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What is Extraction?

Process in which a complex arrangement of conductors and 
dielectrics is converted into a netlist of elements in a form that 
is amenable to circuit simulation.

Need Field Solvers
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We need electromagnetic modeling tools to analyze:
 Transmission line propagation
 Reflections from discontinuities
 Crosstalk between interconnects
 Simultaneous switching noise

So we can provide:
 Improved design of interconnects
 Robust design guidelines
 Faster, more cost effective design cycles

Electromagnetic Modeling Tools
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♦1960s
Conformal mapping techniques
Finite difference methods (2-D Laplace 
eq.)
Variational methods

♦1970s
Boundary element method
Finite element method (2-D)
Partial element equivalent circuit (3-D)

♦1980s
Time domain methods (3-D)
Finite element method (3-D)
Moment method (3-D)
rPEEC method (3-D)

Field Solvers – History 
♦1990s
Adapting methods to parallel 
computers
Including methods in CAD tools 

♦2000s
Incorporation of Passivity
Incorporation of Causality

♦2010s
Stochastic Techniques
Multiphysics Tools
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• Method of Moments (MOM)
• Application to 2-D Interconnects
• Closed-Form Green’s Function
• Full-Wave and FDTD
• Parallel FDTD
• Applications

Categories of Field Solvers
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( ) dv dQi t C
dt dt

= =

Relation: Q = Cv

Q: charge stored by capacitor
C: capacitance
v: voltage across capacitor
i: current into capacitor

0

1( ) ( )
t

v t i d
C

τ τ= ∫

Capacitance
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C = 
εoA
d  

A : area

εo : permittivity

Capacitance

For more complex capacitance geometries, need to use 
numerical methods


C =  EQ \f(eoA,d) 
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2 ρφ
ε

∇ = −  Poisson’s Equation

First find solution for infinitely small point source at origin

( )2 rφ δ∇ =

Solution is Green’s function g(r, r’). Potential is then found via 
superposition.

How do we find the potential due to a charge distribution?

Potential and Charge Distribution

( ) ( ) ' ' '
4

'
, ,

', , 'x y z
dx dy dz

R
x y z

πε
φ

ρ
= ∫∫∫
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( , ') '( ')( ) drr r rr g σφ = ∫
 ( )) (potentir knl na owφ =

( , ') known'   ( )Green s functiong r r =

charge distribution (') )(r unknownσ =

Q=CV

Once the charge distribution is known, the total charge Q can be 
determined. If the potential φ=V, we have

To determine the charge distribution, use the moment method

Capacitance Calculation
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Method of Moments
Operator equation

 L(f) = g
 L = integral or differential operator
 f = unknown function
 g = known function

Expand unknown function f
nf f

n
nα= ∑
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Matrix equation

nL( )f
n

n gα =∑

n, ,f
n

n m mLw gwα =∑

[ ][ ] [ ]nmn ml gα =

in terms of basis functions fn, with unknown coefficients αn to get

Finally, take the scalar or inner product with testing of weighting 
functions wm:

Method of Moments

( ) ( )' ', , 'm mg gw w r r r dr= ∫with
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Solution for weight coefficients

[ ] [ ]1  nmn ml gα − =  

[ ]
1

2

.
n

α
α α

 
 =  
  

[ ]
1

m 2

,
g ,

.

g
g

w
w

 
 =  
  

Method of Moments
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Green’s function G:  LG = δ

Moment Method Solution
D ρ∇ ⋅ =

E φ= −∇

2

ε
φ ρ

∇ = −

Lφ ρ
ε

= −

( ) ( ) ' ' '
4

'
, ,

', , 'x y z
dx dy dz

R
x y z

πε
φ

ρ
= ∫∫∫

( ) ( ) ( )2 2 2' ' 'R x x y y z z= − + − + −
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Subdomain bases

∆

x1 x2 xn

x1 x2 xn

Testing functions often (not always) chosen same as basis 
function.

Basis Functions

( ) 1
2 2

0

n n
n

x x x
P x

otherwise

∆ ∆ − < < += 


( ) 1
2 2

0

n n
n

x x x x
T x

otherwise

∆ ∆ − − < < += 

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σ = charge density on plate

Conducting Plate

( ) ( )' '
4

', ',
, ,

'a a

a a

dx dy
R

y
x

x z
y zφ

πε
σ

− −

= ∫ ∫
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for |x| < a;            |y| < a

Setting φ = V on plate

Capacitance of plate:  

Conducting Plate

( ) ( )2 2' 'R x x y y= − + −

( )
( ) ( )2 2

', ',
' '

'

4 ' '

a a

a a

dx dy
x x y y

x z
V

y

πε

σ

− −

=
− + −

∫ ∫

( )',1 ' ' ', '
a a

a a

qC dx dy
V V

x y zσ
− −

= = ∫ ∫
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Basis function Pn

Representation of unknown charge

Conducting Plate

( )

1
2 2

, 1
2 2

0

m m

n m n n n

s sx x x

s sP x y y y y

otherwise

∆ ∆ − < < +


∆ ∆= − < < +




( ) n
1

f,
N

n
nx yσ α

=

= ∑
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Matrix equation:

Matrix element:

Conducting Plate

1

N

mn n
n

V l f
=

= ∑

( ) ( )2 2

1' '
4 ' 'm n

mn
x y m n

l dx dy
x x y xπε∆ ∆

=
− + −

∫ ∫

1

1

1 N

n n mn n
n mn

C s l s
V

α −

=

= ∆ = ∆∑ ∑
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[l] =
[l tt ] [l tb ]
[lbt ] [lbb ]

 

 
 
 

 

 
 
 

Using N unknowns per plate, we get 2N × 2N matrix equation:

Subscript ‘t’ for top and ‘b’ for bottom plate, respectively. 

Parallel Plates
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l ltt tb t t
mn mn n mgα     − =     Matrix equation becomes

Solution:         ( ) 1t tt tb t
m nmn

l l gα
−    = −     

charge on top plate
2V

1
2

t
n n

top

C

s
V

α

=

= ∆∑
gt[ ]= V

C = 2b2 l tt − l tb( )mn

−1

mn
∑

Capacitance           

Using ∆s=4b2 and all elements of 

Parallel  Plates
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S
B ds

L
i

⋅
= ∫∫





C
A dl

L
i

⋅
= ∫





2
1

V
L B HdV

i
= ⋅∫∫∫

 

Inductance - Definitions

Flux-based 
definition

Field-based 
definition

Energy-based 
definition
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L
i

=
Φ

Inductance

Current loop defines flux for inductance calculation

L: inductance
Φ: magnetic flux
B: magnetic flux density
i: current
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Inductance

L
i

=
Φ

Inductance calculation requires a return path
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Inductance – Wire over Ground Plane

S

B dSΦ = ⋅∫


Total flux linkedInductance =
Current

Magnetic Flux
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( ) di dv t L
dt dt

Φ
= =

Relation: Φ = Li
Φ: flux stored by inductor
L: inductance
i: current through inductor
v: voltage across inductor

0

1( ) ( )
t

i t v d
L

τ τ= ∫

Inductance
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Mutual Inductance

1
21

21L
i

=
Φ

L21: mutual inductance
Φ21: magnetic flux in loop2
B: magnetic flux density
i1: loop 1 current
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( )ˆˆ 0t iz n V× ⋅∇ =

( )ˆ t
o

s
iri V qn ε

ε
⋅ ∇ = −

( )ˆˆ 0zt iz n A× ⋅∇ =

1ˆ zoz
ri

it JAn µ
µ

 
⋅ ∇ = − 
 

CV Q= LI ψ=

Electrostatics Magnetostatics

2-D Isomorphism

Consequence: 2D inductance can be calculated from 2D capacitance formulas
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h

s w

εr

t

2-D N-line LC Extractor using MOM

• Symmetric signal traces
• Uniform spacing
• Lossless lines
• Uses MOM for solution
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Capacitance (pF/m) 
  118.02299    -8.86533    -0.03030    -0.00011    -0.00000 
   -8.86533   119.04875    -8.86185    -0.03029    -0.00011 
   -0.03030    -8.86185   119.04876    -8.86185    -0.03030 
   -0.00011    -0.03029    -8.86185   119.04875    -8.86533 
   -0.00000    -0.00011    -0.03030    -8.86533   118.02299 

Inductance (nH/m) 
  312.71680    23.42397     1.83394     0.14361     0.01128 
   23.42397   311.76042    23.34917     1.82812     0.14361 
    1.83394    23.34917   311.75461    23.34917     1.83394 
    0.14361     1.82812    23.34917   311.76042    23.42397 
    0.01128     0.14361     1.83394    23.42397   312.71680 

Output from MoM Extractor
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Electrical and Computer Engineering

m-1

m

n

(x,y,z)

x
y

z

(x o ,y o ,z o)

n-1

y=dn
y=dn-1

y=dm-1

y=dm

y=dn-2

y=dm-2

P.E.C.

ε
1

ε 2

ε 3

t 1

t 2

P.E.C.

εr=4.3

εr=1

εr=3.2 100 µm

200 µm

350 µm

70 µm

150 µm

Closed-Form Spatial Green's Function

* Computes 2-D and 3-D capacitance matrix in multilayered dielectric

* Method is applicable to arbitrary polygon-shaped conductors

* Computationally efficient

RLGC: Formulation Method

• Reference 
– K. S. Oh, D. B. Kuznetsov and J. E. Schutt-Aine, "Capacitance Computations in a Multilayered Dielectric 

Medium Using Closed-Form Spatial Green's Functions," IEEE Trans. Microwave Theory Tech., vol. MTT-
42, pp. 1443-1453, August 1994. 
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Multilayer Green's Function

ε1, µo

ε2, µo 2

y=0

y=d1

y=dNd-1

y=dNd

x

y

Optional Top Ground Plane

Bottom Ground Plane

y=d2

Nd

1

εNd, µo
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RLGC computes the four transmission line parameters, viz., the capacitance 
matrix C, the inductance matrix L, the conductance matrix G, and the 
resistance matrix R, of a multiconductor transmission line in a multilayered 
dielectric medium.  RLGC features the following list of functions:

Extraction Program: RLGC
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• Features 
– Handling of dielectric layers with no ground plane, either top or bottom ground plane (microstrip 

cases), or both top and bottom ground planes (stripline cases)
– Static solutions are obtained using the Method of Moment (MoM) in conjunction with closed-form 

Green’s functions: one of the most accurate and efficient methods for static analysis
– Modeling of dielectric losses as well as conductor losses (including ground plane losses
– The resistance matrix R is computed based on the current distribution - more accurate than the 

use of any closed-form formulae
– Both the proximity effect and the skin effect are modeled in the resistance matrix R.
– Computes the potential distribution
– Handling of an arbitrary number of dielectric layers as well as an arbitrary number of conductors.
– The cross section of a conductor can be arbitrary or even be infinitely thin

RLGC – Multilayer Extractor

• Reference 
– K. S. Oh, D. B. Kuznetsov and J. E. Schutt-Aine, "Capacitance Computations in a Multilayered Dielectric Medium Using Closed-

Form Spatial Green's Functions," IEEE Trans. Microwave Theory Tech., vol. MTT-42, pp. 1443-1453, August 1994. 
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Three conductors in a layered medium.  All conductor dimensions 
and spacing are identical.  The loss tangents of the lower and upper 
dielectric layers are 0.004 and 0.001 respectively, the conductivity of 
each line is 5.8e7 S/m, and the operating frequency is 1 GHz 

RLGC – General Topology
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3-Line Capacitance Results

142.09 −21.765 −0.8920
−21.733 93.529 −18.098
−0.8900 −18.097 87.962

 

 

 
 
 

 

 

 
 
 

145.33 −23.630 −1.4124
−22.512 93.774 −17.870
−1.3244 −17.876 87.876

 

 

 
 
 

 

 

 
 
 

Capacitance Matrix (pF/m) 

Delabare et al.                      RLGC Method 
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l2

l1

l3

Possible P.E.C.

1

2

Nd

y=0

y=d1

y=dn-1

y=dn

x

y

Possible P.E.C.

l1

l2

l3

Via
Medium

Equivalent circuit

50

3.2

4.02

1.6
4

ε1

ε2

50

4
4.02

Via in multilayer medium

Modeling Vias
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l1 l3

w1

l2w2

l1 l2

l3

ce

l1

l2

w1

w2

l1 l2

ce

l1 l2

ce

l1 l2

w1 w2

l

w

ce

l

Open
Bend

Step
T-Junction

Modeling Discontinuities
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( )1 1
loop

a a

L B da A da
I I I

Φ Φ

Φ
= = ⋅ = ∇ × ⋅∫ ∫



 

QUESTION:   Can we associate inductance with piece 
of conductor rather than a loop? PEEC Method*

Loop Inductance
3D Inductance Calculation

*A. E. Ruehli, "Equivalent Circuit Models for Three-Dimensional Multiconductor 
Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 22, no. 3, pp. 
216-221, Mar. 1974.
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I

I

I

ak
I

aΦ
Φ



Lloop =
1

aiaj

µ
4π

d


l i ⋅d


l j
r i − r j

daidaj
l j

∫
li
∫

a j

∫
ai

∫
j=1

4
∑

i=1

4
∑



Lpij =
1

aiaj

µ
4π

d


l i ⋅d


l j
r i − r j

daidaj
lj

∫
li
∫

a j

∫
ai

∫

Lloop = sij
j=1

4
∑

i=1

4
∑ Lpij

DEFINITION OF PARTIAL INDUCTANCE

QUESTION:   Can we associate inductance 
with piece of conductor rather than a loop? 

Partial Inductance (PEEC) Approach
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• Better locality property

• Leads to sparser matrix

• Diagonally dominant 

• Allows truncation of far off-diagonal elements

• Better suited for on-chip inductance analysis

Circuit Element K

[K]=[L]-1
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11.4 4.26 2.54 1.79 1.38
4.26 11.4 4.26 2.54 1.79

[ ] 2.54 4.26 11.4 4.26 2.54
1.79 2.54 4.26 11.4 4.26
1.38 1.79 2.54 4.26 11.4

L

 
 
 

=  
 
 
  

103 34.1 7.80 4.31 3.76
34.1 114 31.6 6.67 4.31

[ ] 7.80 31.6 115 31.6 7.80
4.31 6.67 31.6 114 34.1
3.76 4.31 7.80 34.1 103

K

− − − − 
 − − − − 

=  − − − −
 − − − − 
 − − − − 

Locality of K Matrix
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Component Capacitance
(pF)

Inductance
(nH)

68-pin plastic DIP pin† 4 35

68-pin ceramic DIP pin† † 7 20

68-pin SMT chip carrier† 2 7

68-pin PGA pin† † 2 7

256-pin PGA pin† † 5 15

Wire bond 1 1

Solder bump 0.5 0.1

† No ground plane; capacitance is dominated by wire-to-wire component.

†† With ground plane; capacitance and inductance are determined by the 
distance between the lead frame and the ground plane, and the lead length.

Package Inductance & Capacitance
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LengthR
Areaσ

=
⋅

Metallic Conductors

Resistance: R

Package level
W = 3 mils
R = 0.0045 Ω/mm

On-chip submicron
W = 0.25 microns
R = 422 Ω/mm

Resistance per unit length
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Metallic Conductors 

Metal Conductivity

Silver 6.1

Copper 5.8

Gold 3.5

Aluminum 1.8

Tungsten 1.8

Brass 1.5

Solder 0.7

Lead 0.5

Mercury 0.1

( )1 1 7m 10− − −Ω ×
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+
-

+

-
E

Dielectrics contain charges that are tightly 
bound to the nuclei
Charges can move a fraction of an atomic 

distance away from equilibrium position
Electron orbits can be distorted when an 

electric field is applied

Dielectrics



ECE 546 – Jose Schutt-Aine 46

ρsp

Dielectrics

Charge density within volume is zero
Surface charge density is nonzero

D=εo(1+χe)E=εE
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Dielectric Materials

1v
LC

=

Material εr Velocity
(m/ns)

Polyimide 2.5 – 3.5 0.16-0.19

Silicon dioxide 3.9 0.15

Epoxy glass (FR4) 5.0 0.13

Alumina (ceramic) 9.5 0.10
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Conductivity of Dielectric Materials

tan σδ
ωε

=Loss tangent:

r ijε ε ε= +

Material Conductivity

Germanium 2.2

Silicon 0.0016

Glass 10-10 – 10-14

Quartz 0.5 x 10-17

( )1 1m− −Ω
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Field Solution Network 
Description

Macromodel
Generation

Circuit 
Simulation

Combining Field and Circuit Solutions

 Bypass extraction 
procedure through the use 
of Y, Z, or S parameters 
(frequency domain)
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Full-Wave Methods

FDTD: Discretize equations and solve 
with appropriate boundary conditions

Faraday’s Law of Induction

Ampère’s Law

Gauss’ Law for electric field

Gauss’ Law for magnetic field

BE
t

∂
∇× = −

∂





H J∇× =
  D

t
∂

+
∂



D ρ∇ ⋅ =


0B∇ ⋅ =

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FDTD - Formulation
 FDTD solves Maxwell’s equations in time-domain

• Problem space is discretized
• Derivatives are approximated as

• Time stepping algorithm
• Field values at all points of the grid are updated at 

each time step

0

1E H
t ε

∂
= ∇ ×

∂

0

1H E
t µ

∂
= − ∇ ×

∂

0 0( ) ( )
2

u v v u v vu
v v

+ ∆ − − ∆∂
≈

∂ ∆
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E y

E y

E y

E y

H yH y

E x E x

E xE x

H x

H x

E z

E z

E z

H z

H z

Finite Difference Time Domain (FDTD)

Space Discretization

x

y

z
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FDTD – Yee Algorithm

Ey

Ey

Ey

Ey

HyHy

Ex Ex

ExEx

Hx

Hx

Ez

Ez

Ez

Hz

Hz

x

y

z

( ) ( ) ( )( )

( ) ( )( )

1 1/2 1/2

1/2 1/2

, , , , , 1,

, , , , 1

n n n n
x x z z

n n
y y

c tE i j k E H i j k H i j k
y

c t H i j k H i j k
z

ε

ε

− − −

− −

∆
= + − −

∆
∆

− − −
∆

( ) ( ) ( )( )

( ) ( )( )

1/2 1/2

1/2

, , , 1, , ,

, , 1 , ,

n n n n
x x z z

n n
y y

c tH i j k H E i j k E i j k
y

c t E i j k E i j k
z

µ

µ

+ −

−

∆
= + + −

∆
∆

+ + −
∆
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2D-FDTD

Ex

Ey

Hz

x

y

Ex
n i +

1
2

, j



 = Ex

n−1 i +
1
2

, j



 + ∆t

ε o∆y
Hz

n −1/2 i +
1
2

, j +
1
2





 − Hz

n−1/2 i +
1
2

, j −
1
2













Ey
n i, j +

1
2





 = Ey

n−1 i, j +
1
2





 − ∆t

εo∆x
Hz

n−1/2 i +
1
2

, j +
1
2





 − Hz

n−1/2 i −
1
2

, j +
1
2













Hz
n+1/2 i +

1
2

, j +
1
2
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Absorbing Boundary Condition: 2D-PML Formulation

x

y

Simulation Medium PML Medium

No reflection from PML interface
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Importance of the PML

PML is “on”

PML is “off”

 Example: Simulation of the sinusoidal point source 
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Some Features of the FDTD
 Advantages
• FDTD is straightforward (fully explicit)
• Versatile (universal formulation)
• Time-domain (response at all frequencies can be obtained 

from a single simulation)
• EM fields can be easily visualized

 Issues
• Resource hungry (fields through the whole problem space 

are updated at each step)
• Discretization errors
• Time domain data is not immediately useful
• Problem space has to be truncated 
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Pros of The FDTD Method
• FDTD directly solves Maxwell’s equations providing all 

information about the EM field at each of the space sells at 
every time-step

•  Being a time-domain technique, FDTD directly calculates the 
impulse response of an electromagnetic system. Therefore? A 
single FDTD simulation can provide either ultrawideband 
temporal waveforms or the sinusoidal steady-state response 
at any frequency within the excitation spectrum

• FDTD uses no linear algebra

• Being a time-domain technique, FDTD directly calculates the 
nonlinear response of an electromagnetic system 
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Cons of The FDTD Method
• Computationally expensive, requires large random access 

memory. At each time step values of the fields at each point 
in space are updated using values from the previous step

• FDTD works well with regular uniform meshes but the use of 
regular uniform meshes leads to staircasing. Implementation 
of nonuniform meshes, on the other hand, requires special 
mesh-generation software and can lead to additional 
computer operations and instabilities

•  Requires truncation of the problem space in a way that does 
not create reflection errors
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Numerical Dispersion
• Occurs because of the difference between the phase 

speed of the wave in the real world and the speed of 
propagation of the numerical wave along the grid 

Distortion of the pulse
propagating over the grid

(time domain data is recorded
at different reference points)  
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Setting Up a Simulation
Main steps:
Discretize the problem space – create a mesh
Set up the source of the incident field
Truncate the problem space – create the 

absorbing boundary conditions (ABC)

We are using (mainly):
Rectangular mesh
Plane wave source with Gaussian distribution
Perfectly matched layer (PML) for the ABC

2
0t T

spreadpulse e
− 

− 
 =



*      Cell size 0.026 cm
 *      Source plane at y = 0 
 *      Ground plane at z = 0
 *      Duroid substrate with relative permittivity 2.2.
         Electric field nodes on interface between 
         duroid and free space use average permittivity
         of media to either side.
 *      Substrate 3 cells thick
 *      Microstrip 9 cells wide

3D FDTD for Single Microstrip Line  

T=100 

T=300 

Computational domain size:  90x130x20 cells

(in x, y, and z directions, respectively)

Figures on the left show a pulse propagating along the 
microstrip line. A Gaussian pulse is used for excitation. 
A voltage source is simulated by imposing the vertical 
Ez field in the area underneath the strip.  
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Microstrip antenna at 
T=300 

Microstrip antenna at 
T=400 

3D FDTD for Patch Antenna

Patch dimensions 47 x 60 cells



Simulation of the Microstrip Antenna
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Frequency-Dependent Parameters 
• S11 for the patch antenna 11

fft( )( ) 20 log abs
fft( )

incS
ref

ω
  

= ⋅   
  

Our simulation By D. Sheen et. al
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Simulation of Microstrip Structures

• Source setup:

• Microstrip Patch Antenna
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Microstrip Coupler
• Branch line coupler

• Scattering parameters of the branch line 
coupler

Our simulation By D. Sheen et. al
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Single Straight Microstrip
• Comparison with measured data

Comparison is only qualitative,
since parameters used correspond
to the line with (length/2) 
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Single Straight Microstrip
• Simulation with length doubled (example of 

what happens when the mesh is bad)
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Single Straight Microstrip
• Simulation with the adjusted mesh
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Meandered Microstrip Lines
• Test boards were fabricated
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Simulation and Measurements

• Scattering parameters
    for the m-line #3 
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Comparison with ADS Momentum 
• The line was also simulated with Agilent ADS 

Momentum EM simulator
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Comparison with ADS Momentum
• S21 parameters
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