ECE 453
Single Sideband Modulation

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu
Causality Principle

Consider a function $h(t)$

$$h(t) = 0, \quad t < 0$$

Every function can be considered as the sum of an even function and an odd function

$$h(t) = h_e(t) + h_o(t)$$

For an even function $h_e(t)$,

$$h_e(t) = \frac{1}{2} [h(t) + h(-t)]$$

For an odd function $h_o(t)$,

$$h_o(t) = \frac{1}{2} [h(t) - h(-t)]$$

$$h_o(t) = \begin{cases} h_e(t), & t > 0 \\ -h_e(t), & t < 0 \end{cases}$$

$$h_o(t) = \text{sgn}(t)h_e(t)$$
Hilbert Transform

\[h(t) = h_e(t) + \text{sgn}(t)h_e(t) \]

In frequency domain this becomes

\[H(f) = H_e(f) + \frac{1}{j\pi f} * H_e(f) \]

\[H(f) = H_e(f) - j\hat{H}_e(f) \]

\(\hat{H}_e(f) \) is the Hilbert transform of \(H_e(f) \)

Make use of

\[\text{sgn}(t) \leftrightarrow \frac{1}{j\pi f} \]

\(\hat{H}(f) = H(f) * \frac{1}{\pi f} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{H(\xi)}{f - \xi} \, d\xi \)

\(\Rightarrow \) Imaginary part of transfer function is related to the real part through the Hilbert transform
Hilbert Transform

\[m(t) \leftrightarrow M(\omega) \]
\[\text{sgn}(t)m(t) \leftrightarrow -j\hat{M}(\omega) \]

Using symmetry property of Fourier transforms

\[f(t) \leftrightarrow F(\omega) \Rightarrow F(t) \leftrightarrow 2\pi f(-\omega) \]

\[\hat{m}(t) \leftrightarrow -jM(\omega)\text{sgn}(\omega) \]
\[\hat{m}(t) \]

is Hilbert transform of
\[m(t) \]
Hermitian Property

\[\text{Real } f(t) \iff F(\omega) \implies F(-\omega) = F^*(\omega) \]
Modulation Theorem

\[A(t) \cos(\omega_c t + \theta) \leftrightarrow \frac{1}{2} e^{j\theta} A(\omega - \omega_c) + \frac{1}{2} e^{-j\theta} A(\omega + \omega_c) \]

The spectrum of the modulated signal can be obtained by superimposing two copies of the spectrum of \(A(t)\) that have been displaced by \(+\omega_c\) and \(-\omega_c\) on the frequency axis.
Motivation for SSB

Amplitude modulation and DSB-SC techniques require transmission bandwidth of twice the bandwidth of the modulating signal $m(t)$.

In both cases the transmission bandwidth is occupied by the upper sideband (USB) and lower sideband (LSB)

- **Observations on SSB**
 - USB and LSB are uniquely related to each other, as they are symmetric with respect to f_c.
 - Therefore, it is enough to transmit only one side band.
 - For demodulation SSB can be coherently demodulated by multiplying with $\cos(\omega_c t)$ and followed by LPF.
SSB - Frequency Domain Representation

- M(ω)
- DSB-SC
- SSB₁ (USB)
- SSB₂ (LSB)
SSB - Time Domain Representation

\[m(t) \leftrightarrow M(f) \]

Baseband modulating signal (real)

\[m_+(t) \leftrightarrow M_+(f) \]

USB signal

\[m_-(t) \leftrightarrow M_-(f) \]

LSB signal
SSB - Time Domain Representation

\[M_-(\omega + \omega_c) \]
\[M_+(\omega - \omega_c) \]

\[M_+(\omega + \omega_c) \]
\[M_-(\omega - \omega_c) \]
SSB – Hilbert Transform

Using the spectrum relationship

\[
M_+(f) = M(f)u(f) = M(f) \frac{1}{2} [1 + \text{sgn}(f)] = \frac{1}{2} [M(f) + j\bar{M}(f)]
\]

\[
M_-(f) = M(f)u(-f) = M(f) \frac{1}{2} [1 - \text{sgn}(f)] = \frac{1}{2} [M(f) - j\bar{M}(f)]
\]

where

\[
\frac{1}{2} j\bar{M}(f) = \frac{1}{2} M(f) \text{sgn}(f)
\]

\[
\bar{M}(f) = M(f) \times [-j \text{sgn}(f)]
\]
SSB – Hilbert Transform

We have \(\tilde{M}(f) = M(f) \times [-j \text{sgn}(f)] \)

The Fourier series pair \(\text{sgn}(t) \leftrightarrow \frac{1}{j\pi f} \)

\[
\hat{m}(t) = m(t) * \frac{1}{\pi t} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{m(\tau)}{t-\tau} d\tau
\]

\(\hat{m}(t) \leftrightarrow \tilde{M}(f) \)

Thus, \(\hat{m}(t) \) is the Hilbert transform of \(m(t) \)
SSB – Hilbert Transform

\[H(f) = -j \text{sgn}(f) = \begin{cases}
-j & f \geq 0 \\
+j & f < 0
\end{cases} \]

\(H(f) \): wideband phase shifter (Hilbert Transform)
SSB – Hilbert Transform

By delaying the phase of every component of \(m(t) \) by \(\pi/2 \) we get \(\hat{m}(t) \) the Hilbert transform of \(m(t) \)

⇒ Hilbert transformer is ideal phase shifter

\[
m_+(t) = \frac{1}{2} [m(t) + j\hat{m}(t)]
\]

\[
m_-(t) = \frac{1}{2} [m(t) - j\hat{m}(t)]
\]

\(\hat{m}(t) \) is the Hilbert transform of \(m(t) \)
SSB – Time-Domain Representation

\[S_{USB}(f) = M_+(f - f_c) + M_-(f + f_c) \]

\[S_{USB}(f) = \frac{1}{2} \left[M(f - f_c) + M(f + f_c) \right] + \frac{1}{2j} \left[\bar{M}(f - f_c) - \bar{M}(f + f_c) \right] \]

The inverse Fourier transform is then

\[s_{USB}(t) = m(t) \cos(\omega_c t) - \hat{m}(t) \sin(\omega_c t) \]

Similarly, we can show that

\[s_{LSB}(t) = m(t) \cos(\omega_c t) + \hat{m}(t) \sin(\omega_c t) \]

So, in general, we have

\[s_{SSB}(t) = m(t) \cos(\omega_c t) \mp \hat{m}(t) \sin(\omega_c t) \text{ (USB and LSB)} \]
Generation of SSB Signals

• **Selective Filtering Method**
 - Use $m(t)$ to generate DSB-SC ($m(t) \cos \omega_c t$)
 - Feed DSB-SC through a band-pass filter (BPF)
 - We must have $B << f_c$
 - $m(t)$ must have little or no frequency content at DC
Generation of SSB Signals

Gap between sidebands must exist
Phase-shift Method

\[s_{SSB}(t) = m(t) \cos(\omega_c t) \mp \hat{m}(t) \sin(\omega_c t) \]
Demodulation of SSB Signals

Any DSB-SC coherent demodulation technique can be used

\[s_{SSB}(t) \cos(\omega_c t) = m(t) \cos^2(\omega_c t) \mp \hat{m}(t) \sin(\omega_c t) \cos(\omega_c t) \]

\[= \frac{1}{2} m(t) + \frac{1}{2} m(t) \cos(2\omega_c t) \pm \frac{1}{2} \hat{m}(t) \sin(2\omega_c t) \]

If we filter signal with a LPF, we can eliminate components centered at \(2f_c\) and filter output will be \(\sim m(t)\)
Demodulation of SSB Signals

upper sideband (USB)

Demodulator

C

LPF

km(t)

carrier

Input

Carrier

f_c
Demodulation of SSB Signals

-2f_c

2f_c

-2f_c

2f_c