ECE 453 Wireless Communication Systems

Noise

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu

Noise

Random fluctuations of voltage and current

Properties

- Establishes minimum detectable signal
- > Sets bounds on range of signals that can be processed
- Comes in different types (thermal, flicker, shot)
- ➤ Has frequency and time-domain characteristics
- ➤ Not fully understood

Sources of Noise

Shot Noise

- >Associated with direct current flows
- > Present in diodes, MOS and BJTs
- ► Passage of carriers through junction is a random event
- External current composed of large independent pulses
- ➤ Instantaneous value of waveform cannot be predicted at any time
- Only information available concerns mean square value of signal

Sources of Noise

Thermal Noise

- > Present in linear resistors
- **➤** Caused by thermal random motion of electrons
- ➤ Unaffected by presence or absence of direct current
- **▶** Proportional to absolute temperature *T*
- >RMS noise voltage varies as square root of bandwidth

Sources of Noise

Flicker (1/f) Noise

- Found in all active devices
- > Present in discrete passive devices (carbon resistors)
- Caused by traps associated with contaminations and crystal defects
- Traps capture and release carriers in random fashion
- \triangleright Noise spectral density has 1/f behavior

Noise in Transistors

Shot noise and flicker noise asymptotes meet at corner frequency f_a

Effects of Noise

Output voltage waveform for input level comparable to noise level*

*Gray & Meyer, Analysis and design of Analog Integrated Circuits, 4th Edition, J. Wiley, 2001

Noise from a Resistor

Random fluctuations of charge carriers in a conductor

will produce thermal noise

At room temperature a resistor has available noise power \sim -174 dBm in 1 Hz of bandwidth

Nyquist Noise Formula

The spectral density of noise voltage at the terminals of a resistor is given by

$$S_n(f) = 4R \frac{hf}{e^{hf/kT} - 1} (\text{Volts}^2 / \text{Hz})$$

f = frequency in Hz

 $h = Plank's constant = 6.62 \times 10^{-34} joules-sec$

 $k = \text{Boltzman's constant} = 1.38 \times 10^{-23} \text{ joules/}^{\circ}\text{K}$

T = absolute temperature $^{\circ}$ K

R = resistance in ohms

Noise from a Resistor

If f << kT/h, then S_n can be approximated as:

$$S_n = 4kTR \text{ (Volts}^2 / \text{Hz)}$$

Noise voltage at the terminals of a resistor is given by

$$V_n^2 = 4kTBR$$

B =bandwidth in Hz

Noise from a Resistor

AC Voltmeter

Input resistance = $10 \text{ M}\Omega$ Bandwidth = 40 MHz

$$V_n^2 = 4 \times 1.38 \times 10^{-23} \times 300 \times 4 \times 10^6 \times 10^7$$

$$V_n^2 = 66.24 \times 10^{-8}$$

$$V_n \simeq 8 \times 10^{-4} = 0.8 \ mV$$

Resistors in Series

$$V_{n1}^{2} = \frac{1}{T} \int_{0}^{T} v_{n1}^{2} (t) dt$$

$$V_{n2}^{2} = \frac{1}{T} \int_{0}^{T} v_{n2}^{2}(t) dt$$

$$V_{nT}^{2} = \frac{1}{T} \int_{0}^{T} \left[v_{n1}(t) + v_{n2}(t) \right]^{2} dt$$

$$V_{nT}^2 = V_{n1}^2 + V_{n2}^2 = 4kTBR_1 + 4kTBR_2$$

Resistors in Series

$$V_{nT}^2 = V_{n1}^2 + V_{n2}^2$$
 for 2 uncorrelated noise sources

Effective Value of Noise Sources

Bandwidth

The output voltage drops to 0.707 of its low-frequency value when $\omega RC = 1$

The half-power frequency is given by $2\pi f_2 RC = 1$

$$\rightarrow f_2 = 1/2\pi RC$$

Noise from a Circuit

$$V_n^2 = 4kT \left[\int_0^\infty R(f)df = BR \right]$$

R(f) is the real part of the impedance at each frequency

Noise from a Circuit

For an RC circuit

For coherent signals, the bandwidth of an RC circuit is

$$f_2 = \frac{1}{2\pi RC}$$

|Z| is 0.707R when $\omega_2 R = 1/R \rightarrow 2\pi f_2 = 1/RC$

RC Circuit

The noise from the RC circuit is given by

$$V_n^2 = 4kT \int_0^\infty R(f) df$$

$$R(f) = Re(Z) = \frac{G}{G^2 + \omega^2 C^2}$$

$$Z = \frac{G - j\omega C}{G^2 + \omega^2 C^2}$$

$$Z = \frac{G - j\omega C}{G^2 + \omega^2 C^2}$$

In terms of
$$\omega_2 = 1/RC$$
, $R(f) = \frac{1}{R\left[\frac{1}{R^2} + \frac{\omega^2}{\omega_2^2 R^2}\right]}$

$$R(f) = \frac{R}{\left[1 + \frac{\omega^2}{\omega_2^2}\right]}$$

RC Circuit

The noise from the RC circuit is given by

$$V_n^2 = 4kT \int_0^\infty R(f) df = \frac{4kT}{2\pi} \int_0^\infty \frac{R}{1 + \frac{\omega^2}{\omega_2^2}} d\omega$$

Using
$$\int \frac{dx}{a^2 + b^2 x^2} = \frac{1}{ab} tan^{-1} \frac{bx}{a}$$

$$V_n^2 = \frac{4kTR}{2\pi}\omega_2\frac{\pi}{2} = 4kTRf_2\frac{\pi}{2}$$

The coherent signal bandwidth is from 0 to f_2

RC Circuit

For an RC circuit,

$$V_n^2 = \frac{4kTR}{2\pi}\omega_2 \frac{\pi}{2} = 4kTRf_2 \frac{\pi}{2}$$

where
$$f_2 = \frac{1}{2\pi RC}$$

Consequently,

$$V_n^2 = 4kTR \frac{\pi}{2\pi RC2} = \frac{kT}{C}$$

Independent of resistance!

Noise Factor

The noise at the input N_{in} is given by

$$N_{in} = \frac{V_n^2}{R_{in}} = \frac{4kTBR}{(2)^2 R} = kTB$$

 S_{in} – Signal power into the amplifier

 N_{in} – Noise power into the amplifier

 S_o – Signal power at the output

 N_o – Noise power at the output

Noise Factor

Let N_{int} be the noise power generated in the amplifier referenced to the amplifier input

The total noise power at the amplifier output is:

$$N_o = N_{in}G + N_{int}G$$

where G is the power gain. We define the noise factor as:

Noise Factor =
$$F = \frac{S_{in} / N_{in}}{S_o / N_o} > 1$$
 if noise is generated by the amplifier

Noise Figure

$$F = \frac{S_{in} / N_{in}}{S_o / N_o} = \frac{S_{in}}{N_{in}} \times \frac{N_o}{S_o} = \frac{S_{in}}{N_{in}} \times \frac{N_o}{S_{in}G}$$

$$F = \frac{N_o}{kTBG} = \frac{N_{in}G + N_{int}G}{kTBG}$$

$$F(kTB) = kTB + N_{int}$$

$$N_{int} = (F - 1)kTB$$

The Noise Figure is the noise factor expressed in decibels

$$NF = 10 \log(F)$$

Noise Figure

$$F = \frac{S_{in} / N_{in}}{S_o / N_o} = \frac{S_{in}}{S_o} \times \frac{N_o}{N_{in}} = \frac{1}{G} \times \left[\frac{\left(N_{in} + N_{int}\right)G}{N_{in}} \right]$$

$$F = \frac{1}{G} \times \left\lceil \frac{\left(kTB + N_{int}\right)G}{kTB} \right\rceil$$

 $N_{in} = kTB$ if matched

To have a standard value for F, we use $T=290^{\rm o}$ for the temperature of the resistor giving the N_{in}

$$F(G)kTB = (kTB + N_{int})G$$

$$(F-1)kTB = N_{int}$$

Noise Figure - Example

Receiver

 $NF=9 \text{ dB}, BW=3 \text{ kHz}, R_o = 500 \Omega, R_{in} = 50 \Omega, G = 10^8$

$$NF = 10 \log_{10} \frac{S_{in} / N_{in}}{S_o / N_o}$$

What input signal voltage do we need to get $S_o/N_o = 10$?

$$S_o = GS_{in}$$
 $N_o = GN_o|_{in}$

$$N_o = kTBG + N_{int}G = kTBG + (F-1)kTBG$$

$$N_o|_{in} = F(kTB) = 8 \times 1.38 \times 10^{-23} \times 290 \times 3 \times 10^3 = 9.936 \times 10^{-17}$$
 watts

Noise Figure - Example

For $S_o/N_o = 10$, we need

$$S_{in} = 10N_o|_{in} = \frac{V_{in}^2}{R_{in}} = \frac{V_{in}^2}{50\Omega} = 10 \times 9.93 \times 10^{-17} \text{ watts}$$

$$V_{in} = 0.223 \,\mu\text{V}$$

Cascaded Stages

What is the overall Noise Factor?

$$N_{output} = kTBG_AG_BG_C + (F_A - 1)kTBG_AG_BG_C$$
$$+ (F_B - 1)kTBG_BG_C + (F_C - 1)kTBG_C$$

F of 3 stages

$$F = \frac{N_o}{GN_{in}} = \frac{N_o}{kTBG_AG_BG_C}$$

$$= 1 + (F_A - 1) + \frac{(F_B - 1)}{G_A} + \frac{(F_C - 1)}{G_AG_B}$$

Cascaded Stages

Noise Factor of 3 stages

$$F = F_A + \frac{\left(F_B - 1\right)}{G_A} + \frac{\left(F_C - 1\right)}{G_A G_B}$$

Frii's formula for m cascaded stages

$$F^{T} = F_{1} + \sum_{n=2}^{m} \frac{F_{n} - 1}{\prod_{i=2}^{n} G_{i-1}}$$

Two noise sources

- Thermal noise from ohmic resistance
- External sources

We can write:

$$N_A = kT_A B$$

 T_A = equivalent temperature of the antenna

200- Ω antenna exhibiting an rms noise voltage of 0.1 μV with $B{=}10^4$ Hz

$$V^{2} = 4kT_{A}RB$$

$$T_{A} = \frac{V^{2}}{4kRB} = \frac{10^{-14}}{1.38 \times 10^{-23} \times 200 \times 10^{4}} = 90.6K$$

Noise equivalent to that of a 200- Ω resistor at temperature of 90.6K

Antenna temperatures

- $ightharpoonup T_A$ looking at earth = 300 K
- $ightharpoonup T_A$ looking at the moon = 450 K
- $ightharpoonup T_A$ looking at the sun = 3000 K

$$N_o = kT_{eq}BG$$

where T_{eq} is the temperature of the system referred to the input of the amplifier

$$N_o = kT_A BG + N_{int}G$$

$$kT_{eq}BG = kT_ABG + (F-1)kT_{stan}BG$$

$$T_{eq} = T_A + \underbrace{(NF - 1)T_{290}BG}_{T_{rec}}$$

$$F = \frac{S_{in} / N_{int}}{S_o / N_o}$$

For F = 1, the amplifier is noiseless and $T_{rec} = 0$

RG8v cable given 3dB loss per 100 ft at 200 MHz

Cable

- > Attenuates signal
- > Attenuates noise from antenna
- **≻** Generates noise

Let L = loss factor of cable

$$L = \frac{P_{in}}{P_{out}}$$

For 6-dB loss L=4

N into the amplifier = $kT_{cable}B$

Also, N into the amplifier = $\frac{kT_{cable}B}{L}$ + Noise generated in the finite length of cable

Let L = loss factor of cable

$$L = \frac{P_{in}}{P_{out}}$$

For 6-dB loss L=4

N into the amplifier = $kT_{cable}B$

Also, N into the amplifier = $\frac{kT_{cable}B}{L}$ + Noise generated in the finite length of cable

Noise generated in the finite length of cable
$$= kT_{cable}B - \frac{kT_{cable}B}{L} = kT_{cable}\left[1 - \frac{1}{L}\right]B$$

The equivalent noise temperature of a finite

length of cable =
$$T_{cable} \left[1 - \frac{1}{L} \right]$$

- For a short cable L = 1 and T_{eq} of cable =0
- For a very long cable $L \rightarrow inf$ and T_{eq} of cable = T_{cable}

$$\underbrace{T_{system}}_{\substack{referred \ to \\ amp \ input}} = \underbrace{T_A}_L + T_{cable} \left[1 - \frac{1}{L} \right] + T_{amp}$$

$$N_o|_{input} = kT_{system}B$$

