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Parallel-Plate Waveguide

Maxwell’s Equations = V°E+ o’ usE =0
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TE Modes

For a parallel-plate waveguide, the plates are infinite in the y-extent; we
need to study the propagation in the z-direction. The following assumptions
are made 1n the wave equation

:izo,buti;thndg;éO
oy Ox Oz

— Assume £, only

These two conditions define the TE modes and the wave equation is
simplified to read

O’E. O°E
e —t=0'usE,
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Phasor Solution

General solution (forward traveling wave)

E (x,z)= e /P [Ae‘jﬂxx + Be”ﬂxq

Atx =0, Ey = () which leads to 4 + B = 0. Therefore,
A =-B =E_/2j, where E_ 1s an arbitrary constant

E (x,z)= E e’ sin B x XA[ e
Z X=() e—

a 1s the distance separating the two PEC plates
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Dispersion Relation

Atx=a, E(x,z2)=0 & Ee’*sinfla=0

This leads to: f.a=mm wherem=1, 2, 3, ...

mi

p.=""

a

Moreover, from the differential equation (¥), we get the dispersion
relation

B+ =’ us=p

2
which leadsto g = \/ W’ pe — (m—ﬂj

a
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Guidance Condition

. = \/ " s — (ﬂj
a

where m =1, 2, 3 ... Since propagation is to take place in the z
direction, for the wave to propagate, we must have £.° > 0, or

)

o L >

a

This leads to the following guidance condition which will
insure wave propagation

f>
2a./ ue
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Cutoff Frequency

The cutoff frequency f.1s defined to be at the onset of propagation

2
7 = m ZC=V= a
2a+/ ue f. m

Each mode 1s referred to as the TE, A mode. It 1s obvious that
there 1s no TE, mode and the first TE mode 1s the TE, mode.

The cutoff frequency 1s the frequency below which the mode
associated with the index m will not propagate in the waveguide.
Different modes will have different cutoff frequencies.
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Magnetic Field for TE Modes

From VxE =-jouH

X Yy 1z
we have H = _—1 a0 2
]a)ﬂ ox oz
0 E i 0
which leads to

H, = —&Eoe_jﬂzz sin 3.x
o

H._ = J’Ber P cos fB.x
WH

The magnetic field for TE modes has 2 components
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E & H Fields for TE Modes

x X=a
‘ e :/ ZE_Q,E z
. E
x=0

As can be seen, there is no H, component,
therefore, the TE solution has £, H, and H, only.

From the dispersion relation, it can be shown that the propagation

vector components satisfy the relations
= PBsin6, = [ cos@ where O1s the angle of incidence of the
propagation vector with the normal to the conductor plates.
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Phase and Group Velocities

The phase and group velocities are given by

L, Lo c ~
=B 1’ and vg:—aa) =c l—fc2
1_f2 6ﬂz f
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Transverse Magnetic (TM) Modes

The magnetic field also satisfies the wave equation:

Maxwell’s Equations = V’H+ o’ usH=0

0’H 0°H 0°H )
82x+ 82x+ 62x=-a),u5Hx
X Y Z

1, €

82Hy @zHy azHy 2 y}. ’
Ox” T o Het,

Oy

0O’H. 0°H. 0°H ,
o o e e
X y Z
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TM Modes

For TM modes, we assume

:i:O,buti;thndi;tO
oy Ox Oz
=> Assume H, only

These two conditions define the TM modes and the equations are
simplified to read

O'H, OH, ",
= —a) E
ox’ 0z “

General solution (forward traveling wave)

H (x,z) = e /F [Ae_jﬂ"x + Be”ﬂxx]
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Electric Field for TM Modes

From VxH=-jwcE

X Vy 1z
weget E= b 2 0 <
ja)g ox oz
0 H, 0
This leads to
E (x,z)= &e_jﬂzz [Ae‘jﬂxx + Be”ﬂxx]
e

E (x,z) = &e”ﬂzz [—Ae‘jﬁxx + Be”ﬂxx]
WE
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TM Modes Fields

Atx=0, E_ = 0 which leads to A = B = H /2 where H  is an arbitrary
constant. This leads to

H (x,z) = H e/’ cos B.x

E (x,z)= &Hoe‘jﬂzz cos f.x
wE

E (x,z)= &Hoejﬂzz sin 3 _x
W&

At x =a, E_ = 0 which leads to
P.a=mm wherem=0,1, 2,3, ..
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E & H Fields for TM Modes

LA

mr
p="=
a
This defines the TM modes which have only H, E and E,

components.

The effective guide impedance 1s given by:

The electric field for TM modes has 2 components
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E & H Fields for TM Modes

THE DISPERSION RELATION, GUIDANCE CONDITION
AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE
WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.

This defines the TM modes; each mode 1s referred to as the TM_
mode. It can be seen from that m=0 1s a valid choice; 1t 1s called the
TM,, or transverse electromagnetic or TEM mode. For this mode
and,
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TEM Mode

B=0and [, = . There are no x variations of the fields within the
waveguide. The TEM mode has a cutoff frequency at DC and 1s
always present in the waveguide.

— _jﬁzz
Hy - Hoe The propagation
i g U i characteristics of the
E =—He"" =,|—He"™ TEM mode do not
& &

vary with frequency
E =0

The TEM mode is the fundamental mode on a
parallel-plate waveguide
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Power for TE Modes

Time-Average Poynting Vector <P> = %Re {E x H *}

TE modes
(P)= %Re{ﬁEy x| H +2H. ]}
<P> :lRe{iirﬁ sin” 3 x+§(jﬂﬂ cos . xsin 3 x}
5 ou L x ou x x
2
<P> =7 fa‘;L B.sin’ B x
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Power for TM Modes

T™M modes
(P) = %Re{[iEx +2E,|x§H, |
1 H 2 2
<P> =—Re {i ° B_cos’ B.x—xj—2=— B_sin B.x cos ,Bxx}
2 e WE

The total time-average power 1s found by integrating <P>
over the area of interest.
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Example 1

Consider an air-filled parallel-plate waveguide and a

frequency of operation of 2.5 GHz.

(a) Determine the maximum distance between the plates
that allow propagation of the fundamental mode only.

(b) The waveguide 1s now filled with a dielectric of
¢,=10. Find all the propagating modes at 2.5 GHz

C C
=——q =
f;TEl 261 zf;TEl
0.3x10’ 0.3

a= ;= — =0.06 m=6cm
2x2.5%10 5
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Example 1

1 :
Sers, = LAE. = 20 =0.7905 GHz

2a J10 2x6x102 10

fzs, =2x%0.7905 GHz = 1.58 GHz

fze. =3%0.7905 GHz = 2.37 GHz

Modes propagating at 2.5 GHz

MODE Cutoff Frequency
TEM DC

TE, 0.79 GHz
™, 0.79 GHz

TE, 1.58 GHz
™, 1.58 GHz

TE, 2.37 GHz
™, 2.37 GHz
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Waveguide

Maxwell’s Equations = V°E+ @’ usE =0
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TE Modes

For a waveguide with arbitrary cross section as shown 1in the

above figure, we assume a plane wave solution and as a first trial,
we set £ = 0. This defines the TE modes.

cH
From VxE=-u— we have

Ot

OE OFE oH , ,
S Ay ~=>+jBE, =—jou, (1)

oy 0Oz ot
OF OF y . :
L= = —jpE =—jouH 2
T M JP.E. =—jouH,  (2)
OE, OF oH  OE, OF
Yy x:_lu z:> Yy x:—ja)ﬂHZ (3)
ox Oy ot ox Oy

ECE 546 — Jose Schutt-Aine
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TE Modes

X y 1z
From VxH= jocE,weget  josE = 0 9 Q
ox Oy 0Oz
H H, H.
OH. OH, OH
= — = jwcek. > —=+ . H = josk (4
o &Jxéyjﬂzij()
oH oH oH
~——~=jwek, > —jp H —== josk (5
5 o. Jesk, =P H —— == jesk, (5)
OH, OH
L-—==0 (6)
ox Oy

We want to express all quantities in terms of H-.
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TE Modes

From (2), we have H, = B.E,

WU
. H E
in(@) 2 jpr Ll ok,
oy )7
Solving for £, E_= 2] a)’Lé oA,
p. - e 0Oy
From (1) g :_'BZEy
X a)ﬂ
2
£, OH
in(S)j'B ~——*= joweE,
)7 Ox
—jou  oH
E = :
so that YT e o
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TE Modes

Jjp.  OH,
H,=—5
p. —@ e 0Oy
JB. OH,
H = 2 2
B —w us ox
E =0

Combining solutions for £ and £, into (3) gives

oA, + 82 [,b’ - ,ug}H (¥)
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Rectangular Waveguide

!-___-
y | a -
O°H, O°H,
Z 4+ - e |H Y
e =| B -0’ pe | (¥)

If the cross section of the waveguide 1s a rectangle, we have a
rectangular waveguide and the boundary conditions are such
that the tangential electric field 1s zero on all the PEC walls.

ECE 546 — Jose Schutt-Aine
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TE Modes

The general solution for TE modes with £ =0 is obtained from (¥)

z

H =e /P [Ae o +Be+mxx}[Ce_jﬂyy+De+jﬂyy]

E = 182'8_’62’?#8 e P [—Ae‘jﬂ"x + Be”ﬁ"x}[Cejﬂyy + De”ﬂyy]

E = ﬁ:ﬂy‘iﬂ E [ R/ Bewﬂxx][_ce—jﬂyy D e+jﬂyy:|
T —wue

Aty=0, E£_=0 which leads to C =D
Atx =0, E,=0 which leads to 4 = B
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TE Modes

H_=H e’ cos B.xcos By (8)

“sin fxcos )y

Topl-otue
—_ '’ a)
E_= 2]'By 2,u H e’ cos B. xsin By
p. - pe
Atx=a, E,= 0 which leads tof, =~
Aty =b, E,= 0 which leads tof3, = %

The general solution for TE modes with £ =0 1s

cCr ILLINOIS
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Dispersion Relation

The dispersion relation 1s obtained by placing (8) in (¥)

B+ B+ B, = e (23)
(m—ﬂj +(ﬂj + [ =’ us (24)
a b

pofor G s
a b

The guidance condition 1s

0> e > (%} 4 (%j (26)

ECE 546 — Jose Schutt-Aine
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Guidance Condition

or f > fc where fc 1s the cutoff frequency of the TEmn mode
given by the relation

() ()

The TEmn mode will not propagate unless f'is greater than fe.

Obviously, different modes will have different cutoff frequencies.
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TM Mode

The transverse magnetic modes for a general waveguide are obtained
by assuming H- =0. By duality with the TE modes, we have

2
a@)fiZJra@f [,B a),ug}E

z

E =¢ /P [Ae‘jﬁxx +Be+jﬂxx][Ce_jﬂyy +De+jﬂyy]

t—f\ o
Electr {(L élI,NOIs ECE 546 — Jose Schutt-Aine
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TM Mode

The boundary conditions are
Atx =0, E_= 0 which leads to 4 = -B

Aty =0, E, = 0 which leads to C = -D

mi

Atx =a, E, = 0whichleadsto [, =—

a

Aty = b, E, = O which leads to /5, = n

ECE 546 — Jose Schutt-Aine
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TM and TE Modes

so that the generating equation for the TM_ modes is

E =E, " sinf xsin By

NOTE: THE DISPERSION RELATION, GUIDANCE
CONDITION AND CUTOFF EQUATIONS FOR A
RECTANGULAR WAVEGUIDE ARE THE SAME FOR TE
AND TM MODES.

For additional information on the field equations
see Rao (6" Edition), page 607, Table 9.1.
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TE and TM Modes

There is no TE,, mode
There are no TM_, or TM,,, modes
The first TE mode is the TE,, mode

The first TM mode is the TM,; mode

e ILLINOIS
X d Computer Engineering
University of Illineis at Urbana-Champaign

lectrical an
Iniversity 1

ECE 546 — Jose Schutt-Aine




Impedance of a Waveguide

For a TE mode, we define the transverse impedance as

-E, E  ou

Yy X

ngTE: = =
H,  H, B.

From the relationship for £ and using

| m ? n ?
2

= +| —
we get /. e (a) (bj

__n . ..
Nere = > Where nis th intrinsic impedance 7n = Lad
/ £
1_ C
f2
~r -
y:flcct_ri)cal_ax{é.ﬁt{ygign{_s ECE 546 — Jose Schutt-Aine 36



Impedance of a Waveguide

Analogously, for TM modes, it can be shown that
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Power Flow in a Waveguide

TE,, Mode

The time-average Poynting vector for the TE,, mode in a

rectangular waveguide 1s given by
2

_l * — 5 0 ﬂz : 2@
<P>—2Re[EXH] // » a),usm -
Al B, . ,7x
<P0wer> = _[O jo > on sin’ 7dxdy
<Power> - ‘Eo‘z feab _I%. b
4 ou 4 NorE,,

The time-average power flow in a waveguide is
proportional to its cross-section area.

ECE 546 — Jose Schutt-Aine
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Problem 2

A 10-meter section of air-filled rectangular waveguide

has dimensions 2.5 cm x 1 cm.

(a) Find all the modes propagating below 18 GHz and
their respective cutoff frequencies.

(b) For TE,, mode operation, what 1s the time delay
difference between a 10 GHz pulse and a 7 GHz

pulse?
2 2
a _c ﬂj +(£j
( ) /e 2\/(61 b
9
TE,, - c _0.3x10 6 GHy
2a  2x0.025
9
1E, —< =919 15 Ghy
a 0.025

ECE 546 — Jose Schutt-Aine
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Problem 2

S ORD)

c 0.3x10°
2b  2x0.01

2 2
e, < [ (1] =16.155GHz
2\ 0.025) " 0.01

2 2
™, -S| ——] [ —16.155GHz
2\ 0.025) "\ 0.01

TE;, (18 GHz), TE,, (30 GHz), TE,, (19.1 GHz) do not propagate

=15 GHz

TE, —

ECE 546 — Jose Schutt-Aine
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Problem 2
(b)

v, =ﬂﬁ:>ﬂz NN

C
v =
P \/l_fcz/fz

At10GHz, v = 03 =0.375m/ns
J1-(6/10)
. 10
Time delay = =26.66 ns
0.375

cCr ILLINOIS
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Problem 2

At7GHz,v =0.58243 m/ns
\/1 6/7)
. 10
Time delay = =17.169 ns
0.582

Delay difference: 26.66 - 17.169 = 9.49 ns

ECE 546 — Jose Schutt-Aine
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The Lincoln Tunnel

The Lincoln Tunnel 1s a 1.5 mile-long tunnel under the Hudson
River. It connects Weehawken, New Jersey, to Midtown Manhattan
in New York City on Route 495.

Width: 6.55 meters — Height: 4.19 meters
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The Lincoln Tunnel

An AM radio station cannot be received
inside the Lincoln tunnel. Why?

AM radio - 535 kilohertz to 1.7 megahertz

t PR _03x10° _ o
VT 20 2x655

¢——6.55 m——»

AM signal will not propagate inside of tunnel!

FM radio - 88 megahertz to 108 megahertz

FM radio will be received
EGE-ILLINO{S

ri and Compy er Eng|
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Circular Waveguide - Fields

For a waveguide with arbitrary cross section, it is
known that

O°H O°H

z :_[p2 2

TE Modes — + o —[,BZ a)yg]HZ (1)
O°E., O°E, .,

TM Modes = P~ :[,BZ — ,ug}EZ (2)

We first assume TM modes in cylindrical coordinates:

0O°E. 10E. 1 0°E .,
“ 4+ —=+ “+Hy touc)E, =0
or’ r or r 0¢’ (7 # ) )
it y=%jp.

See Reference [6].
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Circular Waveguide - TM Modes
Solution will be in the form
E(r.d)=/1(r)g(¢)

Which after substitution gives

2
(), e L
f dr\  dr gdo

where 4’ =y’ + o’ ue

For equality in (3) to hold, both sides must be equal to the
same constant say n°> where 7 is an integer in view of the
azimuthal symmetry since the fields must be periodic in ¢.

ECE 546 — Jose Schutt-Aine
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Circular Waveguide - TM Modes

dzg

e +n’g=0 (4)
d {+l£(h2—n—2)f:0 (5)
dr r dr a

Solution of (4) is of the form
g(#)=C cos(ng)+C,sin(ng) (6)
(5) is Bessel’s equation and has solution

f(r)=C3Jn (hr)+C4Yn (hr) (7)

], and Y, are the n'" order Bessel functions of the first and
second kinds respectively

e ILLINOIS
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Bessel Functions of the First Kind

Jo
J1
J2
J3

R e

=0

T (n+1) n!

\ WNLOM08L00Y

-0.5

0 5 10 15 20 25 30 35 40
X

EC—"E ILLINOIS
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Circular Waveguide - TM Modes

Y, has singularity at 0 and must consequently be discarded
= C,=0. The general solution then becomes

E (r,¢)=C,J, (hr)[C1 cos(ng)+C, sin(ngﬁ)}

Since the origin for ¢ is arbitrary, the expression can be
written as:

E (r,¢)=C,J,(hr)cos(ng)
where C,, is a constant. The boundary condition E,, =0
requires that

E. (r,¢) =0 forr=a
Solution exists for only discrete values of / such that
J, (ha) =0

ECE 546 — Jose Schutt-Aine
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Circular Waveguide - TM Modes

ha must be a root of the n'* order Bessel function. If we
assume that ¢, is the ["* root of ], we can define a set of
eigenvalues h,; for the TM modes so that:

]
a

™,

[ root of ], (.)=0
L ﬁ._--
l 2405 3832  5.136
2 5520  7.016 8417
38654 13323 11.620

Each choice of n and |
specifies a particular
solution or mode

n is related to the number of circumferential variations
and [ describes the number of radial variations of the field.

cCr ILLINOIS
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Circular Waveguide - TM Modes

The propagation constant of the nl? propagating TM mode is:

— —1/2

2
A
ﬂTMnl = 0)2/,15—£ nlj

a

The propagation occurs for A < A 1y, OF f > foa,; Where the
cutoff frequency and wavelength can be found from y=0 as:

{

2ra fooo = nl
= — cTMnl
{ 2ma HE

nl

/ICTMnZ

The other field components can be obtained from E,

E=CJ (—rjcos( ng)e

a

ECE 546 — Jose Schutt-Aine
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Circular Waveguide - TE Modes

The solutions for the TE modes can be found in a similar
manner except that we solve for H, (7, ¢) to get:

H_ (r,$)=C,J, (hr)cos(ng)

To apply the boundary condition E, ,= 0, we require

tan

oH
~“tobeOatr=a
or
. H
We must have n-V”HZ:@a ==0 at r=a
r

For this, we need the zeros of |, '(u) given by s ;. The
propagation constant, cutoff frequency and wavelength
have the same expressions as in the TM case with £ ;=2 s, ;.
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Circular Waveguide - TE Modes

The propagation constant of the nl* propagating TE mode is:

— —1/2

2

S

_ 2 | Pnl
,BTEn,— O He (aj

[ root of | “(.)=0

n 1_-- From the tables, it can

l 3.832 1.841  3.054 be seen that the lowest
2 7016 5331 6706 cutoff frequency is the
3 10.173 8536  9.969 TE,; mode.

and for TE modes,

-
a

ECE 546 — Jose Schutt-Aine 53
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Circular Waveguide - TE & TM Modes

alhg
1 |
T]:"_*,31
T]:"_*,o1
0.5 TE,,
) TE
|
|
1 2
‘ JemnleTE
0.5 |— TMO]
Tl\/I1 1
]_ —
Y alk;

See Reference [6].
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TE,; Mode in Circular Waveguide

See Reference [1]. H
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Modes in Circular Waveguide

See Reference [1].
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Example: Circular Waveguide Design

Design an air-filled circular waveguide such that only the
dominant mode will propagate over a bandwidth of 10 GHz.

Solution: the cutoff frequency of the TE,; mode is the lower
bound of the bandwidth.

1.8412¢
chE11 =

27ma

The next mode is the TM,;; with cutoff frequency:

2.4049¢
fCTM(” . 2ra
=
Electrical ax{éﬂl,él{ylglg!gs ECE 546 — Jose Schutt-Aine 57
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Example: Circular Waveguide Design

The BW is the difference between these two frequencies

BW = fon — fogs. = 2L(2.4049—1.8412) = 10GHz
wa

From which we find a = 0.269 cm

So that

Jerg, =32.1GHz and f,, =42.76 GHz
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Coaxial Waveguide

°* Most common two-conductor transmission system

° Dielectric filling in most microwave applications is
polyethylene or Tetlon

~r e
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Coaxial Waveguide - TEM Mode

* Two-conductor system =» Dominant mode is TEM

° Tangential E-field and normal H field must be 0 in
conductor surfaces

E,=0and H,=0atr=a,b

ECE 546 — Jose Schutt-Aine
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Coaxial Waveguide - TEM Mode

TEM solution can exist only with
E=7E (r,z) and H=¢H,(r,z)

with no ¢ dependence because of azimuthal symmetry

we get
oH
> ’ = joE, — jPH; (r):ja)gE,f’ (r)
'z
H H°
—1H¢+a ¢:O—>—1H;(r)+a ? —(
v or v or

Where propagation in z direction is assumed.
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Coaxial Waveguide - TEM Mode

We get

. Hn _.
H—¢H0 e—JﬂZ E:r—one Pz

7 r
where H  is a constant. No cutoff condition for TEM mode.

The voltage between the two conductors is given by
V(z)=—nH,In(b/a)e’”
The current in the inner conductor is given by
[(z)=2nH, e’

The characteristic impedance Z is thus given by
In(b/ a)
2

ECE 546 — Jose Schutt-Aine
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Coaxial Waveguide - TE and TM Modes

TE and TM modes may also exist in addition to TEM. In a
coaxial line, they are generally undesirable.

For TM modes, we have:
E!(r,¢)= [C3Jn (hr)+C,Y, (hr)}cos(lm)
For TE modes, we have:
H! (r.¢)=| CJ, (hr)+CY, (hr) |cos(ng)
With boundary conditions at r =a, b of
E (r,¢)=0 for TM modes
OH .

or

=(0 for TE modes

e ILLINOIS
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Coaxial Waveguide - TE and TM Modes
These conditions lead to
J (ha)Y,(hb)=J (hb)Y,(ha) for TM modes
J. (ha)Y, (hb)=J. (hb)Y. (ha) for TE modes

Solutions of these transcendental equations determine
the eigenvalues of h for given a, b. As in the circular
waveguide case, the modes for coaxial waveguide are
denoted TE ; and TM .
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Coaxial Waveguide - TE and TM Modes

The mode with the lowest cutoff frequency is the TE,,
mode for which the eigenvalue & is approximated as:

2
a+b

h —
The cutoff frequency and cutoff wavelength are given by

2T

/1011:7:7r(a+b) and f, = 1

ﬂ(a+b)\/E
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Coaxial Waveguide — TE and TM Modes

See Reference [3].
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