ECE 546
Lecture 04
Resistance, Capacitance, Inductance

Spring 2022

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jschutt@emlab.uiuc.edu
What is Extraction?

Process in which a complex arrangement of conductors and dielectric is converted into a netlist of elements in a form that is amenable to circuit simulation.

Need Field Solvers
Electromagnetic Modeling Tools

We need electromagnetic modeling tools to analyze:
- Transmission line propagation
- Reflections from discontinuities
- Crosstalk between interconnects
- Simultaneous switching noise

So we can provide:
- Improved design of interconnects
- Robust design guidelines
- Faster, more cost effective design cycles
Field Solvers – History

♦ 1960s
Conformal mapping techniques
Finite difference methods (2-D Laplace eq.)
Variational methods

♦ 1970s
Boundary element method
Finite element method (2-D)
Partial element equivalent circuit (3-D)

♦ 1980s
Time domain methods (3-D)
Finite element method (3-D)
Moment method (3-D)
rPEEC method (3-D)

♦ 1990s
Adapting methods to parallel computers
Including methods in CAD tools

♦ 2000s
Incorporation of Passivity
Incorporation of Causality

♦ 2010s
Stochastic Techniques
Multiphysics Tools
Categories of Field Solvers

- Method of Moments (MOM)
- Application to 2-D Interconnects
- Closed-Form Green’s Function
- Full-Wave and FDTD
- Parallel FDTD
- Applications
Capacitance

Relation: \(Q = Cv \)

\(Q \): charge stored by capacitor
\(C \): capacitance
\(v \): voltage across capacitor
\(i \): current into capacitor

\[i(t) = C \frac{dv}{dt} = \frac{dQ}{dt} \]

\[v(t) = \frac{1}{C} \int_{0}^{t} i(\tau) d\tau \]
Capacitance

\[C = \frac{\varepsilon_0 A}{d} \]

A : area

\(\varepsilon_0 \) : permittivity

For more complex capacitance geometries, need to use numerical methods.
Potential and Charge Distribution

How do we find the potential due to a charge distribution?

\[\nabla^2 \phi = -\frac{\rho}{\varepsilon} \quad \text{Poisson’s Equation} \]

First find solution for infinitely small point source at origin

\[\nabla^2 \phi = \delta(r) \]

Solution is Green’s function \(g(r, r') \). Potential is then found via superposition.

\[\phi(x, y, z) = \iiint \frac{\rho(x', y', z')}{{4\pi\varepsilon R}} \, dx' \, dy' \, dz' \]
Capacitance Calculation

\[\phi(r) = \int g(r,r')\sigma(r')dr' \]

\[\phi(r) = \text{potential (known)} \]

\[g(r,r') = \text{Green's function (known)} \]

\[\sigma(r') = \text{charge distribution (unknown)} \]

Once the charge distribution is known, the total charge \(Q \) can be determined. If the potential \(\phi=V \), we have

\[Q=CV \]

To determine the charge distribution, use the moment method.
Method of Moments

Operator equation

\[L(f) = g \]

\(L = \) integral or differential operator

\(f = \) unknown function

\(g = \) known function

Expand unknown function \(f \)

\[f = \sum_{n} \alpha_{n} f_{n} \]
Method of Moments

in terms of basis functions f_n, with unknown coefficients α_n to get

$$\sum_n \alpha_n L(f_n) = g$$

Finally, take the scalar or **inner product** with testing of weighting functions w_m:

$$\sum_n \alpha_n \langle w_m, Lf_n \rangle = \langle w_m, g \rangle$$

with

$$\langle w_m, g \rangle = \int w_m(r') g(r,r') \, dr'$$

Matrix equation

$$[l_{mn}][\alpha_n] = [g_m]$$
Method of Moments

\[
[l_{mn}] = \begin{bmatrix}
\langle w_1, Lf_1 \rangle & \langle w_1, Lf_2 \rangle & \cdots \\
\langle w_2, Lf_1 \rangle & \langle w_2, Lf_2 \rangle & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{bmatrix}
\]

\[
[\alpha_n] = \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots
\end{bmatrix}
\]

\[
[g_m] = \begin{bmatrix}
\langle w_1, g \rangle \\
\langle w_2, g \rangle \\
\vdots
\end{bmatrix}
\]

Solution for weight coefficients

\[
[\alpha_n] = [l_{nm}^{-1}] [g_m]
\]
Moment Method Solution

\[\nabla \cdot D = \rho \]

\[E = -\nabla \phi \]

\[\nabla^2 \phi = -\frac{\rho}{\varepsilon} \]

\[L\phi = -\frac{\rho}{\varepsilon} \]

\[\phi(x, y, z) = \iiint \frac{\rho(x', y', z')}{4\pi\varepsilon R} dx' dy' dz' \]

\[R = \sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2} \]

Green’s function G: \(L G = \delta \)
Basis Functions

Subdomain bases

\[
P(x_n) = \begin{cases}
1 & x_n - \frac{\Delta}{2} < x < x_n + \frac{\Delta}{2} \\
0 & \text{otherwise}
\end{cases}
\]

\[
T(x_n) = \begin{cases}
1 - |x| & x_n - \frac{\Delta}{2} < x < x_n + \frac{\Delta}{2} \\
0 & \text{otherwise}
\end{cases}
\]

Testing functions often (not always) chosen same as basis function.
Conducting Plate

\[\phi(x, y, z) = \int_{-a}^{a} dx' \int_{-a}^{a} dy' \frac{\sigma(x', y', z')}{4\pi\epsilon R} \]

\(\sigma = \) charge density on plate
Conducting Plate

Setting $\phi = V$ on plate

$$R = \sqrt{(x - x')^2 + (y - y')^2}$$

$$V = \int_{-a}^{a} dx' \int_{-a}^{a} dy' \frac{\sigma(x', y', z')}{4\pi\varepsilon \sqrt{(x - x')^2 + (y - y')^2}}$$

for $|x| < a$; $|y| < a$

Capacitance of plate:

$$C = \frac{q}{V} = \frac{1}{V} \int_{-a}^{a} dx' \int_{-a}^{a} dy' \sigma(x', y', z')$$
Conducting Plate

Basis function P_n

$$P_n (x_m, y_n) = \begin{cases}
1 & x_m - \frac{\Delta s}{2} < x < x_m + \frac{\Delta s}{2} \\
1 & y_n - \frac{\Delta s}{2} < y < y_n + \frac{\Delta s}{2} \\
0 & \text{otherwise}
\end{cases}$$

Representation of unknown charge

$$\sigma(x, y) = \sum_{n=1}^{N} \alpha_n f_n$$
Conducting Plate

Matrix equation:

\[V = \sum_{n=1}^{N} l_{mn} f_n \]

Matrix element:

\[l_{mn} = \int_{\Delta x_m} dx' \int_{\Delta y_n} dy' \frac{1}{4\pi\varepsilon \sqrt{(x_m - x')^2 + (y_n - y')^2}} \]

\[C = \frac{1}{V} \sum_{n=1}^{N} \alpha_n \Delta s_n = \sum_{mn} l_{mn}^{-1} \Delta s_n \]
Parallel Plates

Using N unknowns per plate, we get $2N \times 2N$ matrix equation:

$$[l] = \begin{bmatrix} [l_{tt}] & [l_{tb}] \\ [l_{bt}] & [l_{bb}] \end{bmatrix}$$

Subscript ‘t’ for top and ‘b’ for bottom plate, respectively.
Parallel Plates

Matrix equation becomes

\[
\begin{bmatrix}
1_{mn}^{tt} - 1_{mn}^{tb}
\end{bmatrix}
\begin{bmatrix}
\alpha_n^t
\end{bmatrix}
=
\begin{bmatrix}
g_m^t
\end{bmatrix}
\]

Solution:

\[
\begin{bmatrix}
\alpha_m^t
\end{bmatrix}
=
\begin{bmatrix}
(l^{tt} - l^{tb})^{-1}_{mn}
\end{bmatrix}
\begin{bmatrix}
g_n^t
\end{bmatrix}
\]

Capacitance \(C = \frac{\text{charge on top plate}}{2V} \)

\[
= \frac{1}{2V} \sum_{top} \alpha_n^t \Delta s_n
\]

Using \(\Delta s = 4b^2 \) and all elements of \([g^t] = V \)

\[
C = 2b^2 \sum_{mn} \left(l^{tt} - l^{tb} \right)^{-1}_{mn}
\]
Inductance

Relation: $\Psi = Li$

Ψ: flux stored by inductor
L: inductance
i: current through inductor
v: voltage across inductor

$$v(t) = L \frac{di}{dt} = \frac{d\Psi}{dt}$$

$$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$$
Inductance

Magnetic Flux

\[\Phi = \int_S \vec{B} \cdot d\vec{S} \]

Inductance = \(\frac{\text{Total flux linked}}{\text{Current}} \)
2-D Isomorphism

Electrostatics

\[
\left(\hat{z} \times \hat{n} \right) \cdot \nabla_t V_i = 0 \\
\hat{n} \cdot \left(\varepsilon_{ri} \nabla_t V_i \right) = -\frac{q_s}{\varepsilon_o} \\
CV = Q
\]

Magnetostatics

\[
\left(\hat{z} \times \hat{n} \right) \cdot \nabla_t A_{zi} = 0 \\
\hat{n} \cdot \left(\frac{1}{\mu_{ri}} \nabla_t A_{zi} \right) = -\mu_o J_z \\
LI = \psi
\]

Consequence: 2D inductance can be calculated from 2D capacitance formulas
2-D N-line LC Extractor using MOM

- Symmetric signal traces
- Uniform spacing
- Lossless lines
- Uses MOM for solution
Output from MoM Extractor

Capacitance (pF/m)

<table>
<thead>
<tr>
<th></th>
<th>118.02299</th>
<th>-8.86533</th>
<th>-0.03030</th>
<th>-0.00011</th>
<th>-0.00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>118.02299</td>
<td>-8.86533</td>
<td>119.04875</td>
<td>-8.86185</td>
<td>-0.03029</td>
<td>-0.00011</td>
</tr>
<tr>
<td>-8.86533</td>
<td>119.04875</td>
<td>-8.86185</td>
<td>119.04876</td>
<td>-8.86185</td>
<td>-0.03030</td>
</tr>
<tr>
<td>-0.03030</td>
<td>-8.86185</td>
<td>119.04876</td>
<td>-8.86185</td>
<td>119.04875</td>
<td>-8.86533</td>
</tr>
<tr>
<td>-0.00011</td>
<td>-0.03029</td>
<td>-8.86185</td>
<td>119.04875</td>
<td>-8.86533</td>
<td>118.02299</td>
</tr>
<tr>
<td>-0.00000</td>
<td>-0.00011</td>
<td>-0.03030</td>
<td>-8.86533</td>
<td>118.02299</td>
<td></td>
</tr>
</tbody>
</table>

Inductance (nH/m)

<table>
<thead>
<tr>
<th></th>
<th>312.71680</th>
<th>23.42397</th>
<th>1.83394</th>
<th>0.14361</th>
<th>0.01128</th>
</tr>
</thead>
<tbody>
<tr>
<td>312.71680</td>
<td>23.42397</td>
<td>311.76042</td>
<td>23.34917</td>
<td>1.82812</td>
<td>0.14361</td>
</tr>
<tr>
<td>23.42397</td>
<td>311.76042</td>
<td>23.34917</td>
<td>311.75461</td>
<td>23.34917</td>
<td>1.83394</td>
</tr>
<tr>
<td>1.83394</td>
<td>23.34917</td>
<td>311.75461</td>
<td>23.34917</td>
<td>311.76042</td>
<td>23.42397</td>
</tr>
<tr>
<td>0.14361</td>
<td>1.82812</td>
<td>23.34917</td>
<td>311.76042</td>
<td>23.42397</td>
<td>312.71680</td>
</tr>
<tr>
<td>0.01128</td>
<td>0.14361</td>
<td>1.83394</td>
<td>23.42397</td>
<td>312.71680</td>
<td></td>
</tr>
</tbody>
</table>
RLGC: Formulation Method

Closed-Form Spatial Green's Function

* Computes 2-D and 3-D capacitance matrix in multilayered dielectric
* Method is applicable to arbitrary polygon-shaped conductors
* Computationally efficient

- Reference
Multilayer Green's Function

Optional Top Ground Plane

Bottom Ground Plane
Extraction Program: RLG C

RLGC computes the four transmission line parameters, viz., the capacitance matrix C, the inductance matrix L, the conductance matrix G, and the resistance matrix R, of a multiconductor transmission line in a multilayered dielectric medium. RLG C features the following list of functions:
RLGC – Multilayer Extractor

• **Features**
 – Handling of dielectric layers with no ground plane, either top or bottom ground plane (microstrip cases), or both top and bottom ground planes (stripline cases)
 – Static solutions are obtained using the Method of Moment (MoM) in conjunction with closed-form Green’s functions: one of the most accurate and efficient methods for static analysis
 – Modeling of dielectric losses as well as conductor losses (including ground plane losses)
 – The resistance matrix R is computed based on the current distribution - more accurate than the use of any closed-form formulae
 – Both the proximity effect and the skin effect are modeled in the resistance matrix R.
 – Computes the potential distribution
 – Handling of an arbitrary number of dielectric layers as well as an arbitrary number of conductors.
 – The cross section of a conductor can be arbitrary or even be infinitely thin

• **Reference**
Three conductors in a layered medium. All conductor dimensions and spacing are identical. The loss tangents of the lower and upper dielectric layers are 0.004 and 0.001 respectively, the conductivity of each line is 5.8e7 S/m, and the operating frequency is 1 GHz.
3-Line Capacitance Results

\[
\begin{bmatrix}
\varepsilon_1 & 142.09 & -21.765 & -0.8920 \\
-21.733 & 93.529 & -18.098 \\
-0.8900 & -18.097 & 87.962 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
145.33 & -23.630 & -1.4124 \\
-22.512 & 93.774 & -17.870 \\
-1.3244 & -17.876 & 87.876 \\
\end{bmatrix}
\]

Delabare et al.
RLGC Method
Modeling Vias

Via

Medium

Via in multilayer medium

Equivalent circuit
Modeling Discontinuities

Open

Bend

Step

T-Junction
QUESTION: Can we associate inductance with piece of conductor rather than a loop? ➔ PEEC Method
Partial Inductance (PEEC) Approach

QUESTION: Can we associate inductance with piece of conductor rather than a loop?

DEFINITION OF PARTIAL INDUCTANCE

\[
L_{\text{loop}} = \sum_{i=1}^{4} \sum_{j=1}^{4} \frac{1}{a_i a_j} \int \int \int \frac{\mu}{4\pi} \frac{d\vec{l}_i \cdot d\vec{l}_j}{|\vec{r}_i - \vec{r}_j|} \, da_i \, da_j
\]

\[
L_{\text{pij}} = \frac{1}{a_i a_j} \frac{\mu}{4\pi} \int \int \int \frac{d\vec{l}_i \cdot d\vec{l}_j}{|\vec{r}_i - \vec{r}_j|} \, da_i \, da_j
\]

\[
L_{\text{loop}} = \sum_{i=1}^{4} \sum_{j=1}^{4} s_{ij} L_{\text{pij}}
\]
Circuit Element K

$[K] = [L]^{-1}$

- Better locality property
- Leads to sparser matrix
- Diagonally dominant
- Allows truncation of far off-diagonal elements
- Better suited for on-chip inductance analysis
Locality of K Matrix

$$[L] = \begin{bmatrix}
11.4 & 4.26 & 2.54 & 1.79 & 1.38 \\
4.26 & 11.4 & 4.26 & 2.54 & 1.79 \\
2.54 & 4.26 & 11.4 & 4.26 & 2.54 \\
1.79 & 2.54 & 4.26 & 11.4 & 4.26 \\
1.38 & 1.79 & 2.54 & 4.26 & 11.4
\end{bmatrix}$$

$$[K] = \begin{bmatrix}
103 & -34.1 & -7.80 & -4.31 & -3.76 \\
-34.1 & 114 & -31.6 & -6.67 & -4.31 \\
-7.80 & -31.6 & 115 & -31.6 & -7.80 \\
-4.31 & -6.67 & -31.6 & 114 & -34.1 \\
-3.76 & -4.31 & -7.80 & -34.1 & 103
\end{bmatrix}$$
Package Inductance & Capacitance

<table>
<thead>
<tr>
<th>Component</th>
<th>Capacitance (pF)</th>
<th>Inductance (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 pin plastic DIP pin†</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>68 pin ceramic DIP pin‡‡</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>68 pin SMT chip carrier†</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

† No ground plane; capacitance is dominated by wire-to-wire component.

‡‡ With ground plane; capacitance and inductance are determined by the distance between the lead frame and the ground plane, and the lead length.
Package Inductance & Capacitance

<table>
<thead>
<tr>
<th>Component</th>
<th>Capacitance (pF)</th>
<th>Inductance (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 pin PGA pin††</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>256 pin PGA pin†††</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Wire bond</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Solder bump</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

† No ground plane; capacitance is dominated by wire-to-wire component.

†† With ground plane; capacitance and inductance are determined by the distance between the lead frame and the ground plane, and the lead length.
Metallic Conductors

Resistance: \(R \)

\[
R = \frac{\text{Length}}{\sigma \cdot \text{Area}}
\]

Package level:
- \(W=3 \) mils
- \(R=0.0045 \ \Omega/mm \)

Submicron level:
- \(W=0.25 \) microns
- \(R=422 \ \Omega/mm \)
Metallic Conductors

<table>
<thead>
<tr>
<th>Metal</th>
<th>Conductivity σ (Ω$^{-1}$ m$^{-1}$ ×10$^{-7}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>6.1</td>
</tr>
<tr>
<td>Copper</td>
<td>5.8</td>
</tr>
<tr>
<td>Gold</td>
<td>3.5</td>
</tr>
<tr>
<td>Aluminum</td>
<td>1.8</td>
</tr>
<tr>
<td>Tungsten</td>
<td>1.8</td>
</tr>
<tr>
<td>Brass</td>
<td>1.5</td>
</tr>
<tr>
<td>Solder</td>
<td>0.7</td>
</tr>
<tr>
<td>Lead</td>
<td>0.5</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Dielectrics

- Dielectrics contain charges that are tightly bound to the nuclei
- Charges can move a fraction of an atomic distance away from equilibrium position
- Electron orbits can be distorted when an electric field is applied
Dielectrics

- Charge density within volume is zero
- Surface charge density is nonzero

\[D = \varepsilon_0 (1 + \chi_e) E = \varepsilon E \]
Dielectric Materials

\[v = \sqrt{\frac{1}{LC}} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity ((\Omega^{-1}\text{-m}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanium</td>
<td>2.2</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.0016</td>
</tr>
<tr>
<td>Glass</td>
<td>(10^{-10} - 10^{-14})</td>
</tr>
<tr>
<td>Quartz</td>
<td>(0.5 \times 10^{-17})</td>
</tr>
</tbody>
</table>

\[\tan \delta = \frac{\sigma}{\omega \varepsilon} \]
Dielectric Materials

\[v = \sqrt{\frac{1}{LC}} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>(\varepsilon_r)</th>
<th>(v) (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyimide</td>
<td>2.5-3.5</td>
<td>16-19</td>
</tr>
<tr>
<td>Silicon dioxide</td>
<td>3.9</td>
<td>15</td>
</tr>
<tr>
<td>Epoxy glass (FR4)</td>
<td>5.0</td>
<td>13</td>
</tr>
<tr>
<td>Alumina (ceramic)</td>
<td>9.5</td>
<td>10</td>
</tr>
</tbody>
</table>
Conductivity of Dielectric Materials

\[\varepsilon = \varepsilon_r + j \varepsilon_i \]

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity ((\Omega^{-1} \text{ m}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanium</td>
<td>2.2</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.0016</td>
</tr>
<tr>
<td>Glass</td>
<td>(10^{-10} - 10^{-14})</td>
</tr>
<tr>
<td>Quartz</td>
<td>(0.5 \times 10^{-17})</td>
</tr>
</tbody>
</table>

Loss TANGENT: \(\tan \delta = \frac{\sigma}{\omega \varepsilon}\)
Combining Field and Circuit Solutions

→ Bypass extraction procedure through the use of Y, Z, or S parameters (frequency domain)
Full-Wave Methods

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

Faraday’s Law of Induction

\[\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \]

Ampère’s Law

\[\nabla \cdot \vec{D} = \rho \]

Gauss’ Law for electric field

\[\nabla \cdot \vec{B} = 0 \]

Gauss’ Law for magnetic field

FDTD: Discretize equations and solve with appropriate boundary conditions
FDTD - Formulation

FDTD solves Maxwell’s equations in time-domain

\[
\frac{\partial E}{\partial t} = \frac{1}{\varepsilon_0} \nabla \times H \\
\frac{\partial H}{\partial t} = -\frac{1}{\mu_0} \nabla \times E
\]

- Problem space is discretized
- Derivatives are approximated as

\[
\frac{\partial u}{\partial v} \approx \frac{u(v_0 + \Delta v) - u(v_0 - \Delta v)}{2\Delta v}
\]

- Time stepping algorithm
- Field values at all points of the grid are updated at each time step
Finite Difference Time Domain (FDTD)

Space Discretization
FDTD – Yee Algorithm

\[
E_x^n (i, j, k) = E_x^{n-1} + \frac{c \Delta t}{\varepsilon \Delta y} (H_z^{n-1/2} (i, j, k) - H_z^{n-1/2} (i, j - 1, k))
\]

\[
- \frac{c \Delta t}{\varepsilon \Delta z} (H_y^{n-1/2} (i, j, k) - H_y^{n-1/2} (i, j, k - 1))
\]

\[
H_x^{n+1/2} (i, j, k) = H_x^{n-1/2} + \frac{c \Delta t}{\mu \Delta y} (E_z^n (i, j + 1, k) - E_z^n (i, j, k))
\]

\[
+ \frac{c \Delta t}{\mu \Delta z} (E_y^{n-1/2} (i, j, k + 1) - E_y^n (i, j, k))
\]
2D-FDTD

\[E_x^{n}(i + \frac{1}{2}, j) = E_x^{n-1}(i + \frac{1}{2}, j) + \frac{\Delta t}{\varepsilon_0 \Delta y} \left[H_z^{n-1/2}(i + \frac{1}{2}, j + \frac{1}{2}) - H_z^{n-1/2}(i + \frac{1}{2}, j - \frac{1}{2}) \right] \]

\[E_y^{n}(i, j + \frac{1}{2}) = E_y^{n-1}(i, j + \frac{1}{2}) - \frac{\Delta t}{\varepsilon_0 \Delta x} \left[H_z^{n-1/2}(i + \frac{1}{2}, j + \frac{1}{2}) - H_z^{n-1/2}(i - \frac{1}{2}, j + \frac{1}{2}) \right] \]

\[H_z^{n+1/2}(i + \frac{1}{2}, j + \frac{1}{2}) = H_z^{n-1/2}(i + \frac{1}{2}, j + \frac{1}{2}) + \frac{\Delta t}{\mu_0 \Delta y} \left[E_x^{n}(i + \frac{1}{2}, j + 1) - E_x^{n}(i + \frac{1}{2}, j) \right] \]

\[- \frac{\Delta t}{\mu_0 \Delta x} \left[E_y^{n}(i + 1, j + \frac{1}{2}) - E_x^{n}(i, j + \frac{1}{2}) \right] \]
Absorbing Boundary Condition: 2D-PML Formulation

Simulation Medium

\[\varepsilon_o \frac{\partial E_x}{\partial t} = \frac{\partial H_z}{\partial y} \]
\[\varepsilon_o \frac{\partial E_y}{\partial t} = -\frac{\partial H_z}{\partial x} \]
\[\mu_o \frac{\partial H_z}{\partial t} = \frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} \]

PML Medium

\[\varepsilon_o \frac{\partial E_x}{\partial t} + \sigma E_x = \frac{\partial H_z}{\partial y} \]
\[\varepsilon_o \frac{\partial E_y}{\partial t} + \sigma E_y = -\frac{\partial H_z}{\partial x} \]
\[\mu_o \frac{\partial H_z}{\partial t} + \sigma^* H_z = \frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} \]

\[\frac{\sigma}{\varepsilon_o} = \frac{\sigma^*}{\mu_o} \]

No reflection from PML interface
Importance of the PML

Example: Simulation of the sinusoidal point source
Some Features of the FDTD

- **Advantages**
 - FDTD is straightforward (fully explicit)
 - Versatile (universal formulation)
 - Time-domain (response at all frequencies can be obtained from a single simulation)
 - EM fields can be easily visualized

- **Issues**
 - Resource hungry (fields through the whole problem space are updated at each step)
 - Discretization errors
 - Time domain data is not immediately useful
 - Problem space has to be truncated
Pros of The FDTD Method

• FDTD directly solves Maxwell’s equations providing all information about the EM field at each of the space sells at every time-step

• Being a time-domain technique, FDTD directly calculates the impulse response of an electromagnetic system. Therefore? A single FDTD simulation can provide either ultrawideband temporal waveforms or the sinusoidal steady-state response at any frequency within the excitation spectrum

• FDTD uses no linear algebra

• Being a time-domain technique, FDTD directly calculates the nonlinear response of an electromagnetic system
Cons of The FDTD Method

• Computationally expensive, requires large random access memory. At each time step values of the fields at each point in space are updated using values from the previous step.

• FDTD works well with regular uniform meshes but the use of regular uniform meshes leads to staircasing. Implementation of nonuniform meshes, on the other hand, requires special mesh-generation software and can lead to additional computer operations and instabilities.

• Requires truncation of the problem space in a way that does not create reflection errors.
Numerical Dispersion

- Occurs because of the difference between the phase speed of the wave in the real world and the speed of propagation of the numerical wave along the grid

![Graph showing time-domain data with different reference points](image)

- Distortion of the pulse propagating over the grid
- (time domain data is recorded at different reference points)
Setting Up a Simulation

- Main steps:
 - Discretize the problem space – create a mesh
 - Set up the source of the incident field
 - Truncate the problem space – create the absorbing boundary conditions (ABC)

- We are using (mainly):
 - Rectangular mesh
 - Plane wave source with Gaussian distribution
 - Perfectly matched layer (PML) for the ABC
3D FDTD for Single Microstrip Line

Computational domain size: 90x130x20 cells
(in x, y, and z directions, respectively)

* Cell size 0.026 cm
* Source plane at y = 0
* Ground plane at z = 0
* Duroid substrate with relative permittivity 2.2.
 Electric field nodes on interface between duroid and free space use average permittivity of media to either side.
* Substrate 3 cells thick
* Microstrip 9 cells wide

Figures on the left show a pulse propagating along the microstrip line. A Gaussian pulse is used for excitation. A voltage source is simulated by imposing the vertical E_z field in the area underneath the strip.
3D FDTD for Patch Antenna

Microstrip antenna at $T=300$

Microstrip antenna at $T=400$

Patch dimensions 47 x 60 cells
Simulation of the Microstrip Antenna
Frequency-Dependent Parameters

- S_{11} for the patch antenna

$$S_{11}(\omega) = 20 \cdot \log\left(\frac{\text{fft}(\text{inc})}{\text{fft}(\text{ref})}\right)$$

Our simulation

By D. Sheen et. al
Simulation of Microstrip Structures

• Source setup:

• Mic
Microstrip Coupler

- Branch line coupler

- Scattering parameters of the branch line

Our simulation

By D. Sheen et. al
Single Straight Microstrip

• Comparison with measured data

Comparison is only qualitative, since parameters used correspond to the line with (length/2)
Single Straight Microstrip

- Simulation with length doubled (example of what happens when the mesh is bad)
Single Straight Microstrip

• Simulation with the adjusted mesh
Meandered Microstrip Lines

- Test boards were manufactured
Simulation and Measurements

- Scattering parameters for the m-line #3
Comparison with ADS Momentum

- The line was also simulated with Agilent ADS Momentum EM simulator
Comparison with ADS Momentum

- S_{21} parameters
References

