ECE 546
Lecture 04
Resistance, Capacitance, Inductance

Spring 2026

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jschutt@emlab.uiuc.edu

e ILLINOIS
=y oy =y
> ri 1d Computer Engineering
University of Illineis at Urbana-Champaign

ecirical ar
] s P 11

ECE 546 — Jose Schutt-Aine




What is Extraction?

INSY/ 2B
N\

U

Process in which a complex arrangement of conductors and
dielectrics is converted into a netlist of elements in a form that
IS amenable to circuit simulation.

Need Field Solvers

EOC ILLINOIS

Electrical an ompu Cngin :
University of Illineis at Urbana-Champaign

ECE 546 — Jose Schutt-Aine




=y oy =y
Electrical ar
University of Il

e ILLINOIS
1d Computer Engineering
linois at Urbana-Champaign

Electromagnetic Modeling Tools

We need electromagnetic modeling tools to analyze:
Transmission line propagation
Reflections from discontinuities
Crosstalk between interconnects
Simultaneous switching noise

So we can provide:
Improved design of interconnects
Robust design guidelines
Faster, more cost effective design cycles
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Field Solvers — History

+1960s +1990s

Conformal mapping techniques Adapting methods to parallel
Finite difference methods (2-D Laplace computers

eq.) Including methods in CAD tools
Variational methods

¢1970s ¢2000s

Boundary element method Incorporation of Passivity
Finite element method (2-D) Incorporation of Causality

Partial element equivalent circuit (3-D)

+1980s

Time domain methods (3-D) ¢2010s

Finite element method (3-D) Stochastic Techniques
Moment method (3-D) Multiphysics Tools

rPEEC method (3-D)
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Categories of Field Solvers

* Method of Moments (MOM)

* Application to 2-D Interconnects
* Closed-Form Green’s Function

* Full-Wave and FDTD

* Parallel FDTD

* Applications
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Capacitance
Relation: O = Cv

Q: charge stored by capacitor
C: capacitance

v. voltage across capacitor

i current 1nto capacitor

(1) = Cﬂ = d_Q
dt dt

v(t) = % [ i(z)dz
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Capacitance

A : area

d € : permittivity

For more complex capacitance geometries, need to use
numerical methods
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C =  EQ \f(eoA,d) 


Potential and Charge Distribution

How do we find the potential due to a charge distribution?

V2¢ __F € Poisson’s Equation
E

First find solution for infinitely small point source at origin

V=5 (r)
Solution 1s Green’s function g(7, r’). Potential is then found via
superposmon ' ')
. Z
x Y, Z ”jp A dx'dy'dz’
4reR
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Capacitance Calculation

#(r) = | g(r.r)o(r)dr’ U U

¢(r) = potential (known)

conductors

o T

g(r,r'y=Green's function (known)

o (r') = charge distribution (unknown)

Once the charge distribution 1s known, the total charge O can be
determined. If the potential ¢=V, we have

To determine the charge distribution, use the moment method
&St ILLINOIS
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Method of Moments

Operator equation

L) =g
L = 1ntegral or differential operator
f = unknown function

g = known function

Expand unknown function f
f = Z o1

ECE 546 — Jose Schutt-Aine

e ILLINOIS
=y oy =y
> ri 1d Computer Engineering
University of Illineis at Urbana-Champaign

ecirical ar
] s P 11



Method of Moments

in terms of basis functions f_, with unknown coefficients ¢ to get
D o, f)=g

Finally, take the scalar or inner product with testing of weighting

functions w: Zan <Wm ,Lfn> — <Wm ) g>
with <wm,g>=me (r')g(r.r')dr’

Matrix equation [lmn ] [05” ] = [gm ]
ESEILLINOIS
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Method of Moments

(w,LE) (w,Lf,)
[lmn]: <w2,Lf1> <w2,Lf2>

Solution for weight coefficients

[, 1= ] [2]
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Moment Method Solution

é(x, v,z ”I'D AL dx'dy'dz'

dreR

R=\/()c—x')2+(y—y')2+(Z—Z')2

Green’s function G: LG =90

ECE 546 — Jose Schutt-Aine
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Basis Functions

Subdomain bases

1 x—é<x<x —|—é
P(xn)=4 ) )

0 otherwise

<
o ® o o o o o o
X1 X2 Xn
( A A
—Ix  x,-=<x<x,+=
T(xn) = 2
0 otherwise

X1 X2 Xn
Testing functions often (not always) chosen same as basis
function.
== ILLINOIS
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Conducting Plate

>/ conducting plate

a a U(X',y',Z')
_ dv dv
p(x.p.2)= | ax' | dy o

—d —d

o = charge density on plate
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Conducting Plate

Setting ¢ = V on plate

R:\/(x—x')2 Jr(y—y')2

v [ away— 207
—'[z x—'[z g 4728\/(x—x')2+(y—y')2

for [x| <a; yl<a

1 a a
Capacitance of plate: C = % = _[ dx 'J; dy'c(x',y'.z")
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Conducting Plate

Basis function P,

Ijn('xm9yn):<

-

As As
1l x, ——<x<x, +—
2 2

1—£<<+£
ynz)/ynz

0 otherwise

.

Representation of unknown charge

cCr ILLINOIS

J(x,y) = i%fn

n=I
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Matrix equation:

Matrix element:

Conducting Plate

%iamﬂ =1 As
n=l1 mn
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Parallel Plates

Using N unknowns per plate, we get 2N x 2N matrix equation:

) [ltt] [ltb]J
[Z]_Lz"t] [1°°]

Subscript ‘t’ for top and ‘b’ for bottom plate, respectively.

ECE 546 — Jose Schutt-Aine
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Parallel Plates
Matrix equation becomes [l;tm — ltnlzn :| |:05,2 :| = [g ;tn :|

Solution: [a;] _ [( jit _ b ); } [ g;]

Capacitance C =

charge on top plate

o

2V

1
aAS

top

Using As=4b? and all elements of [g ]= V

c=202y (" -1*)

CCL ILLINOIS
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Inductance - Definitions

Flux-based _f _[SE .ds
definition L= i
Field-based <_[> A-dl
definition L= Ci

Energy-based 1 o
definition L= ,'_2”ij - HdV
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Inductance

L: inductance

C ®: magnetic flux

B: magnetic flux density
i: current

Current loop defines flux for inductance calculation
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Inductance

Inductance calculation requires a return path
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Inductance — Wire over Ground Plane

l : Magnetic Flux
O = j B-dS
& |
I
Total flux linked
/ Inductance =
Current
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Inductance
Relation: @ = Li

@ flux stored by inductor
L: inductance
i. current through inductor
v: voltage across inductor

di dob
Wt)=L—="—

dt dt

i(1) = % [ v(@)dr
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Mutual Inductance

®,,: magnetic tflux in loop2
B: magnetic flux density
i;: loop 1 current
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2-D Isomorphism

Magnetostatics
(Axﬁ)-VtVl.zo (éxﬁ)-VtAZl.zo
]
ﬁ-(gm.VtVl.):—ﬁ n: _vtAzi :_luo‘]
(90 lLlri
V=0 LlI=y

Consequence: 2D inductance can be calculated from 2D capacitance formulas
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2-D N-line LC Extractor using MOM

| v e

 Symmetric signal traces
« Uniform spacing

* Lossless lines

 Uses MOM for solution

‘—n [
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Uni t flll at Urbana-Champaign




Output from MoM Extractor

Capacitance (pF/m)

118.02299 -8.86533 -0.03030 -0.00011 -0.00000
-8.86533 119.04875 -8.86185 -0.03029 -0.00011
-0.03030 -8.86185 119.04876 -8.86185 -0.03030
-0.00011 -0.03029 -8.86185 119.04875 -8.86533
-0.00000 -0.00011 -0.03030 -8.86533 118.02299

Inductance (nH/m)

312.71680 23.42397 1.83394 0.14361 0.01128
23.42397 311.76042 23.34917 1.82812 0.14361
1.83394 23.34917 311.75461 23.34917 1.83394
0.14361 1.82812 23.34917 311.76042 23.42397
0.01128 0.14361 1.83394 23.42397 312.71680
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RLGC: Formulation Method

LN D ~ 350um
R k S RO R LT W IR B e b
— e \. = NI 2 pm i e I —
R TR AT
- o e §=32 100 ym
de-z% \/f\b, [ A A A §‘1 > i
R 0').'*'. '. 150 um &§=43 200 um
N TR R R ST LT
T w
y=dm.2

Closed-Form Spatial Green's Function

* Computes 2-D and 3-D capacitance matrix in multilayered dielectric
* Method is applicable to arbitrary polygon-shaped conductors

* Computationally efficient

Reference

— K. S. Oh, D. B. Kuznetsov and J. E. Schutt-Aine, "Capacitance Computations in a Multilayered Dielectric
Medium Using Closed-Form Spatial Green's Functions," IEEE Trans. Microwave Theory Tech., vol. MTT-
42, pp. 1443-1453, August 1994.
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Multilayer Green's Function

Optional Top Ground Plane

Bottom Ground Plane

[ )
[ )
o o
[ J
L B g T
° ®
\ : ) \ )
DA, I \\‘//
[ ) o
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[}
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Extraction Program: RLGC

RLGC computes the four transmission line parameters, viz., the capacitance
matrix C, the inductance matrix L, the conductance matrix G, and the
resistance matrix R, of a multiconductor transmission line in a multilayered
dielectric medium. RLGC features the following list of functions:

—
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RLGC - Multilayer Extractor

« Features

— Handling of dielectric layers with no ground plane, either top or bottom ground plane (microstrip
cases), or both top and bottom ground planes (stripline cases)

— Static solutions are obtained using the Method of Moment (MoM) in conjunction with closed-form
Green’s functions: one of the most accurate and efficient methods for static analysis

— Modeling of dielectric losses as well as conductor losses (including ground plane losses

— The resistance matrix R is computed based on the current distribution - more accurate than the
use of any closed-form formulae

— Both the proximity effect and the skin effect are modeled in the resistance matrix R.

— Computes the potential distribution

— Handling of an arbitrary number of dielectric layers as well as an arbitrary number of conductors.
— The cross section of a conductor can be arbitrary or even be infinitely thin

e Reference

— K. S. Oh, D. B. Kuznetsov and J. E. Schutt-Aine, "Capacitance Computations in a Multilayered Dielectric Medium Using Closed-
Form Spatial Green's Functions," IEEE Trans. Microwave Theory Tech., vol. MTT-42, pp. 1443-1453, August 1994.
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RLGC - General Topology

}_ 51 350 um
70 pm 5 | ] |
&=3.2 100 pm 1
I
> e &—4.3 200 pm
150 um

—

Three conductors in a layered medium. All conductor dimensions
and spacing are identical. The loss tangents of the lower and upper
dielectric layers are 0.004 and 0.001 respectively, the conductivity of
each line is 5.8e7 S/m, and the operating frequency is 1 GHz
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3-Line Capacitance Results

350 pm

70pmi i |<_>|

|
+ =3.2 100|,|m¢
¢ ‘ — r

: - _>|150{‘_ -43 200 ym

Capacitance Matrix (pF/m)

4
4
N
N
N
N
N
N

14209 -21.765 —0.8920]

145.33  -23.630 —1.4124

—21.733 93.529  -18.098 22,512 93774 —17.870

| 0.8900 —18.097  87.962 _ -1.3244 -17.876 87.876 |
Delabare et al. RLGC Method
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Modeling Vias

y
y=di
1 X
y=0
.

Via in multilayer medium Equivalent circuit

ECE 546 — Jose Schutt-Aine
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Modeling Discontinuities

> : > " T e
T sel I
Open Bend
1) | I L’l I‘lj_
41>| |47 . ¢
: T
Step

T-Junction
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3D Inductance Calculation
Loop Inductance

i I — /
/1
Y
I
-— | / K
O

loop

=2 [ Bedi=— [ (vxi)-da

()
QUESTION: Can we associate inductance with piece
of conductor rather than a loop? = PEEC Method*

*A. E. Ruehli, "Equivalent Circuit Models for Three-Dimensional Multiconductor

Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 22, no. 3, pp.
216-221, Mar. 1974.
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Partial Inductance (PEEC) Approach

QUESTION: Can we associate inductance
with piece of conductor rather than a loop?

/ I —

4// R

y di-dI;
Lloop Z o j I jj ‘ daidaj

i=1j=14% ]ala]lll]4

i =7

DEFINITION OF PARTIAL INDUCTANCE

dl,-dl,

I u
Lyij = 4_HHJ fdada
a;a; ”a.a.z.z.‘i”i—rj‘

ECE 546 — Jose Schutt-Aine

39



Circuit Element K
[K]=[L]"
- Better locality property
 Leads to sparser matrix
* Diagonally dominant
« Allows truncation of far off-diagonal elements

* Better suited for on-chip inductance analysis

e ILLINOIS
X i wd Computer Engineering
niversity of Illinois at Urbana-Champaign

ectrical ax
u ersity 1

ECE 546 — Jose Schutt-Aine




Locality of K Matrix

(114 426 254 1.79 1.38] 103 341 -7.80 —431 -3.76]
426 114 426 254 1.79 341 114 -31.6 —-6.67 -4.31
[L]=|2.54 426 114 426 2.54 [K]=|-7.80 -31.6 115 -31.6 -7.80
1.79 2.54 426 114 426 431 -6.67 -31.6 114 -34.1
1138 1.79 2.54 426 114 |-3.76 -4.31 -7.80 -34.1 103 |
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Package Inductance & Capacitance

Component Capacitance Inductance
(pF) (nH)

68-pin plastic DIP pinf 4 35
68-pin ceramic DIP pin{ § 7 20
68-pin SMT chip carrieri 2 7
68-pin PGA pinf 2 7
256-pin PGA pinf 5 15
Wire bond 1 1
Solder bump 0.5 0.1

T No ground plane; capacitance is dominated by wire-to-wire component.

T+ With ground plane; capacitance and inductance are determined by the
distance between the lead frame and the ground plane, and the lead length.

I-I\ [
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Metallic Conductors

Area
«—W—>
o . Length
Resistance: R R=
o - Area

Resistance per unit length

Package level On-chip submicron
W =3 mils W = 0.25 microns
R =0.0045 QQ/mm R =422 QO/mm
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Metallic Conductors

Conductivity
(Q"'m™ x107)

Silver 6.1

Copper 5.8

Gold 3.5

Aluminum 1.8

Tungsten 1.8

Brass 1.5

Solder 0.7

Lead 0.5

Mercury 0.1

e -
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Dielectrics

» Dielectrics contain charges that are tightly
bound to the nuclei

» Charges can move a fraction of an atomic
distance away from equilibrium position

» Electron orbits can be distorted when an
electric field is applied
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Dielectrics

» Charge density within volume is zero
» Surface charge density is nonzero

T T D
=+

cDED D+ .+
= PEDC D [+
>

D=¢ (1+y . )E=¢cE
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Dielectric Materials

e e

i i

1
\NiIc
e N
(m/ns)
Polyimide 25-3.5 0.16-0.19
Silicon dioxide 3.9 0.15
Epoxy glass (FR4) 5.0 0.13
Alumina (ceramic) 9.5 0.10

ECE 546 — Jose Schutt-Aine
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Conductivity of Dielectric Materials

Conductivity
Q'm™’
Germanium 2.2
Silicon 0.0016
Glass 1010- 1014
Quartz 0.5 x10Y

o
Loss tangent: tano =—
WE

ECE 546 — Jose Schutt-Aine
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Combining Field and Circuit Solutions
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Field Solution

Network

Description

| Macromodel

Generation

- Bypass extraction
procedure through the use
of Y, Z, or S parameters
(frequency domain)

ECE 546 — Jose Schutt-Aine
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Full-Wave Methods

VxE = _aa_lf Faraday’s Law of Induction

VxH=J +% Ampére’s Law

V-D=p Gauss’ Law for electric field
V.-B=0 Gauss’ Law for magnetic field

FDTD: Discretize equations and solve
with appropriate boundary conditions

ECE 546 — Jose Schutt-Aine
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FDTD - Formulation

» FDTD solves Maxwell’s equations in time-domain

a_E:LV><H
ot &,
a—H:—LVxE
ot Hy

* Problem space is discretized
« Derivatives are approximated as

ou _u(v, +Av)—u(v, —Av)
ov 2Av

* Time stepping algorithm
* Field values at all points of the grid are updated at
each time step

ECE 546 — Jose Schutt-Aine
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Finite Difference Time Domain (FDTD)

Space Discretization

cCr ILLINOIS

Pl etr d(_ mputer r
Univ t. 1111 at Urba u p

ECE 546 — Jose Schutt-Aine

52



FDTD - Yee Algorithm

c At

E"(i,j,k)=E"" +;A—y(H:‘”2 (i, j.,k)-H! " (i,j-1,k))
_Eﬁ(]_[n—l/z (i ] k)_Hn—l/Z (i ] k—l))
g AZ y b b y 9 b
5 H;m/z (i,j,k) _ H)':_l/z +£%(E: (i,j+l,k)—E: (i,j,k))
H Ay
AV S n. .
+;E(Ey iz (l,],k-l—l)—Ey (z,],k))
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Absorbing Boundary Condition: 2D-PML Formulation

Simulation Medium PML Medium
6E, OH, . OBy, p _OH,
80 = 0 at X a
ot oy b
OE
e aE_Y:_aHZ 80—y+GEy:—aHZ
° bt Ox ot O0X
8HZ _ 8EX B aEy L, aHZ +o* Hz i aEx e aEY
MO 8'[ ay 6X AL at 8}7 8X
y
X
G oF
So Mo

No reflection from PML interface
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Importance of the PML

» Example: Simulation of the sinusoidal point source

PML iS llonll

05

i

s O Ss LY i

o R N G M
4 iy St ALy
A

0.5 3 1
‘0 : )
S ) P t‘*ff;'}""o‘a\'}\ ':::O"'l B, i
Aty i L Sl 0.5 e i
AT el des vy Nl i NN
L A e Rl A il e e ey
#{5'4‘%6:‘0"“‘40‘0“.\‘\||,\\\“\3 P \\s::?’:ﬂﬂ’;f G i]ﬂ ": “t“\'\'}\\\ it ‘\\\“ 0 .;,::‘:@“’:‘: j‘f;;:::g::‘:‘.l:&s‘&
1 Jile: W
05 ' \“!!t.l! . ..""f# i Bt i:’ﬁ;”;!?:““
-U. ) i S S T !
60 L) A -0.5
60 cm 4o Ay 60
1)

ey
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Some Features of the FDTD

** Advantages
 FDTD is straightforward (fully explicit)
* Versatile (universal formulation)

 Time-domain (response at all frequencies can be obtained
from a single simulation)

 EM fields can be easily visualized

** Issues

e Resource hungry (fields through the whole problem space
are updated at each step)

* Discretization errors
 Time domain data is not immediately useful
* Problem space has to be truncated

ECE 546 — Jose Schutt-Aine
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Pros of The FDTD Method

FDTD directly solves Maxwell’s equations providing all
information about the EM field at each of the space sells at
every time-step

Being a time-domain technique, FDTD directly calculates the
impulse response of an electromagnetic system. Therefore? A
single FDTD simulation can provide either ultrawideband
temporal waveforms or the sinusoidal steady-state response
at any frequency within the excitation spectrum

FDTD uses no linear algebra

Being a time-domain technique, FDTD directly calculates the
nonlinear response of an electromagnetic system

ECE 546 — Jose Schutt-Aine

58



CCL- ILLINOIS

Elec
Uni\'c1

lI]l

L l

Ll p

Cons of The FDTD Method

Computationally expensive, requires large random access
memory. At each time step values of the fields at each point
in space are updated using values from the previous step

FDTD works well with regular uniform meshes but the use of
regular uniform meshes leads to staircasing. Implementation
of nonuniform meshes, on the other hand, requires special
mesh-generation software and can lead to additional
computer operations and instabilities

Requires truncation of the problem space in a way that does
not create reflection errors
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Numerical Dispersion

* Occurs because of the difference between the phase
speed of the wave in the real world and the speed of
propagation of the numerical wave along the grid

Distortion of the pulse
propagating over the grid

(time domain data is recorded
at different reference points)

04 i i i i |
0 1000 2000 3000 4000 5000 6000

Time
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Setting Up a Simulation

» Main steps:
v'Discretize the problem space — create a mesh
v'Set up the source of the incident field

v'Truncate the problem space — create the
absorbing boundary conditions (ABC)

One-dimensional
incident array

i jb — ./_7 /_/// _i//_PNE/ | Incident plane
| Total field | subtracted out
| l here.
| I
. . e || o) A0 4 g
> We are using (mainly): sond Kl D 2 o |
v'Rectangular mesh —x ' zzmlse=e[sp"“"“’j

v'Plane wave source with Gaussian distribution
v Perfectly matched layer (PML) for the ABC | :

~_r re-
Elee ILLINOIS ECE 546 — Jose Schutt-Aine

Uni\'m l Ill L l (_,l p




3D FDTD for Single Microstrip Line

Computational domain size: 90x130x20 cells

(in X, y, and z directions, respectively)

Cell size 0.026 cm

Source plane at y =0

Ground plane at z=0

Duroid substrate with relative permittivity 2.2.
Electric field nodes on interface between
duroid and free space use average permittivity
of media to either side.

*  Substrate 3 cells thick

*  Microstrip 9 cells wide

* ¥ X X

Figures on the left show a pulse propagating along the
microstrip line. A Gaussian pulse is used for excitation.
A voltage source is simulated by imposing the vertical
Ez field in the area underneath the strip.

140




3D FDTD for Patch Antenna

5 Microstrip antenna at ___.___Mi(;rds'ff-ib éﬁ’ténna_at
03’ T:3€)O | T:4OO

0.3 x

150

L 12.45 mm |

y \lZ x
Patch dimensions 47 x 60 cells w:

V. g=22 I794

2.09 mm
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Simulation of the Microstrip Antenna

E, field at [430] time step

Qg




Frequency-Dependent Parameters

S,, for the patch antenna s“@):zo.log[abs(ffﬂinc)n

ftt(ref)

S » for the Microstrip Antenna

35| ] f ---- MEASUREMENT

~40
a0} ] A | ——— CALCULATION-
“ 2 s 5 5 0 12 14 16 18 20 ‘mﬂ R 6 &8 10 1z 14 15 18 20
Frequency, GHz Frequency (GHz)
Our simulation By D. Sheen et. al
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Simulation of Microstrip Structures

* Source setup:

* Mic :
Ly = 1245 mm ) rd,_,.x
-t = =

La = 1600 mm
: 4
I 31 ﬁ_’?%# mm
P oy
246 mm

e ILLINOIS
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> ri 1d Computer Engineering
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Microstrip Coupler
Branch line coupler

._,“}E. -t MEASUREMENT
35k 1 a5k —— CALCULATION
T B m e e e R L e

Frequency, GHz Frequency [GHz)
Our simulation By D. Sheen et. al
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Single Straight Microstrip

 Comparison with measured data

ol
_5 L
S ol
-25
30k
35+
_40[] 2 4 6 8 10 1I2 14 16 18 20
Freq y. GHz
i ] Comparison is only qualitative,
5& ey 1 since parameters used correspond
= | to the line with (length/2)
25 L ]
30t
35L ————— FDTD
Measured
40 ;2 :Il Eli Eli 1I[] 1I2 1I4 1I6 1I8 20
Frequency, GHz
FI\.I-
Elects {(LG!ENOIS ECE 546 — Jose Schutt-Aine
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|S‘|1|' dB

35

-40
o

Single Straight Microstrip

Simulation with length doubled (example of

what happens when the mesh is bad)

10

|521|' dB

20+

-3+

- FOTD
Measured

1 1
2 4 B g 10 12

Freguency, GHz

1 I I 40

m———— FOTD
Measured

14 15 13 20 a
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Single Straight Microstrip

* Simulation with the adjusted mesh

S,, of a Straight Line S,, for a Straight Line
10 T T T T T T T T T 10 T ¥ T ) T T J T T
5t . 5F -
0r 7 0 N i - - -
5E AN
0} Aok _
m w
o g
— 15 —= 15F -
- "
-20 -] i
=251 25t _
S0f 30 .
35) e FOTD a6} ===-FDTD  {
Measured Measured
_40 1 1 1 1 1 1 1 T T _‘40 L I L L | | . | .
2 4 6 8 10 12 ¥ 1% 18 2 0 2 4 6 8 10 12 14 16 18 20

Frequency, GHz Freqguency, GHz
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Meandered Microstrip Lines

 Test boards were fabricated
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Simulation and Measurements

e Scattering parameters i
for the m-line #3

10

~15]

S,,|. 4B
1521/, dB

20

25t

S35 %8 ] ammaa

Simulation
Measured -30¢
40 . —— FDTD

Measured |-

B2 4 s 8 10 12 14 1 18 0 5 10 15 20
Frequency, GHz Frequency, GHz
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Comparison with ADS Momentum

* The line was also simulated with Agilent ADS
Momentum EM simulator

1S ; 1| for Meander Line #3 Pase of 5 1 for Meander Line #3

D 15 % \ K
— ' kY
w 20 \ 5 E
28 |
30 L .
) T ADS W ; ] Measured
omentum FOTD B
T W ——FDTD 7 ===~ ADS Momentum
Measured
-40 ' . . ' ' ' : ' 42 :Il Eli Eli 1|u 1|2 1|4 1|5 1|s 2
2 4 6 B 10 12 14 16 18 20 Frequency. GHz
Frequency, GHz quency,
e ILLINOIS
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Comparison with ADS Momentum

S,, parameters

|821| for the Meander Line #3

—=— ADS Momentum

Phase of 821 for the Meander Line #3
T

! ' ' ' ' ' ——FDTD
Measured
3k i _
| |
) | |
AR |
o | | | | i
© g IE\ \
— ()] US; | |
2l g |
2] 2 | |
£ | :
| |
-2 1 | _
Measured ql ;|
301 3t i
30 d FDTD
32 | | | | | | .« ADIS Mr.}m:antum 4 | | | | | | | |
0 2 4 6 8 0 12 14 16 18 2 2 4 6 § 10 12 1 16 18 a0
Frequency, GHz Frequency, GHz
e ILLINOIS
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