S_{11})(1-S_{22}\Gamma_L) + S_{12}S_{21}\Gamma_L}$$

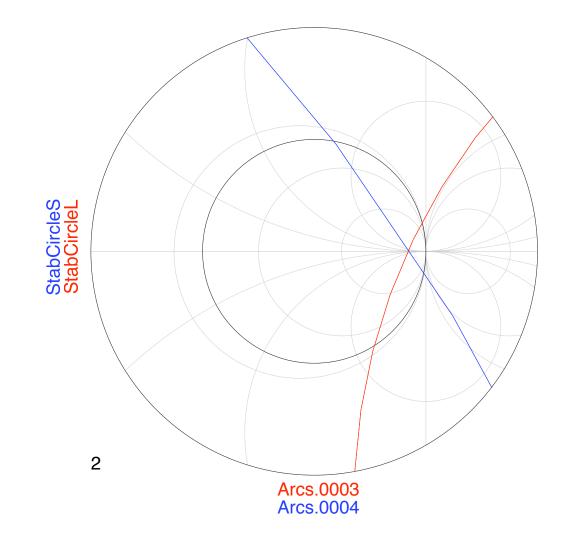
Current gain with arbitrary Z_L (current gain does not depend on Z_S):

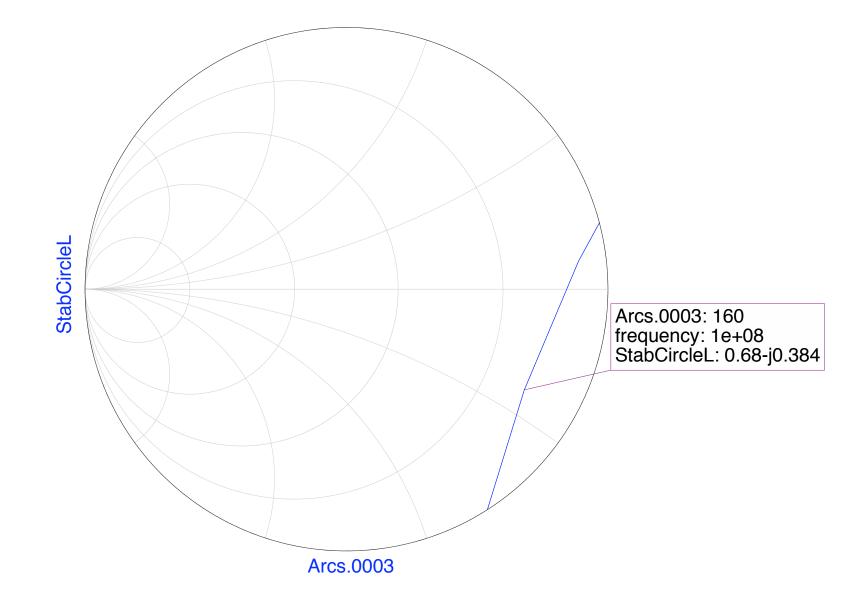
$$A_I = \frac{I_2}{I_1} = \frac{S_{21}(\Gamma_L - 1)}{(1 - S_{11})(1 - S_{22}\Gamma_L) - S_{12}S_{21}\Gamma_L}$$

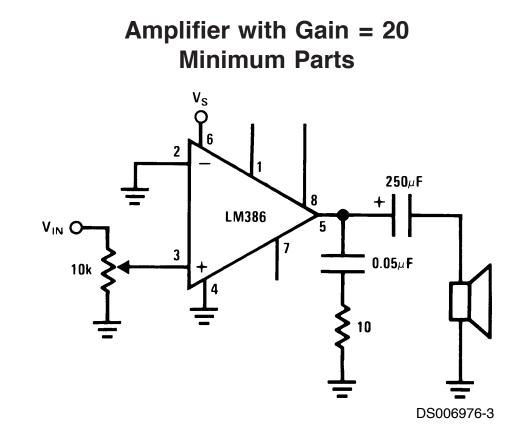
Definitions of some commonly used quantities:

 $D = S_{11}S_{22} - S_{12}S_{21}$ $K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |D|^2}{2|S_{12}S_{21}|}$ $B_1 = 1 + |S_{11}|^2 - |D|^2 - |S_{22}|^2$ $C_1 = S_{11} - DS_{22}^*$ $B_2 = 1 + |S_{22}|^2 - |D|^2 - |S_{11}|^2$ $C_2 = S_{22} - DS_{11}^*$

A 2-port is unconditionally sta	able if:
	$K > 1$ and $1 - S_{11} ^2 > S_{12}S_{21} $
or, if:	$K > 1$ and $1 - S_{22} ^2 > S_{12}S_{21} $
or, if:	$K > 1$ and $B_1 > 0$
or, if:	$K > 1$ and $B_2 > 0$
or, if:	K > 1 and D < 1
or, if:	$1 \mid \alpha \mid 2$
	$\mu_{ES} = \frac{1 - S_{11} ^2}{ S_{22} - S_{11}^*D + S_{12}S_{21} } > 1$
or, if:	$\mu_{ES}' = \frac{1 - S_{22} ^2}{ S_{11} - S_{22}^*D + S_{12}S_{21} } > 1$







THERMAL AGITATION OF ELECTRICITY IN CONDUCTORS

By J. B. Johnson

Abstract

Statistical fluctuation of electric charge exists in all conductors, producing random variation of potential between the ends of the conductor. The effect of these fluctuations has been measured by a vacuum tube amplifier and thermocouple, and can be expressed by the formula $I^2 = (2kT/\pi) \int_0^\infty R(\omega) |Y(\omega)|^2 d\omega$. I is the observed current in the thermocouple, k is Boltzmann's gas constant, T is the absolute temperature of the conductor, $R(\omega)$ is the real component of impedance of the conductor, $Y(\omega)$ is the transfer impedance of the amplifier, and $\omega/2\pi = f$ represents frequency. The value of Boltzmann's constant obtained from the measurements lie near the accepted value of this constant. The technical aspects of the disturbance are discussed. In an amplifier having a range of 5000 cycles and the input resistance R the power equivalent of the effect is $\overline{V^2}/R = 0.8 \times 10^{-16}$ watt, with corresponding power for other ranges of frequency. The least contribution of tube noise is equivalent to that of a resistance $R_c = 1.5 \times 10^5 i_p/\mu$, where i_p is the space current in milliamperes and μ is the effective amplification of the tube.

I N TWO short notes¹ a phenomenon has been described which is the result of spontaneous motion of the electricity in a conducting body. The electric charges in a conductor are found to be in a state of thermal agitation, in thermodynamic equilibrium with the heat motion of the atoms of the conductor. The manifestation of the phenomenon is a fluctuation of potential difference between the terminals of the conductor which can be measured by suitable instruments.

The effect is one of the causes of that disturbance which is called "tube noise" in vacuum tube amplifiers.² Indeed, it is often by far the larger part of the "noise" of a good amplifier. When such an amplifier terminates in a telephone receiver, and has a high resistance connected between the grid and

THERMAL AGITATION OF ELECTRIC CHARGE IN CONDUCTORS*

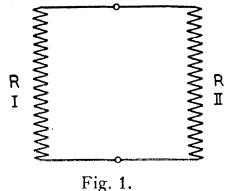
By H. Nyquist

Abstract

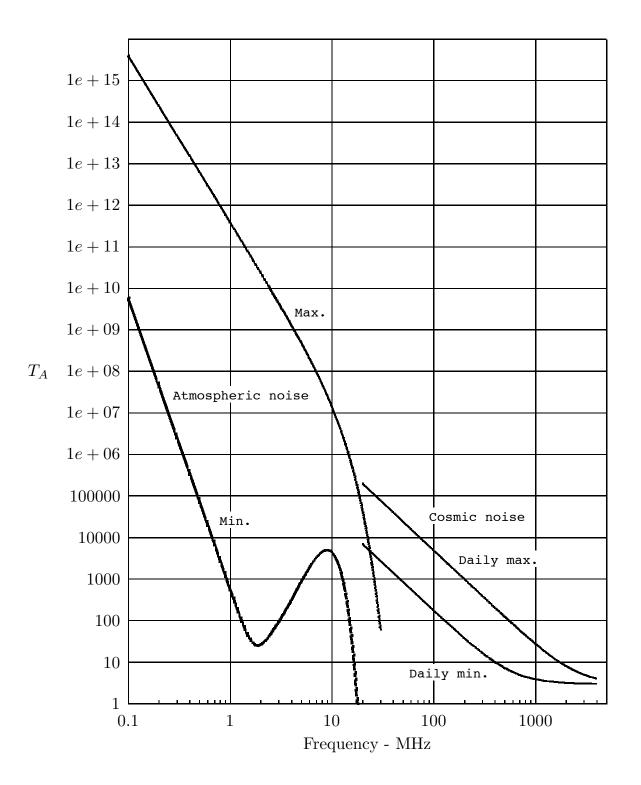
The electromotive force due to thermal agitation in conductors is calculated by means of principles in thermodynamics and statistical mechanics. The results obtained agree with results obtained experimentally.

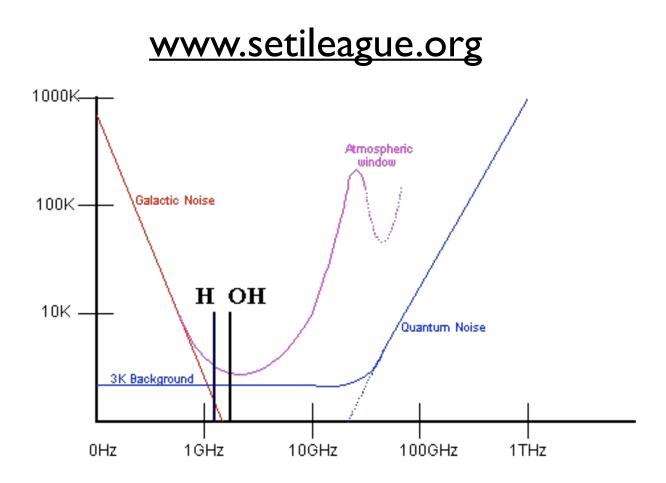
 $\mathbf{D}^{R.}$ J. B. JOHNSON¹ has reported the discovery and measurement of an electromotive force in conductors which is related in a simple manner to the temperature of the conductor and which is attributed by him to the thermal agitation of the carriers of electricity in the conductors. The work to be resported in the present paper was undertaken after Johnson's results were available to the writer and consists of a theoretical deduction of the electromotive force in question from thermodynamics and statistical mechanics.²

Consider two conductors each of resistance R and of the same uniform



temperature T connected in the manner indicated in Fig. 1. The electromotive force due to thermal agitation in conductor I causes a current to be set up in the circuit whose value is obtained by dividing the electromotive force by 2R. This current causes a heating or absorption of power in conductor II, the absorbed power being equal to the product of Rand the square of the current. In other words power is transferred from conductor I to conductor II. In





Toward the bottom of the microwave window, radiation from the precession of interstellar hydrogen is clearly heard in our receivers at a frequency of 1420.40575 MHz (corresponding to a wavelength around 21 cm). The Hydrogen Line, first detected by Ewen and Purcell at Harvard University in 1951, provided us with our first direct evidence that space is anything but an empty void...

Just a little way up the spectrum, near 1660 MHz (a wavelength of 18 cm), a team of scientists at MIT Lincoln Labs detected in the 1960s a cluster of radiation lines from interstellar hydroxyl ions (OH). Like the Hydrogen Line, the Hydroxyl Lines occur near the very quietest part of the radio spectrum. They too should be known to other civilizations which have studied the cosmos at radio frequencies.

Title: A Measurement of Excess Antenna Temperature at 4080 Mc/s. Authors: Penzias, A. A. & Wilson, R. W. Journal: Astrophysical Journal, vol. 142, p.419-421 Bibliographic Code: 1965ApJ...142..419P

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

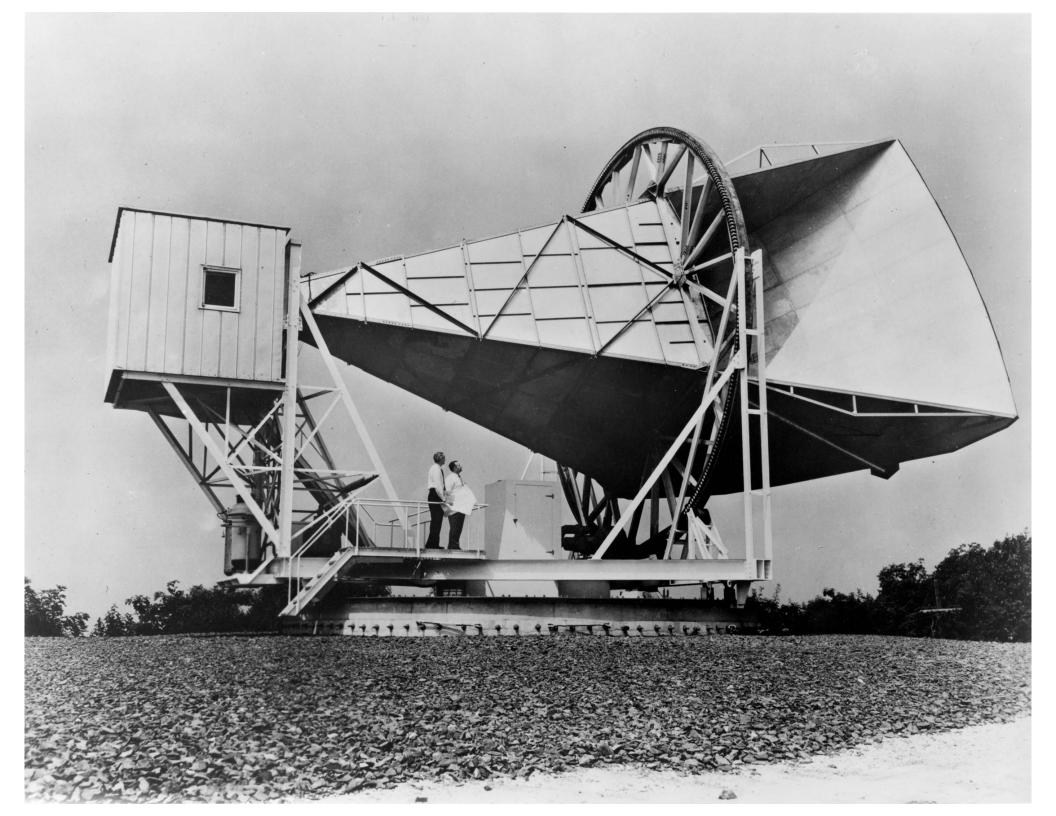
Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and free from seasonal variations (July, 1964–April, 1965). A possible explanation for the observed excess noise temperature is the one given by Dicke, Peebles, Roll, and Wilkinson (1965) in a companion letter in this issue.

The total antenna temperature measured at the zenith is 6.7° K of which 2.3° K is due to atmospheric absorption. The calculated contribution due to ohmic losses in the antenna and back-lobe response is 0.9° K.

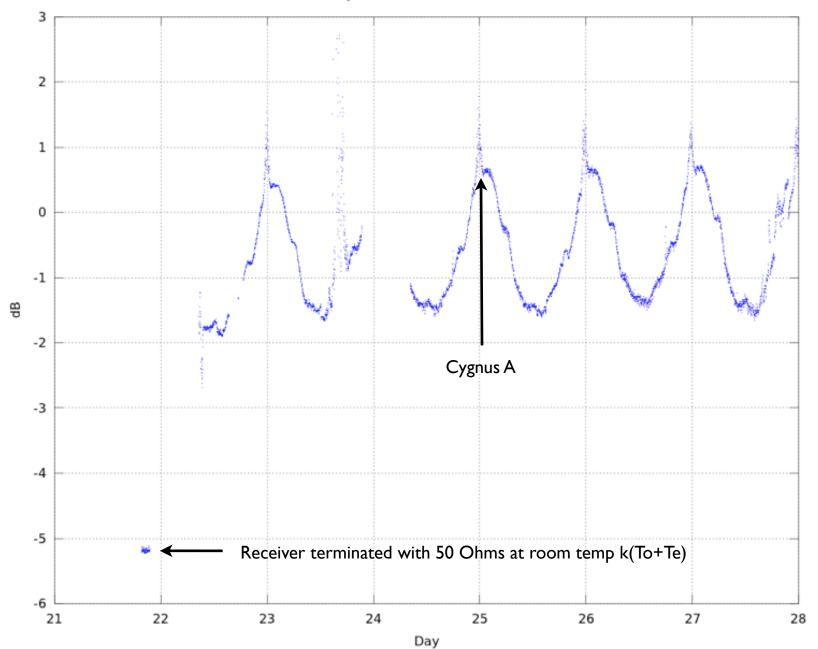
A. A. PENZIAS R. W. WILSON

May 13, 1965 Bell Telephone Laboratories, Inc Crawford Hill, Holmdel, New Jersey

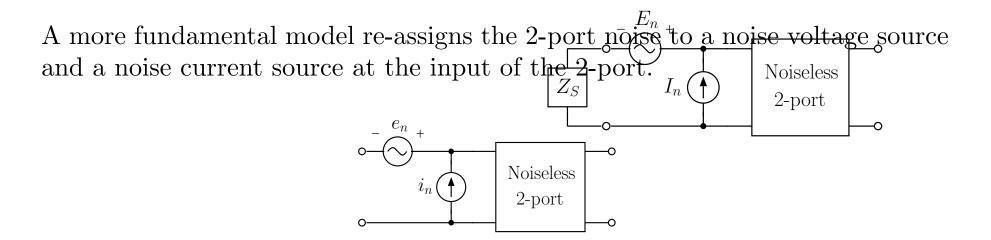
Penzias and Wilson shared the Nobel Prize in Physics (1978) for their discovery of the cosmic microwave background radiation.



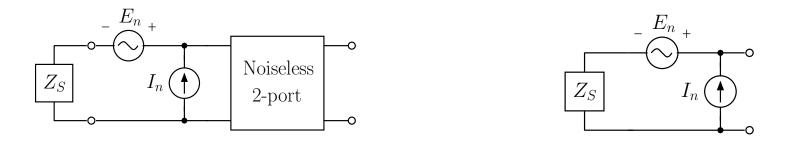
Sky Noise 2012.3.21.19.37.55

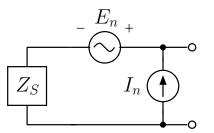


Effective input temperature, T_e , is used to refer, or re-assign, all 2-port noise to the source.



If the input-referred voltage and current sources are assigned to a noiseless source impedance (Z_S) , then the noise power available from the source can be written in terms of the source impedance, rms voltage and current noise (σ_e, σ_i) and their complex correlation coefficient $(\gamma = \gamma_r + j\gamma_i)$.





When $|Z_S| \to \infty$ all noise comes from current source.

When $|Z_S| \to 0$ all noise comes from voltage source.

When $|Z_S|$ is finite, both voltage and current noise contribute.

$$T_{e} = \frac{\sigma_{i}^{2}}{4kR_{S}} \{ (R_{S} + \gamma_{r} \frac{\sigma_{e}}{\sigma_{i}})^{2} + (X_{S} - \gamma_{i} \frac{\sigma_{e}}{\sigma_{i}})^{2} + \frac{\sigma_{e}^{2}}{\sigma_{i}^{2}} (1 - |\gamma|^{2}) \}.$$

$$T_e = T_{e,min} + T_o G_n \frac{|Z_S - Z_{opt}|^2}{R_S}$$

$$Z_{opt} = R_{opt} + jX_{opt} = \frac{\sigma_e}{\sigma_i}\sqrt{1 - \gamma_i^2} + j\gamma_i\frac{\sigma_e}{\sigma_i}$$

$$T_{e,min} = \frac{\sigma_e \sigma_i}{2k} \{ \sqrt{1 - \gamma_i^2} + \gamma_r \}.$$

$$G_n = \frac{\sigma_i^2}{4kT_o}.$$

$$T_{e} = T_{e,min} + 4G_{n}Z_{o}T_{o}\frac{|\Gamma_{s} - \Gamma_{opt}|^{2}}{(1 - |\Gamma_{s}|^{2})|1 - \Gamma_{opt}|^{2}}$$
$$= T_{e,min} + 4\frac{R_{n}}{Z_{o}}T_{o}\frac{|\Gamma_{s} - \Gamma_{opt}|^{2}}{(1 - |\Gamma_{s}|^{2})|1 + \Gamma_{opt}|^{2}}$$

where

$$\Gamma_S = \frac{Z_S - Z_o}{Z_S + Z_o} =$$
actual source reflection coefficient

 $\Gamma_{opt} = \frac{Z_{opt} - Z_o}{Z_{opt} + Z_o} = \text{ optimum source reflection coefficient}$

$$R_n = \frac{\sigma_e^2}{4kT_o} =$$
 noise resistance

Freescale Semiconductor, Inc.

MBC13900

(Scale 2:1)

Package Information Plastic Package Case 318M (SOT-343)

Ordering Information

Device	Marking	Package
MBC13900T1	900	SOT-343

The MBC13900 is a high performance transistor fabricated using Motorola's 15 GHz f_{τ} bipolar IC process. It is housed in the 4-lead SC-70 (SOT-343) surface mount plastic package resulting in a parasitic effect reduction and RF performance enhancements. The high performance at low power makes the MBC13900 suitable for front-end applications in portable wireless systems such as pagers, cellular and cordless phones.

- Low Noise Figure, $NF_{min} = 0.8 \text{ dB}$ (Typ) @ 0.9 GHz, 2.0 V and 5.0 mA
- Maximum Stable Gain, 22 dB @ 0.9 GHz, 2.0 V and 5.0 mA
- Output Third Order Intercept, OIP3 = 18 dBm (Typ) @ 2.0 V and 5.0 mA
- Ultra small SOT-343 Surface Mount Package
- Available Only in Tape and Reel Packaging

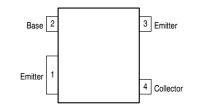


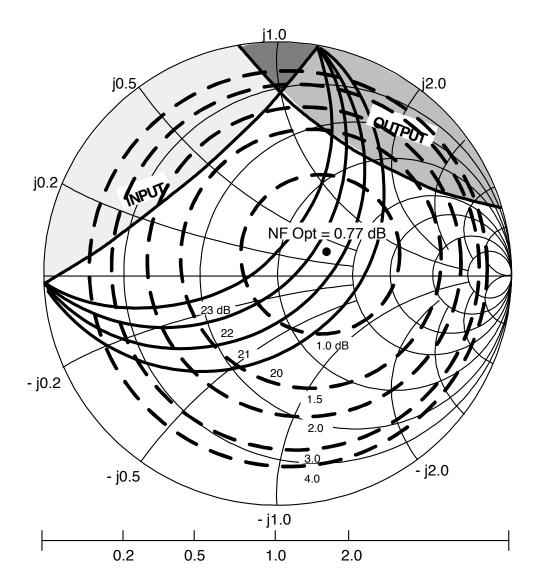
Figure 1. Pin Connections

Technical Data

MBC13900/D Rev. 0, 06/2002

NPN Silicon

Low Noise Transistor

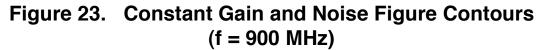


 $V_{CE} = 2.0 V$

 $I_{c} = 5.0 \text{ mA}$

---Potentially Unstable

f (GHz)	NF Opt (dB)	Γ ₀	Rn	К
0.9	0.77	0.24 ∠ 25.2°	8.5	0.48



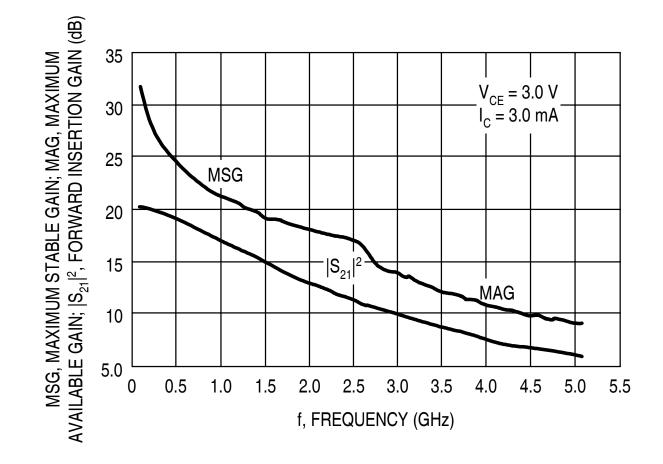


Figure 7. Maximum Stable/Available gain and Forward Insertion Gain versus Frequency

March 1987

National Semiconductor

LM387/LM387A Low Noise Dual Preamplifier

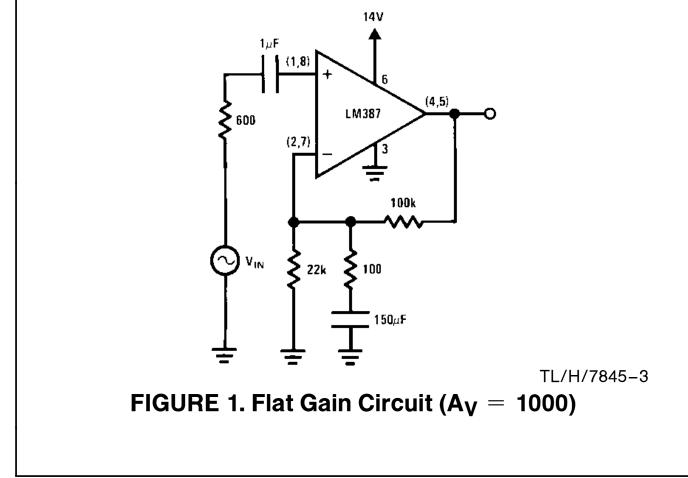
General Description

The LM387 is a dual preamplifier for the amplification of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with an internal power supply decoupler-regulator, providing 110 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (104 dB), large output voltage swing ($V_{CC} - 2V$)p-p, and wide power bandwidth (75 kHz, 20 Vp-p). The LM387A is a selected version of the LM387 that has lower noise in a NAB tape circuit, and can operate on a larger supply voltage. The LM387 operates from a single supply across the wide range of 9V to 30V, the LM387A operates on a supply of 9V to 40V.

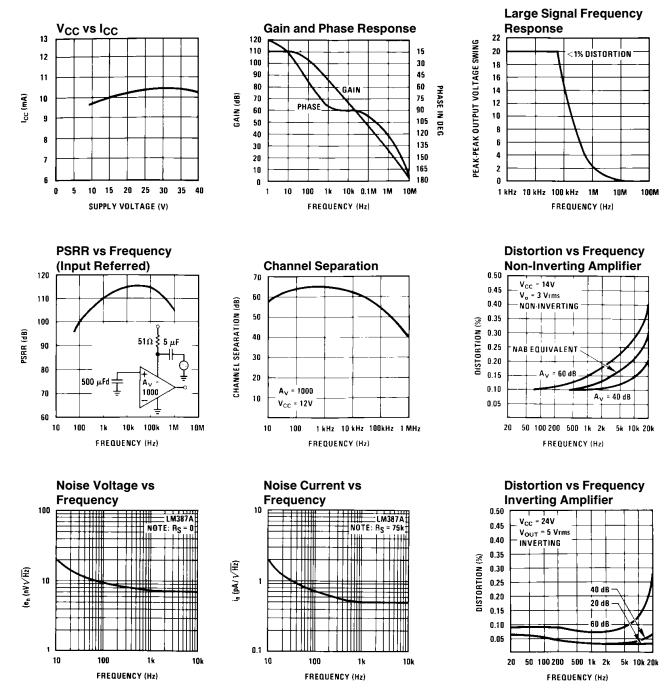
The amplifiers are internally compensated for gains greater than 10. The LN387, LM387A is available in an 8-lead dualin-line package. The LM387, LM387A is biased like the LM381. See AN-64 and AN-104.

Features

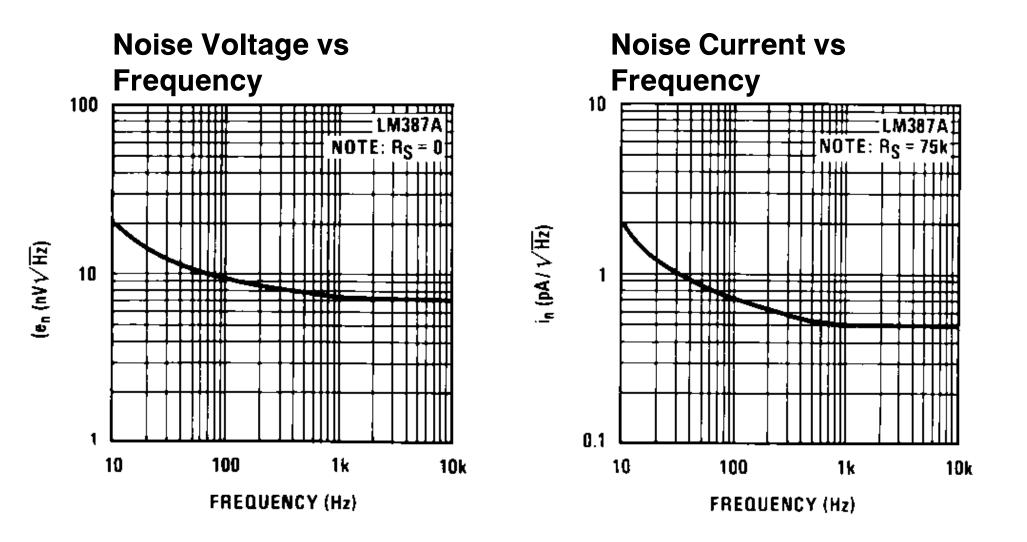
■ Low noise	1.0 μ V total input noise
■ High gain	104 dB open loop
 Single supply operation 	
Wide supply range LM387	9 to 30V
LM387A	9 to 40V
Power supply rejection	110 dB
Large output voltage swing (V _{CC} – 2V)p-p
Wide bandwidth 15 MHz unit	y gain
Power bandwidth 75 kHz, 20	Vp-p
Internally compensated	
Short circuit protected	
Performance similar to LM38	1



Typical Performance Characteristics



TL/H/7845-7



Low-Cost Downconverter with Low-Noise Amplifier

_General Description

The MAX2406 low-noise amplifier (LNA)/downconverter mixer is designed for use over a wide range of frequencies and is optimized for communications systems operating at a frequency of 1.9GHz. Applications include PWT1900/DCT1900, DCS1800/PCS1900, PHS, and DECT. This device includes an LNA, a downconverter mixer, and a local-oscillator (LO) buffer in a lowcost, plastic surface-mount package. At 1.9GHz, the LNA has 2.5dB typical noise figure and a -9.5dBm input third-order intercept point (IP3). The downconverter mixer has a low 9.1dB noise figure and a 4.5dBm input IP3. Image and LO filtering are implemented off-chip for maximum flexibility.

The MAX2406 has a differential IF port that can be used in a single-ended configuration by tying the unused side to V_{CC}. The LO buffer can be driven differentially or in a single-ended configuration with only -10dBm of LO power. Power consumption is 60mW in receive mode, and typically drops to less than 1μ W in shutdown mode.

For transceiver applications, the MAX2410 or MAX2411A both offer a transmitter along with a similar receiver.

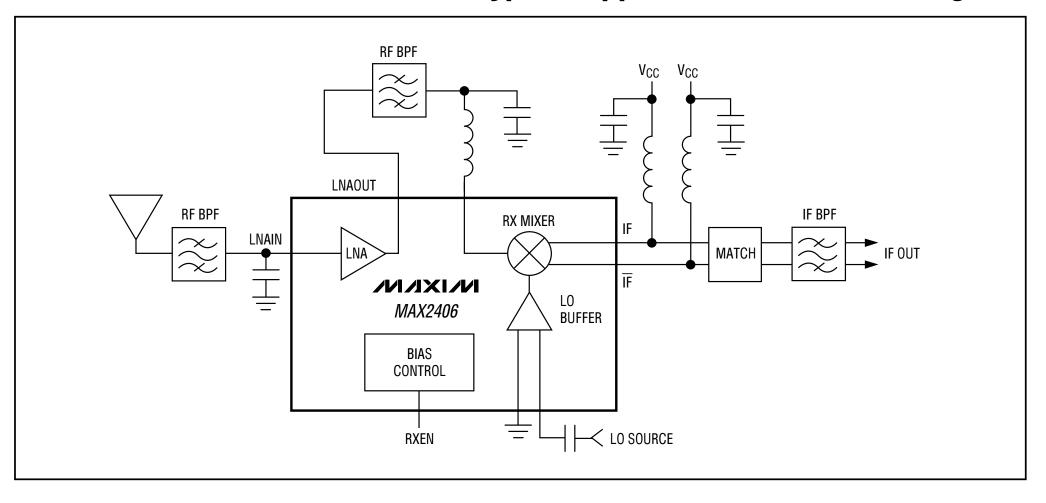
Applications

PWT1900/DCT1900 DCS1800/PCS1900 PHS/PACS DECT Features

- Integrated LNA/Downconverter
- 3.2dB Combined Receiver Noise Figure:
 2.5dB (LNA)
 9.1dB (mixer)
- -12.5dBm Combined Receiver Input IP3:
 -9.5dBm (LNA)
 4.5dBm (mixer)
- LO Buffer
- ♦ +2.7V to +5.5V Single-Supply Operation
- ♦ 60mW Power Consumption
- Low-Power Shutdown Mode

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX2406EEP	-40°C to +85°C	20 QSOP



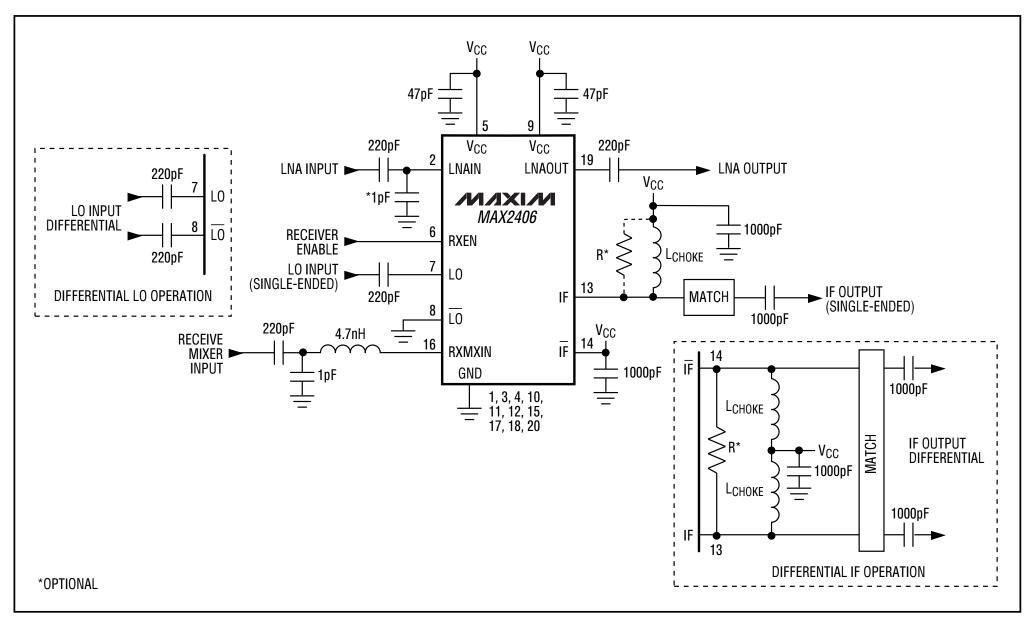


Figure 1. MAX2406 Typical Operating Circuit

AC ELECTRICAL CHARACTERISTICS

(MAX2406EVKIT, Rev. B, V_{CC} = 3.0V, RXEN = V_{CC}, f_{LO} = 1.5GHz, f_{LNAIN} = f_{RXMXIN} = 1.9GHz, P_{LNAIN} = -30dBm, P_{RXMXIN} = -21.5dBm, P_{LO} = -10dBm, differential IF operation, 50 Ω system, T_A = +25°C, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LNA Cain (Nota 1)	$T_{A} = +25^{\circ}C$	13.6	16	17.6	d B
LNA Gain (Note 1)	$T_A = T_{MIN}$ to T_{MAX}	12.2		18.8	
LNA Noise Figure			2.5		d B
LNA Input IP3	(Note 2)		-9.5		dBm
LNA Output 1dB Compression			-5.6		dBm
Mixer Conversion Cain (Note 1)	$T_A = +25^{\circ}C$	7.4	8.4	9.0	d B
Mixer Conversion Gain (Note 1)	$T_A = T_{MIN}$ to T_{MAX}	6.2		10.2	
Mixer Noise Figure	Single sideband		9.1		d B
Mixer Input IP3	(Note 3)		4.5		dBm
Mixer Input 1dB Compression			-7		dBm
Mixer Output Frequency	(Notes 1 and 4)			450	MHz
Receiver Turn-On Time	(Notes 1 and 5)		0.5	2.5	μs
Minimum LO Drive Level	(Note 6)		-17		dBm
LO to LNAIN Leakage	RXEN = high or low		-49		dBm

Note 1: Guaranteed by design and characterization.

Note 2: 1.9GHz and 1.901GHz tones at -30dBm per tone.

Note 3: 1.9GHz and 1.901GHz tones at -21.5dBm per tone.

- **Note 4:** Mixer operation is guaranteed to this frequency. For optimum gain, adjust IF output match. See the IF Output Impedance (single ended) vs. Frequency graph in the *Typical Operating Characteristics.*
- Note 5: Time from RXEN = low to RXEN = high, until the combined receive gain is within 1dB of its final value. Measured with 47pF blocking capacitors on LNAIN and LNAOUT.

Note 6: At this LO drive level, the mixer conversion gain is typically 1dB lower than with -10dBm LO drive.

2