
ECE 546 – Jose Schutt-Aine 1

ECE 546 
Lecture 03

Waveguides
Spring 2026

Jose E. Schutt-Aine
Electrical & Computer Engineering

University of Illinois
jesa@illinois.edu



ECE 546 – Jose Schutt-Aine 2

2 2 2
2+ + = -2 2 2

E E Ex x x Exx y z
ω µε

∂ ∂ ∂

∂ ∂ ∂

2 2 2
2

2 2 2+ + = -y y y
y

E E E
E

x y z
ω µε

∂ ∂ ∂

∂ ∂ ∂

2 2 2
2

2 2 2+ + = -z z z
z

E E E E
x y z

ω µε∂ ∂ ∂
∂ ∂ ∂

2 2ω µε∇ + =E E 0

Parallel-Plate Waveguide

Maxwell’s Equations  
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For a parallel-plate waveguide, the plates are infinite in the y-extent; we 
need to study the propagation in the z-direction.  The following assumptions 
are made in the wave equation

0, but 0 and 0
y x z

∂ ∂ ∂
⇒ = ≠ ≠

∂ ∂ ∂

⇒ Assume Ey only  

These two conditions define the TE modes and the wave equation is 
simplified to read

TE Modes
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General solution (forward traveling wave)

( , ) x xz j x j xj z
yE x z e Ae Beβ ββ − +−  = + 

( , ) sinzj z
y o xE x z E e xβ β−=

At x = 0, Ey = 0 which leads to A + B = 0.  Therefore, 
A = -B = Eo/2j, where Eo is an arbitrary constant

Phasor Solution

a is the distance separating the two PEC plates
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sin 0zj z
o xE e aβ β− =

x
m
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2 2 2 2
z xβ β ω µε β+ = =
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z
m
a
πβ ω µε  = −  

 

At x = a, Ey(x, z) = 0   

This leads to:  βxa= mπ, where m = 1, 2, 3, ...

Moreover, from the differential equation (¥), we get the dispersion 
relation

which leads to

Dispersion Relation
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2 m

a
πω µε  >  

 

where m = 1, 2, 3 ...  Since propagation is to take place in the z 
direction, for the wave to propagate, we must have βz

2 > 0, or

This leads to the following guidance condition which will 
insure wave propagation

2
mf

a µε
>

Guidance Condition
2

2
z

m
a
πβ ω µε  = −  

 
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2c
mf

a µε
= 2= c

c
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The cutoff frequency fc is defined to be at the onset of propagation

Each mode is referred to as the TEm mode.  It is obvious that 
there is no TE0 mode and the first TE mode is the TE1 mode.

Cutoff  Frequency

The cutoff frequency is the frequency below which the mode 
associated with the index m will not propagate in the waveguide.  
Different modes will have different cutoff frequencies.  
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we have

From     = - jωµ∇×E H

which leads to

Magnetic Field for TE Modes

The magnetic field for TE modes has 2 components



ECE 546 – Jose Schutt-Aine 9

As can be seen, there is no Hy component, 
therefore, the TE solution has Ey, Hx and Hz only.

From the dispersion relation, it can be shown that the propagation 
vector components satisfy the relations
βz = β sinθ, βx = β cosθ where θ is the angle of incidence of the 
propagation vector with the normal to the conductor plates.

E & H Fields for TE Modes
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The effective guide impedance is given by:

The phase and group velocities are given by

Phase and Group Velocities
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The magnetic field also satisfies the wave equation:

Transverse Magnetic (TM) Modes

Maxwell’s Equations  
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0, but 0 and 0
y x z

∂ ∂ ∂
⇒ = ≠ ≠

∂ ∂ ∂
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2 2+  = -y y
y

H H
H

x z
ω µε

∂ ∂

∂ ∂

Assume Hy only  
These two conditions define the TM modes and the equations are 
simplified to read

General solution (forward traveling wave)

For TM modes, we assume

( , ) x xz j x j xj z
yH x z e Ae Beβ ββ − +−  = + 

TM Modes
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= -j  ωε∇× H E

ˆ ˆ ˆ
1 0
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∂ ∂ωε

=
x y z

E

This leads to

( , ) x xz j x j xj zz
xE x z e Ae Beβ βββ

ωε
− +−  = + 

( , ) x xz j x j xj zx
zE x z e Ae Beβ βββ

ωε
− +−  = − + 

Electric Field for TM Modes

we get

From    
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( , ) coszj z
y o xH x z H e xβ β−=

( , ) coszj zz
x o xE x z H e xββ β

ωε
−=

( , ) sinzj zx
z o x

jE x z H e xββ β
ωε

−=

At x=0, Ez = 0 which leads to A = B = Ho/2 where Ho is an arbitrary 
constant.  This leads to

At x =a, Ez = 0 which leads to 

TM Modes Fields

βxa = mπ, where m = 0, 1, 2, 3, ...
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2

21x c
TM o

y

E f
H f

η η= = −

This defines the TM modes which have only Hy, Ex and Ez 
components.

E & H Fields for TM Modes

The electric field for TM modes has 2 components

The effective guide impedance is given by:

x
m
a
πβ =
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This defines the TM modes; each mode is referred to as the TMm 
mode.  It can be seen from that m=0 is a valid choice; it is called the 
TM0, or transverse electromagnetic or TEM mode.  For this mode 
and,

E & H Fields for TM Modes

THE DISPERSION RELATION, GUIDANCE CONDITION 
AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE 
WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.
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zj z
y oH H e β−=

z zj z j zz
x o oE H e H eβ ββ µ

ωε ε
− −= =

0zE =

βx=0 and βz = β. There are no x variations of the fields within the 
waveguide.  The TEM mode has a cutoff frequency at DC and is 
always present in the waveguide.

TEM Mode

The TEM mode is the fundamental mode on a 
parallel-plate waveguide

The propagation 
characteristics of the 
TEM mode do not 
vary with frequency
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Power for TE Modes

TE modes
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TM modes

The total time-average power is found by integrating <P> 
over the area of interest.

Power for TM Modes
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Consider an air-filled parallel-plate waveguide and a 
frequency of operation of 2.5 GHz.
(a) Determine the maximum distance between the plates 

that allow propagation of the fundamental mode only.
(b) The waveguide is now filled with a dielectric of 

εr=10. Find all the propagating modes at 2.5 GHz

1

1
2 2cTE

cTE

c cf a
a f

= ⇒ =

9

9

0.3 10 0.3 0.06 m = 6 cm
2 2.5 10 5

a ×
= = =

× ×

Example 1
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1 2

1 2.5 0.7905
2 2 6 1010 10cTE
v cf GHz
a −= = ⋅ = =

× ×

2
2 0.7905 GHz 1.58 GHzcTEf = × =

3
3 0.7905 GHz 2.37 GHzcTEf = × =

MODE                                             Cutoff Frequency
TEM                                                           DC
TE1                                                           0.79 GHz
TM1                                                         0.79 GHz
TE2                                                           1.58 GHz
TM2                                                         1.58 GHz
TE3                                                           2.37 GHz
TM3                                                         2.37 GHz

Example 1

Modes propagating at 2.5 GHz
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Waveguide
Maxwell’s Equations  
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For a waveguide with arbitrary cross section as shown in the 
above figure, we assume a plane wave solution and as a first trial, 
we set Ez = 0.  This defines the TE modes.

TE Modes

From  
t

µ ∂
∇× = −

∂
HE , we have

y xz
z y x

E HE j E j H
y z t

µ β ωµ
∂ ∂∂

− = − ⇒ + = −
∂ ∂ ∂

yx z
z x y

HE E j E j H
z x t

µ β ωµ
∂∂ ∂

− = − ⇒ − = −
∂ ∂ ∂

y yx xz
z

E EE EH j H
x y t x y

µ ωµ
∂ ∂∂ ∂∂

− = − ⇒ − = −
∂ ∂ ∂ ∂ ∂

(1)

(2)

(3)
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TE Modes

jωε∇× =H E
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x y z
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∂ ∂ ∂

0y xH H
x y

∂ ∂
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∂ ∂

We want to express all quantities in terms of Hz.

(4)

(5)

(6)
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TE Modes
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From (2), we have 

Solving for Ex

From (1)

in (5)

so that

in (4)
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TE Modes

2 2
z z

x
z

j HH
x

β
β ω µε

∂
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y
z

j HH
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β
β ω µε

∂
=
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2 2
2 2

2 2
z z

z z
H H H
x y

β ω µε∂ ∂  + = − ∂ ∂

Ez = 0 

Combining solutions for Ex and Ey into (3) gives

(¥)
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Rectangular Waveguide

2 2
2 2

2 2
z z

z z
H H H
x y

β ω µε∂ ∂  + = − ∂ ∂

If the cross section of the waveguide is a rectangle, we have a 
rectangular waveguide and the boundary conditions are such 
that the tangential electric field is zero on all the PEC walls.

(¥)
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y yx xz j y j yj x j xj z
zH e Ae Be Ce Deβ ββ ββ − +− +−   = + +   

2 2
y yx xz j y j yj x j xj zx

y
z

E e Ae Be Ce Deβ ββ βββ ωµ
β ω µε

− +− +−   = − + +   −

2 2
y yx xz j y j yy j x j xj z

x
z

E e Ae Be Ce Deβ ββ βββ ωµ
β ω µε

− +− +−−
  = + − +   −

The general solution for TE modes with Ez=0 is obtained from (¥)

At y = 0, Ex = 0 which leads to C = D

At x = 0, Ey = 0 which leads to A = B

TE Modes
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TE Modes

The general solution for TE modes with Ez=0 is

cos coszj z
z o x yH H e x yβ β β−=

2 2 sin coszj zx
y o x y

z

jE H e x yββ ωµ β β
β ω µε

−=
−

2 2 cos sinzy j z
x o x y

z

j
E H e x yββ ωµ

β β
β ω µε

−−
=

−

At x = a, Ey = 0 which leads to

At y = b, Ex = 0 which leads to

x
m
a
πβ =

y
n
b
πβ =

(§)
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2 2 2 2
z x zβ β β ω µε+ + =

The dispersion relation is obtained by placing (§) in (¥)

The guidance condition is

Dispersion Relation

2 2
2 2
z

m n
a b
π π β ω µε   + + =   

   

2 2
2

z
m n
a b
π πβ ω µε    = − −   

   

2 2
2 m n

a b
π πω µε    > +   

   

(23)

(24)

(25)

(26)
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Guidance Condition

2 21
2c

m nf
a bµε

   = +   
   

or f > fc where fc is the cutoff frequency of the TEmn mode 
given by the relation

The TEmn mode will not propagate unless f is greater than fc.  

Obviously, different modes will have different cutoff frequencies.
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TM Mode
The transverse magnetic modes for a general waveguide are obtained 
by assuming Hz =0.  By duality with the TE modes, we have

2 2
2 2

2 2
z z

z z
E E E
x y

β ω µε∂ ∂  + = − ∂ ∂

y yx xz j y j yj x j xj z
zE e Ae Be Ce Deβ ββ ββ − +− +−   = + +   
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TM Mode

x
m
a
πβ =

y
n
b
πβ =

The boundary conditions are 

At y = b, Ez = 0 which leads to 

At x = 0, Ez = 0 which leads to A = -B

At x = a, Ez = 0 which leads to 

At y = 0, Ez = 0 which leads to C = -D
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NOTE: THE DISPERSION RELATION, GUIDANCE 
CONDITION AND CUTOFF EQUATIONS FOR A 
RECTANGULAR WAVEGUIDE ARE THE SAME FOR TE 
AND TM MODES.

so that the generating equation for the TMmn modes is

TM and TE Modes

sin sinzj z
z o x yE E e x yβ β β−=

For additional information on the field equations 
see Rao (6th Edition), page 607, Table 9.1.
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TE and TM Modes

There is no TE00 mode

There are no TMm0 or TM0n modes

The first TE mode is the TE10 mode

The first TM mode is the TM11 mode
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Impedance of  a Waveguide

y x
gTE

x y z

E E
H H

ωµη
β

−
= = =

2 2
2 1

4c
m nf
a bµε

    = +    
     

2

21
gTE

cf
f

ηη =

−

µη
ε

=

For a TE mode, we define the transverse impedance as

From the relationship for βz and using

we get

where η is th intrinsic impedance 
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Impedance of  a Waveguide

2

21 c
gTM

f
f

η η= −

Analogously, for TM modes, it can be shown that
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Power Flow in a Waveguide

2
21 ˆRe sin

2 2
o zE x

a
β π
ωµ

 = = 
*P E× H z

2
2

0 0
sin

2
a b o zE xPower dxdy

a
β π
ωµ

= ∫ ∫

10

2 2

4 4
o oz

gTE

E Eab abPower β
ωµ η

= =

TE10 Mode
The time-average Poynting vector for the TE10 mode in a 
rectangular waveguide is given by

The time-average power flow in a waveguide is 
proportional to its cross-section area.
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A 10-meter section of air-filled rectangular waveguide 
has dimensions 2.5 cm x 1 cm.
(a) Find all the modes propagating below 18 GHz and 

their respective cutoff frequencies.
(b) For TE10 mode operation, what is the time delay 

difference between a 10 GHz pulse and a 7 GHz 
pulse?

2 2

2c
c m nf

a b
   = +   
   

9

10
0.3 10 6 GHz

2 2 0.025
cTE
a

×
→ = =

×

Problem 2

9

20
0.3 10 12 GHz

0.025
cTE
a

×
→ = =

(a)
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2 2

2c
c m nf

a b
   = +   
   

9

01
0.3 10 15 GHz

2 2 0.01
cTE
b

×
→ = =

×

Problem 2

2 2

11
1 1 16.155 GHz

2 0.025 0.01
cTE    → + =   

   

2 2

11
1 1 16.155 GHz

2 0.025 0.01
cTM    → + =   

   

TE30 (18 GHz), TE02 (30 GHz), TE21 (19.1 GHz) do not propagate
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2 21 /pz z c
z

v f fω β ω µε
β

= ⇒ = −

Problem 2
(b)

2 21 /
pz

c

cv
f f

=
−

( )2

0.3At 10 GHz, 0.375 m / ns
1 6 /10

pzv = =
−

10Time delay 26.66 ns
0.375

= =
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( )2

0.3At 7 GHz, 0.58243 m / ns
1 6 / 7

pzv = =
−

10Time delay 17.169 ns
0.582

= =

Delay difference: 26.66 - 17.169 = 9.49 ns

Problem 2
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The Lincoln Tunnel is a 1.5 mile-long tunnel under the Hudson 
River. It connects Weehawken, New Jersey, to Midtown Manhattan 
in New York City on Route 495.

Width: 6.55 meters – Height: 4.19 meters

The Lincoln Tunnel
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An AM radio station cannot be received 
inside the Lincoln tunnel. Why?

The Lincoln Tunnel

10

90.3 10 22.9 MHz
2 2 6.55cTE
cf
a

×
= = =

×

AM radio - 535 kilohertz to 1.7 megahertz

FM radio - 88 megahertz to 108 megahertz

AM signal will not propagate inside of tunnel!

FM radio will be received
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2 2
2 2

2 2
z z

z z
H H H
x y

β ω µε∂ ∂  + = − ∂ ∂

2 2
2 2

2 2
z z

z z
E E E
x y

β ω µε∂ ∂  + = − ∂ ∂

( )
2

2 2
2 2

2 2 2

1 1 0

tr z

z z z
z

E

E E E E
r r r r

γ ω µε
φ

∇

∂ ∂ ∂
+ + + + =

∂ ∂ ∂


For a waveguide with arbitrary cross section, it is 
known that

TE Modes

TM Modes

We first assume TM modes in cylindrical coordinates:

Circular Waveguide - Fields

See Reference [6].

(1)

(2)

zjγ β= ±
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( ) ( ) ( ),zE r f r gφ φ=

2
2 2

2

1r d df d gr h r
f dr dr g dφ

  + = − 
 

2 2 2h γ ω µε= +

Solution will be in the form

Which after substitution gives

where

For equality in (3) to hold, both sides must be equal to the 
same constant say n2 where n is an integer in view of the 
azimuthal symmetry since the fields must be periodic in φ.

Circular Waveguide – TM Modes

(3)
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2
2

2 0d g n g
dφ

+ =

2 2
2

2 2

1 0d f df nh f
dr r dr r

 
+ − = 

 

( ) ( ) ( )1 2cos sing C n C nφ φ φ= +

( ) ( ) ( )3 4n nf r C J hr C Y hr= +

Solution of (4) is of the form

(5) is Bessel’s equation and has solution

(4)

(5)

Jn and Yn are the nth order Bessel functions of the first and 
second kinds respectively

Circular Waveguide – TM Modes

(6)

(7)
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Bessel Functions of the First Kind

( ) ( ) ( )
( )

2

0

1 / 2
! 1

r n r

n
r

x
J x

r n r

+∞

=

−
=

Γ + +∑

( )1 !n nΓ + =
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( ) ( ) ( ) ( )3 1 2, cos sinz nE r C J hr C n C nφ φ φ = + 

( ) ( ) ( ), cosz n nE r C J hr nφ φ=

( ), 0zE r for r aφ = =

( ) 0nJ ha =

Yn has singularity at 0 and must consequently be discarded 
 C4 = 0. The general solution then becomes

Since the origin for φ is arbitrary, the expression can be 
written as:

where Cn is a constant. The boundary condition Etan = 0 
requires that

Solution exists for only discrete values of h such that 

Circular Waveguide – TM Modes
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nl

nl
TM

th
a

=

0 1 2
1 2.405 3.832 5.136
2 5.520 7.016 8.417
3 8.654 13.323 11.620

ha must be a root of the nth order Bessel function.  If we 
assume that tnl is the lth root of Jn, we can define a set of 
eigenvalues hnl for the TM modes so that:

Each choice of n and l 
specifies a particular 
solution or mode

l
n

lth root of Jn(.)=0

n is related to the number of circumferential variations 
and l describes the number of radial variations of the field.

Circular Waveguide – TM Modes
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1/22
2

nl

nl
TM

t
a

β ω µε
  = −  

   

2
cTMnl

nl

a
t
πλ = 2

nl
cTMnl

tf
aπ µε

=

The propagation constant of the nlth propagating TM mode is:

The propagation occurs for λ < λcTMnl or f > fcTMnl where the 
cutoff frequency and wavelength can be found from γ = 0 as:

The other field components can be obtained from Ez

( )cos nlj znl
z n n

tE C J r n e
a

βφ − =  
 

Circular Waveguide – TM Modes
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Circular Waveguide – TE Modes
The solutions for the TE modes can be found in a similar 
manner except that we solve for Hz(r,φ) to get:

( ) ( ) ( ), cosz n nH r C J hr nφ φ=

To apply the boundary condition Etan = 0, we require 

zH
r

∂
∂

to be 0 at r = a 

For this, we need the zeros of Jn’(u) given by snl. The 
propagation constant, cutoff frequency and wavelength 
have the same expressions as in the TM case with tnl snl.  

ˆ 0z
tr z

Hn H at r a
r

∂
⋅∇ = = =

∂
We must have
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1/22
2

nl

nl
TE

s
a

β ω µε
  = −  

   

The propagation constant of the nlth propagating TE mode is:

0 1 2
1 3.832 1.841 3.054
2 7.016 5.331 6.706
3 10.173 8.536 9.969

lth root of Jn‘(.)=0

l
n From the tables, it can 

be seen that the lowest 
cutoff frequency is the 
TE11 mode.

( )cos nlj znl
z n n

sH C J r n e
a

βφ − =  
 

and for TE modes,

Circular Waveguide – TE Modes
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Circular Waveguide – TE & TM Modes

See Reference [6].
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TE11 Mode in Circular Waveguide

E
HSee Reference [1].
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E
H

TE11

TM11

Modes in Circular Waveguide

See Reference [1].
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11

1.8412
2cTE

cf
aπ

=

Example: Circular Waveguide Design

Design an air-filled circular waveguide such that only the 
dominant mode will propagate over a bandwidth of 10 GHz.

Solution: the cutoff frequency of the TE11 mode is the lower 
bound of the bandwidth.

The next mode is the TM01 with cutoff frequency:

01

2.4049
2cTM

cf
aπ

=
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Example: Circular Waveguide Design

( )
01 11

2.4049 1.8412 10
2cTM cTE

cBW f f GHz
aπ

= − = − =

The BW is the difference between these two frequencies

From which we find a = 0.269 cm

11 11
32.7 42.76cTE cTMf GHz and f GHz= =

So that
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Coaxial Waveguide

• Most common two-conductor transmission system
• Dielectric filling in most microwave applications is 

polyethylene or Teflon
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Coaxial Waveguide – TEM Mode

• Two-conductor system  Dominant mode is TEM
• Tangential E-field and normal H field must be 0 in 

conductor surfaces

0 and 0 at ,rE H r a bφ = = =
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Coaxial Waveguide – TEM Mode

( ) ( )ˆˆ , and ,rE rE r z H H r zφφ= =

( ) ( )o o
r r

H
j E j H r j E r

z
φ

φω β ωε
∂

− = → =
∂

( )1 10 0
o

oH H
H H r

r r r r
φ φ

φ φ

∂ ∂
− + = → − + =

∂ ∂

TEM solution can exist only with

with no φ dependence because of azimuthal symmetry

we get

Where propagation in z direction is assumed. 
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Coaxial Waveguide – TEM Mode

ˆ j zoH e
r

βφ −=H ˆ j zoHr e
r

βη −=E

We get

where Ho is a constant. No cutoff condition for TEM mode.

( ) ( )ln / j z
oV z H b a e βη −= −

( ) 2 j z
oI z H e βπ −=

ln( / )
2o
b aZ η
π

=

The voltage between the two conductors is given by

The current in the inner conductor is given by

The characteristic impedance Zo is thus given by
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( ) ( ) ( ) ( )3 4, coso
z n nE r C J hr C Y hr nφ φ = + 

( ) ( ) ( ) ( )' '
3 4, coso

z n nH r C J hr C Y hr nφ φ = + 

( ), 0 for TM modeszE r φ =

0 for TE modeszH
r

∂
=

∂

Coaxial Waveguide – TE and TM Modes
TE and TM modes may also exist in addition to TEM.  In a 
coaxial line, they are generally undesirable. 

For TM modes, we have:

For TE modes, we have:

With boundary conditions at r =a, b of
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( ) ( ) ( ) ( ) for TM modesn n n nJ ha Y hb J hb Y ha=

( ) ( ) ( ) ( )' ' ' ' for TE modesn n n nJ ha Y hb J hb Y ha=

Coaxial Waveguide – TE and TM Modes

These conditions lead to

Solutions of these transcendental equations determine 
the eigenvalues of h for given a, b.  As in the circular 
waveguide case, the modes for coaxial waveguide are 
denoted TEnl and TMnl. 
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The mode with the lowest cutoff frequency is the TE11 
mode for which the eigenvalue h is approximated as:

2h
a b

=
+

( )
( )11 11

2 1andc ca b f
h a b
πλ π

π µε
= +

+
 

The cutoff frequency and cutoff wavelength are given by

Coaxial Waveguide – TE and TM Modes
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Coaxial Waveguide – TE and TM Modes

TM01

See Reference [3].
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