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Electromagnetic Quantities
E Electric field (Volts/m)

D Electric flux density (Coulombs/m?)
H Magnetic field (Amperes/m)

B Magnetic flux density (Webers/m?)

—_—

J Current density (Amperes/m?)

P Charge density (Coulombs/m?)
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Maxwell’s Equations

VxE = _8_B Faraday’s Law of Induction
Ot
.~ oD <
VxH =] Ampere’s Law
Ot
V-D=p Gauss’ Law for electric field
V-B=0 Gauss’ Law for magnetic field
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Constitutive Relations
B=uH D=c¢E
Permittivity ¢: Farads/m

Permeability 4 : Henries/m

Free Space
¢ =885x107" F/m
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Continuity Equation

V-VxH=V-J+V- a—D_v-J+ﬁv-D:0
Ot Ot

v.7+2P )
o1
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Electrostatics
0

Assume no time dependence =0
VxE=0

Since VxE =0, 3¢ such that

E=-V¢ where ¢ is the scalar potential

WlthVEzB WegetV-(—V¢):—V2¢:§
&

we get V- (-V)=-V’¢p =§ € Poisson’s Equation

if no charge is present V’¢=0 € Laplace’s Equation
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Integral Form of ME

<_f>l7? dl =—— | B-dS Faraday’s Law of Induction
C at S
T B ,
gﬁH-d =jJ-d +—_[D-d Ampere’s Law
C S at S
cﬁﬁ dS = jp dv Gauss’ Law — D vector
S V

<j>1§ .dS =0 Gauss’ Law - B Field
S
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H-Field - Infinite Length Wire

» Use azimuthal symmetry
» Assume return path is at infinity
» Use Stokes’ theorem
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Using Gauss’ Law - D Field
Spherical volume of radius a with uniform charge density p,(C/m?3)
CJSD -dS = j o-dv
/ )
gﬁﬁ.dﬁzg’oj )#- 12 sin 0dOd pF
!

Charge exists only for r < a and
with uniform density

-

4
—nr'p, forr<a

3

4
—ra p, forr>a

Ip-dv:<
7

\
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Using Gauss’ Law - D Field

-

ﬂﬂl’3p0 forr<a I
47r°D, (r) =< 3

4
—ra p, forr=>a

'O;r forr<a

D, (r) =< .
'03062 forr>a
| 3r
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Using Gauss’ Law - D Field

p,a/3

p,a/12
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Using Gauss’ Law - H Field

Infinitely long cylindrical wire of radius a
with uniform current density J, (A/m?2) A,

+ J (A/m?)

iy

wire

cross section

Need to calculate H field both inside and outside wire =
Use azimuthal symmetry
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Current exists only for r <a and
with uniform density

oy 2

J‘* ~ 0¢7;J02-rdrd¢2 forr<a
J-dS=1""""

ra (27

S Jzrdrdpz forr=a

L® 7=0 o ¢=0
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Using Gauss’ Law - H Field

J v’ forr<a A,
2rrH, =4 ° 2f
J mwa® forrza

J.r
H¢:< 22
J a

*— forr=>a
. 27
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Using Gauss’ Law - H Field

J,a/2

Jna/4

e ILLINOIS

Electrical and Computer Engineering
University of Illineis at Urbana-Champaign

ECE 546 — Jose Schutt-Aine 15




Boundary Conditions

ax(E —E,)=0
n
ix(H—H)=J;  EADE | g
— - .
n (Dl _Dz) = Pg £y, H,, D,, B, Medium 2
(B —B,)=0
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Maxwell’s Equations in Free Space

. OH
VXE=—u ~ Faraday’s Law of Induction
VxH=¢ oE Ampere’s Law
" ot

V.-E=0 Gauss’ Law for electric field

V-B=0 Gauss’ Law for magnetic field
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Wave Equation

ot
3 , 0 OE
VIV-E)-V’E=—pu,—&, —
( ) Moo o
" O’E
VE=uc — € Wave Equation
-
can show that V’H =y ¢ %Ij
[
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Wave Equation

O’E 6E+82E 882177
o o o T ar

separating the components

O°E. . O°E. . O°E, O°E.
2 oy e L Tap
0’E, O°E, O’E, 0’E,
2 T 2 T 2 /u0 0
Ox oy 0z ot
0’E. 0'E. O%E, O°F
> T2 T = H,&, -
ox oy oz’ ot
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Wave Equation=> Plane Wave

(a) Assume that only E, exists = Ey=EZ=O

0
(b) Only z spatial dependence > 2 > =0
O’E, 0’E.
PR e

This situation leads to the plane wave solution

In addition, assume a time-harmonic dependence

E ~e™ then o o
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solution {

Plane Wave Solution

O°FE
8 2x =—,uogoa)2Ex
'z

— ~Jpz
E =FE e forward wave

E =E, e backward wave

where p=w/ue, propagation constant

solution {
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In the time domain

E (t)=E_, cos (a)t — ,Bz) forward traveling wave
E(t)=E_ _ cos(a)t + ,Bz) backward traveling wave
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Plane Wave Characteristics

where p=wue, propagation constant

0, 1 : :
= =V = propagation velocity
b us
1 g
In free space v=c= =3x10" m/s
lLlOSO
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Solution for Magnetic Field

oH

VxE = —,uE:VxE — jouH
09
ﬁ=—LVxE:— L |0 0 0
jou jou|ox 0Oy 0Oz
E 0 0
- . _ E b
If we assume that E=3XE e’/ then H=j3—¢”
n
L +jpz ry "Eo— +],BZ
If we assume that E=3xF e then H=-y
n

= \/% intrinsic impedance of medium
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Time-Average Poynting Vector

P(t)=E(t)xH(t) Poynting vector W/m?

time-average Poynting vector W/m?

— —

<P> = %jOT P(t)dt = %IOTE(t) x H (t)dt
We can show that
(P)=Re[ x|

where E and H arethe phasors of E(¢) and H (¢) respectively
== ILLINOIS
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Material Medium

VXE:—a’UH Vsz—ja),uﬁ
ot or

VxH = j+62_tE Vxﬁ:j+ja)gl77

—

J=cFE

o: conductivity of material medium (Q'm-)

Vxﬁ:aE+ja)817?:E(G+ja)8)=ja)g(l+.ijﬁ
joe

O

since &— 5(1+.—j then V*E-= —a)z,ug[1+.ijl§"

‘“”FVZLANCMS

joe joe
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Wave in Material Medium

VE = —mzyg(l +.L]E - °E
joe

i —a)z,ugEI + L)
jows

yis complex propagation constant

y=jw ﬂe\/1+.i=a+jﬁ
jwe

a: associated with attenuation of wave

B: associated with propagation of wave
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Wave in Material Medium

Solution: E=3Ee"" =%E e *“e’” decaying exponential

— 5 —1/2
o= 1+(£) —1
2 WE

— —1/2
2
g G [ ] [ ] °
f=ow % \/1+(—j +1 Complex intrinsic

&

. - impedance
Magnetic field ,
H :yﬁ)e—“ze—]ﬁz O+ jowe
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Wave in Material Medium

Phase Velocity: v, = = \/1+(ij +1
,B ue WE
27 _ o
Wavelength: A= 1+(—
5 p f \/ﬂe \/ wE

Special Cases

2
j+1

1. Perfect dielectric 0 =0 air, free space

a=0 and pB=oue
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Wave in Material Medium

2. Lossy dielectric

Loss tangent: i <1

_\f - o |
860282 “ o\

,B:a)\/,u({l+ o
8w

2

= @] UE
2 2
g
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Wave in Material Medium

3. Good conductors

O
Loss tangent: —>1
&

7/:\/ja),u(0'+ja)g) = [ jouc
o =.\rfuo p=~7fuoc

77=\/ JOH =\/ﬁfﬂ (1+)
o+ jos o
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Material Medium

0/
— propagatlon --“w

o0 supercond
Good 1
OUT WU 7T fu : "
conductor % % \/ p (1+7) N7fpo finite copper
Ice

Poor o [u ule
conductor E e W~ HE (1_j0) finite

&

Q|
N

3

Perfect — air
dielectric 0 O HE 1/lu / E finite
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Radiation - Vector Potential

Assume time harmonicity ~ ¢’*
VxE=— ja),ufl (1)
Vxﬁ=j+ja)517? (2)

V-D

ple 3)

ool
||

V. 0 (4)
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Radiation - Vector Potential
Using the property: V-(V x any vector) =0
V-B=0=3A4suchthat Vx A=R8

V-(fol):O

—_

A : vector potential
VxE=—joVxA=Vx(E+ jod)=0
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Vector Potential

V xvector =0 = vector =V i

(E + ja)fl) = —V ¢ where ¢ 1s the scalar potential

Since a vector is uniquely defined by its curl and its
divergence, we can choose the divergence of A

choose A4 such that

Lorentz
condition

V-gl+ja),ug¢:O‘—
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Vector Potential
VXEZ,Llj—FjCO,U(C}E
VxVxA= yj+ja)yg(—ja);1—v¢)

—V221+V(V-;1) = ,uj+ a)z,ugfl—ja)ygv¢

V2 A+V (- joued) = uJ + o’ us A— jouev 4

2 2 A T D’Alembert’s
VAt pusd=—pt equation
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Vector Potential

Three-dimensional free-space Green’s function

. | o AT

- observer
(7.7) = axli -7

Vector potential

—Jﬂl* *'I

”m ' 47z\r T

From A, get E and H using Maxwell’s equations
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Magnetostatics
When d/dt — 0 (or o = 0)

Poisson’s Equation v2 4 —_ ;. J

The vector potential is A( ,7 = 1 J‘ J‘ “‘ 7 J‘ (7 ') ‘dv
T\ —

For a thin wire carrying current I, JdV' — I df'along the wire,

;1»( j‘ ‘rdl ‘

ECE 546 — Jose Schutt-Aine
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Inductance

P S| dl -dl
The flux is CZ[D 4”2‘;515 »

where Rz‘F—F‘

Thus inductance is Lég:i(ﬁ(j)dl -dl
I aree R
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