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Maxwell’s Equations

vxp--8 Faraday’s Law of Induction

ot

VxH=J +58_D Ampére’s Law
l

V-D=p Gauss’ Law for electric field
V-B=0 Gauss’ Law for magnetic field

Constitutive Relations

B=uH D=¢E

~_r re-
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Why Transmission Line?

Wavelength : A

propagation velocity
frequency

k:
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Why Transmission Line?

In Free Space

At 10 KHz : A=30 km

At10 GHz : A=3 c¢m

Transmission line behavior is prevalent when the
structural dimensions of the circuits are comparable
to the wavelength.
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Justification for Transmission Line

Let d be the largest dimension of a circuit

c1rcu1t

/\ /\ /\

If d << A, a lumped model for the circuit can be used
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Justification for Transmission Line

T
ANVANYVA

VARV

If d = A, or d > A then use transmission line model
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Modeling Interconnections

: Mid-range :
Low Frequency | Frequency . High Frequency
| L |
Cr2 — _|_:|: Cyp/2 — ‘.
Short Ly/2 L2 Transmission

_NYV\IN\/V\_ Line
Lumped

Reactive CKT
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Single wire near ground

it

h

W

ford<<h, Z,6 = L ln(4h)
2t N e \d

Z, =120 cosh™(D/d)

ln(ﬁj — iln4—h
d d
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Single wire between grounded
parallel planes ground return

v ®—*
Lo

v
75l 1)
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Wires in parallel near ground

N
+@ aOKl

Wm

ford<<D, h

— (69/\/5)10&0 {(4h/d)\/l +(2h/D)2 }
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Balanced, near ground

N
+@ @

W

ford<<D, h

Z,=(276/z, )log,, \/ljl;/;;)h)

~~
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Open 2-wire line in air

ol

Z, =120 cosh™(D/d)
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Parallel-plate Transmission Line
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L =  EQ \f(ma,w)  


C =  EQ \f(ew,a)  


Types of Transmission Lines

F-Jr;r;rjji I Bl I ol
| _~ | :
1.-lr--lr--lr--lr Coplanar line
Waveguide
N
]
Stripline Slot line

Microstrip

~_r re-
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Coaxial Transmission Line

TEM Mode of Propagation

b
L—ulna

27w
~ In(b/a)

C
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L =  ln  EQ \f(b,a)  


C =  EQ \f(2pe,ln(b/a))  
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Coaxial Air Lines

Infinite Conductivity

z, = N*E 1 (bra)

? 27

Finite Conductivity

JUE (1/a+1/b)
= In(b/
‘e 2 (b/a) 4\/7zf,uc7 ln(b/a)(
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Coaxial Connector Standards

(>

Connector Frequency Range

14 mm DC - 8.5 GHz
GPC-7 DC - 18 GHz
Type N DC - 18 GHz
3.5 mm DC - 33 GHz
2.92 mm DC -40 GHz
2.4 mm DC - 50 GHz
1.85 mm DC - 65 GHz
1.0 mm DC - 110 GHz
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Microstrip

Electie field lines

Magnetic field lines

~—~r~re *
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userdict /md known{/CricketAdjust true def}{/CricketAdjust false def}ifelse 


/mypsb /psb load def /mypse /pse load def


/psb {} store /pse {} store


currentpoint /picOriginY exch def /picOriginX exch def


currentpoint pop /newWidth exch picOriginX sub def


currentpoint /newHeight exch picOriginY sub def pop


/newXScale newWidth 247 div def


/newYScale newHeight 383 div def


/psb /mypsb load store


/pse /mypse load store
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Microstrip

Microstrip Characteristic Impedance

100 A~

o
a
A
90 - A
80 - nn ] h =21 mils
A & h=14mils
w a X h=7mils
E 70
o 2"
° A
N 60 - a
50 X %
40 x
30 . T . T
0 1 2
W/h

dielectric constant : 4.3.
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Telegraphers’ Equations

L

N M N

V ¢ —”— — —
.- - -
- Az >
L: Inductance per unit length.
C: Capacitance per unit length.
oy _,d Assume —a—sza)LI
0z ot time-harmonic Oz
dependence ‘
ol
0z ot , L~ € 0z

FI\ ~—
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TL Solutions

L

<
@)
I

| |
||
|
| |

2 oV
_E(G_Vj:_a 4 —]a)Lg:—ja)Lja)CV —> . =—w’LCV
oz\ Oz 0z 0z Oz

o (el o1 ov 0’1 )
——| — |=——=joC—=—joljoC] ) ——5 =—0CLI
82(82) oz T e Y oz’
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TL Solutions

(Frequency Domain)

e

forward wave

>

-
backward wave

Forward Wave  Backward Wave

/ — ——
p=aJLC Viz)= Ve’ + Ve
7 — L I(z)= Le_mz — Le”ﬁz

> \Nc Z, Z,

— —
Forward Wave  Backward Wave
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TL Solutions

Propagation constant S =w+LC Propagation velocity v =

L
Characteristic impedance Z_ = E

Forward Wave Backward Wave

/. N

V(z,t)= fV+ cos(a)t —,sz + fV_ cos(a)t + ,sz

I(z,1) = %cos(a)t —,Bz)—%cos(a)t + fz)

(] (]
“ J “ J

Forward Wave Backward Wave
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1

JLC

Y
/
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Reflection Coefficient

At z=0, we have V(0)=Z,1(0)

| ! =]

7=-1 Z, z=0 Z

But from the TL equations:

Vio)=v_+Vv.
V V Z—R(V+—V_):V++V_

VA

1(0) =

o

Z Z

Which gives V.

where Iz =

= 1_‘RV+

Z.-Z

o

L, +7Z,

1s the load reflection coefficient

ECE 546 — Jose Schutt-Aine
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Reflection Coefficient
-1t Z,=7,I'y=0, no reflection, the line is matched
- If Z, = 0, short circuit at the load, I'=-1

- If Z, = inf, open circuit at the load, I';=+1

V and [ can be written in terms of I'y

Viz)=V, [e_mz T FReﬂﬂZ} V(z)=V.e'” [1 + FRe”jﬂZ]
I(z)= Z_:[ejﬂz _ FRe+jﬂz:| I(z) = V+eZOJ'ﬁZ [1 - FRe+2j,BZ:|

ECE 546 — Jose Schutt-Aine
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Generalized Impedance

|- / |
Z=- Z, z=0) Zn
—
Z(-1=Z;, L

—JjBz +jpz
Z(z):V(Z)zZ{e +I e }

1(2) s

Z(—l)— Z.+ jZ tan pl
| Z + jZ,tan Sl

transformation
equation

} Impedance

cCr ILLINOIS
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Generalized Impedance

|- !
z7=-{ Z, 7=() Zn
—
L(-1)=2L. L

- Short circuit Z,=0, line appears inductive for 0 </ <A/2
Z(—l)=jZ tan Bl

- Open circuit Z, =» inf, line appears capacitive for 0 </ <A/2

- If I =A/4, the line is a quarter-wave transformer
Z2
Z(-l)=—=

R

ECE 546 — Jose Schutt-Aine

27



Electrical ar
University of Il

- ILLINOIS
1d Computer Engineering
linois at Urbana-Champaign

Generalized Reflection Coefficient

Backward traveling waveat z  V, (2)

[(z)= . -
Forward traveling waveatz V. (z)
V_e+jﬁz V_ +2jpz +2 jpz
I'(z)= Vo = v e =1"e

Reflection coefficient

, , [(=)=T "
transformation equation

2y = 1+1'(2) : _Z(Z)—ZO
() ZOI—F(z) 2 )_Z(z)+ZO

ECE 546 — Jose Schutt-Aine
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Voltage Standing Wave Ratio (VSWR)

Viz)=V.e " [1 +T Re”fﬂz} We follow the magnitude of the

voltage along the TL
V (2)| =V e |14 T 7| =V |[1 + T e
Maximum and minimum
Re[V] magnitudes given by

2 :[1+|1“R|]

V iin = [1 B |FR H

—
- -"-..

ECE 546 — Jose Schutt-Aine
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Voltage Standing Wave Ratio (VSWR)

Define Voltage Standing Wave Ratio as:

VSWR = Vmax _ 1+ |FR|
Vmin 1_|1_‘R|

Re[V]

- -

______

It is a measure of the interaction between
forward and backward waves

ECE 546 — Jose Schutt-Aine
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VSWR - Arbitrary Load

Shows variation of amplitude along line

ECE 546 — Jose Schutt-Aine
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VSWR - For Short Circuit Load
o—

7=0) Short

|<’}LI2 z=1

Voltage minimum is reached at load

ECE 546 — Jose Schutt-Aine
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VSWR - For Open Circuit Load

z=0  Open

V]

2P . —

Voltage maximum is reached at load

ECE 546 — Jose Schutt-Aine
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VSWR - For Open Matched Load

Vi

z =1

No variation in amplitude along line

ECE 546 — Jose Schutt-Aine
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Application: Slotted-Line Measurement

Ly
Unknown

7z=0

- Measure VSWR =V

/V
- Measure location of first minimum

max min

ECE 546 — Jose Schutt-Aine
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Application: Slotted-Line Measurement

VSWR -1

W Atminimum, I'(z) =pure real = —|F R|

Therefore, ['(~d, ;) =T e/’ = ||

min

So, ', = —|FR|e+2jﬂdmm

Since |['|=

VSWR +1

then I, = —( VTR _1)e+2jﬂdmi“

VSWR +1

1+1°
/. =7 R
and Z4; O(I—FR]

ECE 546 — Jose Schutt-Aine
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Summary of TL Equations
Voltage Current
Viz)=V.e'” [1 +T e/ ] [(z) = —te [1 T, ]

AR VAR [
Impedance Transformation =& Z (—I):ZO R ]  tan f
Z + jZ,tan fl

Reflection Coefficient Transformation & ['(-1) =T ze~"”
1+1(z)

Reflection Coefficient — to Impedance = 7(z)=7
"1-T(2)

Z(z)~Z,
Z(z)+ 7,

Impedance to Reflection Coefficient ¥ ['(z)=

ILLINOIS
=y oy =y
Electrical and Computer Engineering
University of Illineis at Urbana-Champaign
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Determining V,

For lossless TL, V and I are given by

V(z)=V.e'” [1 + FRe”jﬂZ}
reflection coefficient

at the load V e P
_ ¥ . +2jpz
72 1) == [1-T e’ |
Y Z+Z

Atz=-1, Vi=ZJI(-)+V (=)
'-'"'ILLINOIS

ECE 546 — Jose Schutt-Aine
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Determining V,

this leads to

or

cCr ILLINOIS

Pl etr d(_ mputer l- ngiy
Uni t fm at Urba (_,h mp ign

ZS
VS
. o 7 .
Ve =V e (14T ")+ =57, e
z

o

_ Z
V=V e +T, e +=5e7" T, =Se

. / .
Vo=V | e 1+=% |+ e 7| 1-=£

ECE 546 — Jose Schutt-Aine

(1 — FRe_zjﬁl )
. 4 —Jjpl
ZO
ZS
/
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Determining V,

/
Divide through by (1 + Z—Sj =

0

i
TS

+

-1
: Y4
with T = 1+ =5 = Z,
Z Z,+7,
T.V.e '
From which V.=—7T"T"—
1-T'.I e

ECE 546 — Jose Schutt-Aine
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TL Example

Z =25 Q - M4 ™ Ig
+ — +
_ 1.i0° Is Z,. =50 2 =75 Q)
Velell'v o Vo 2ZR =75
A
-— d

A signal generator having an internal resistance Z, =25 Q
and an open circuit phasor voltage V, = 1e° volt is connected
to a 50-Q lossless transmission line as shown in the above
picture. The load impedance is Zz=75 Q and the line length
is A/4.

Find the magnitude and phase of the load current I.

cCr ILLINOIS

(_,ampg
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TL Example — Cont’

—t A/4 -l
ZS = 25 Q | IR
+ — +
Ve 16y () s Z,=50 €2 Vp SZr=75Q
A
-— d
TV e " 7 50
V. = — T = 0 =2/3

=

S

cCr ILLINOIS

"o 1=, e’

ZS _ZO

25-50

L +7Z,

T 25150

T Z 47 50425

——1/3 T,=

ECE 546 — Jose Schutt-Aine

Z,-Z, 75-50

= =1/5
Zy+Z, T15+50
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TL Example - Cont’

2m A 7

] = - —Jjpl _ _
Pl==a=77¢ /
- 2/3D(=) _ —j2/3 —_5/7
1-(-1/3)A/5)(-1) 1-1/15
V. =-j0.714285V
v 0.714285 0.714285x%0.8
[, =—[1-T,|=—/ 1-02]=—j
K Z[ el== 50 [ |==J 50

o

I, =—;0.014285 A

- ILLINOIS
1d Computer Engineering
linois at Urbana-Champaign
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Geometric Series Expansion

Since ‘FSFRe‘zjﬂl‘ <1

V, can be expanded in a geometric series form

T.V.e /” N kk 2Bkl _—jpl
V. = 1—;SSrRe‘2ff” v, :TS;VSFSFRe IPH o=

V(z)=T ZV M e ~jU(2k) iz T, ZV rrede —JPI2kH) 4z

k=0
p==
-

—j— [z+(2k+1 —jg[z+(2k+1)l]

+T, ) Ve ™

k=0

V(z)=T, ZVF e

ECE 546 — Jose Schutt-Aine
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TL Time-Domain Solution

_(2k+1)l+zj

V

o

v(z,t) =Ty ) Ty, (t
k=0

+ T, TAE Ny, (r _ kDI Zj
k=0

V

o

at z=0

v(0,0) =T, > Ty, (r
k=0

V

o

) (2k+1)l]

+ T, A Ay, (r kD ]
k=0

V

o

ECE 546 — Jose Schutt-Aine
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TL Time-Domain Solution

At z=-1
v(=1,t) =T, ZF’;F’;VS [t - (2k+1i+ lj
fe=0 v,
X 2k+1)[+1
+T, Y Ty [r { )
S ; ST R VO

v(~1,t) =T, Zr’;r’;vs [z —2—"]}
k=0

V

o

+ T, TACE Y, (r _ 2k j
k=0

V

o

ECE 546 — Jose Schutt-Aine

46



cCr ILLINOIS

TL - Time-Domain Reflectometer

For TDR, Z¢=Z,=» I's=0, and retain only k=1

v(=1,0) =Ty, (t)+ T, v, (r — 2—lj

21/,

ECE 546 — Jose Schutt-Aine
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Wave Shifting Method

Vi (f) Forward traveling wave at port 1 (measured at near end of line)

Vi (f) Forward traveling wave at port 2 (measured at far end of line)

Vi (t) Backward traveling wave at port 1 (measured at near end of line)

V,,(¢) Backward traveling wave at port 2 (measured at far end of line)

I-I\ [
Electrical a{(L&!ﬂO’S ECE 546 - Jose Schutt-Aine 48
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Wave Shifting Solution®

Vri Vi2
7 — —> VA

Vv, -+ 4:— V.,
-1 o line length "~ 3
7 = delay=

velocity
1-* _ Zl _Zo
vfl(t) = F1Vb2(t_7)+TlVg1(t) L Z +7Z,
V() =T, (t—1)+ TV, (1) Z,
h=73z
V() =v,(t—17) !
Vi (1) = v, (t —7) r, = Z,—Z,
Z,+ 7,
Z
Z,+7,

*Schutt-Aine & Mittra, Trans. Microwave Theory Tech., pp. 529-536, vol. 36 March 1988.
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Frequency Dependence of Lumped Circuit Models

— At higher frequencies, a lumped circuit model is no longer
accurate for interconnects and one must use a distributed

model

— Transition frequency depends on the dimensions and relative
magnitude of the interconnect parameters.

¢ 03x10° 035
 10dy/e, Cf

ECE 546 — Jose Schutt-Aine
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Lumped Circuit or Transmission Line?

 Determine frequency or bandwidth of signal

— RF/Microwave: f= operating frequency
— Digital: =0.35/t,

 Determine the propagation velocity and wavelength
— Material medium v=c/(g,)"?
— Obtain wavelength A=v/f

« Compare wavelenth with feature size
— If A>>d, use lumped circuit: L,,,= L* length, C,,;= C* length
— If A= 10d or A<10d, use transmission-line model

FI\ ~—
Electr {4€[I~OIS ECE 546 — Jose Schutt-Aine
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Frequency Dependence of Lumped Circuit Models

Level Dimension Frequency Edge rate
PCB line 10 in > 55 MHz <'ns
Package |l in > 400 MHz <0.9 ns
VLSI int* 100 um > 8 GHz <50 ps

* Using RC criterion for distributed effect

cCr ILLINOIS
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