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Faraday’s Law of Induction

Ampère’s Law

Gauss’ Law for electric field

Gauss’ Law for magnetic field

Constitutive Relations

BE
t

∂
∇× = −

∂

H J∇× = D
t

∂
+

∂

D ρ∇ ⋅ =

0B∇ ⋅ =

B Hµ= D Eε=

Maxwell’s Equations
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λ

λ

z

Wavelength : λ

λ = 
propagation velocity

frequency

Why Transmission Line?
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In Free Space

At 10 KHz : λ= 30 km

At 10 GHz : λ = 3 cm

Transmission line behavior is prevalent when the 
structural dimensions of the circuits are comparable 
to the wavelength.

Why Transmission Line?
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Let d be the largest dimension of a circuit

If d << λ, a lumped model for the circuit can be used

circuit

z

λ

Justification for Transmission Line
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circuit

z

λ

If d ≈ λ, or d > λ then use transmission line model

Justification for Transmission Line
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Short

Lumped
Reactive CKT

Transmission
Line

Low Frequency
Mid-range
 Frequency High Frequency

or

Modeling Interconnections
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Single wire near ground 
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Single wire between grounded 
parallel planes ground return 

o
1 4Z  = ln

2
h
d

µ
π ε π

 
 
 



ECE 546 – Jose Schutt-Aine 10

Wires in parallel near ground 

D

d++

h

for d << D, h 

( ) ( ) ( ){ }2
1069 / log 4 / 1 2 /O rZ h d h Dε= +
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Balanced, near ground

D

d+

h

for d << D, h 

( ) ( )
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10 2

2 /
276 / log
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D h
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+  
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D

d

Open 2-wire line in air

-1
oZ  = 120 cosh (D/d)
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Parallel-plate Transmission Line

µ, ε

w

a

L = 
µa
w   

C = 
εw
a   
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L =  EQ \f(ma,w)  


C =  EQ \f(ew,a)  
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εr

Coaxial line

Air

Waveguide
Coplanar line

er

er

Microstrip

er

Stripline

er

Slot line

Types of Transmission Lines
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Coaxial Transmission Line

a
bµ

ε

L = µ ln 
b
a  

C = 
2πε

ln(b/a)  

TEM Mode of Propagation 
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L =  ln  EQ \f(b,a)  


C =  EQ \f(2pe,ln(b/a))  
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Coaxial Air Lines

a
bµ

ε

( )/
ln /

2oZ b a
µ ε
π

=

( ) ( ) ( )1/ 1//
ln / 1 1

2 4 ln( / )o

a b
Z b a j

f b a
µ ε
π π µσ

 +
= + − 

  

Infinite Conductivity

Finite Conductivity
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Coaxial Connector Standards

a
bµ

ε

Connector Frequency Range
14 mm  DC - 8.5 GHz
GPC-7  DC - 18 GHz
Type N  DC - 18 GHz
3.5 mm DC - 33 GHz
2.92 mm DC - 40 GHz
2.4 mm DC - 50 GHz
1.85 mm DC - 65 GHz
1.0 mm DC - 110 GHz
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Microstrip


[image: image1.wmf]Cricket Software


 


Ê


userdict /md known{/CricketAdjust true def}{/CricketAdjust false def}ifelse 


/mypsb /psb load def /mypse /pse load def


/psb {} store /pse {} store


currentpoint /picOriginY exch def /picOriginX exch def


currentpoint pop /newWidth exch picOriginX sub def


currentpoint /newHeight exch picOriginY sub def pop


/newXScale newWidth 247 div def


/newYScale newHeight 383 div def


/psb /mypsb load store


/pse /mypse load store


e






ECE 546 – Jose Schutt-Aine 19

Microstrip
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Microstrip Characteristic Impedance

W/h
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 (o
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dielectric constant : 4.3.
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L:  Inductance per unit length.

C:  Capacitance per unit length. 

L

∆z

C

I

V

+

-

V IL
z t

∂ ∂
− =

∂ ∂

I VC
z t

∂ ∂
− =

∂ ∂

V j LI
z

ω∂
− =

∂

I j CV
z

ω∂
− =

∂

Assume
time-harmonic
dependence

, ~ j tV I e ω

Telegraphers’ Equations
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L

∆z
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ω∂
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2
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2
I CLI

z
ω∂

= −
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2V V Ij L j Lj CV
z z z z

ω ω ω∂ ∂ ∂ ∂ − = − = = − ∂ ∂ ∂ ∂ 

2∂ ∂ ∂ ∂ − = − = = − ∂ ∂ ∂ ∂ 
I I Vj C j Lj CI

z z z z
ω ω ω

TL Solutions
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( )
Forward Wave Backward Wave

j z j zV z V e V eβ β− +
+ −= +
 

z

Zo β

forward wave

backward wave

LCβ ω=

o
LZ
C

=

(Frequency Domain)

( ) j z j z

o o

Forward Wave Backward Wave

V VI z e e
Z Z

β β− ++ −= −
 

TL Solutions
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( ) ( )( , ) cos cos
Forward Wave Backward Wave

V z t V t z V t zω β ω β+ −= − + +
 

= LCβ ω

o
LZ
C

=

( ) ( )( , ) cos cos
o o

Forward Wave Backward Wave

V VI z t t z t z
Z Z

ω β ω β+ −= − − +
 

1
=v

LC

=
v
f

λ

Propagation constant

Characteristic impedance
Wavelength

Propagation velocity

TL Solutions
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At z=0, we have V(0)=ZRI(0)

But from the TL equations:

(0)V V V+ −= +

(0) + −= −
o o

V VI
Z Z

Which gives 

( )R

o

Z V V V V
Z + − + −− = +

RV V− += Γ

R o
R

R o

Z Z
Z Z

−
Γ =

+ is the load reflection coefficientwhere

Reflection Coefficient
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- If ZR = Zo, ΓR=0, no reflection, the line is matched

- If ZR = 0, short circuit at the load, ΓR=-1

- If ZR inf, open circuit at the load, ΓR=+1

( ) j z j z
RV z V e eβ β− +

+  = + Γ 

( ) j z j z
R

o

VI z e e
Z

β β− ++  = − Γ 

2( ) 1j z j z
RV z V e eβ β− +

+  = + Γ 

2( ) 1
j z

j z
R

o

V eI z e
Z

β
β

−
++  = − Γ 

Reflection Coefficient

V and I can be written in terms of ΓR
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( )( )
( )

j z j z
R

o j z j z
R

e eV zZ z Z
I z e e

β β

β β

− +

− +

 + Γ
= =  − Γ 

( ) tan
tan

R o
o

o R

Z jZ lZ l Z
Z jZ l

β
β

 +
− =  + 

Generalized Impedance

Impedance 
transformation 

equation
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( ) tanoZ l jZ lβ− =

( )
tan

oZZ l
j lβ

− =

- Short circuit ZR=0, line appears inductive for 0 < l < λ/2

- Open circuit ZR  inf, line appears capacitive for 0 < l < λ/2

2

( ) o

R

ZZ l
Z

− =

- If l = λ/4, the line is a quarter-wave transformer

Generalized Impedance
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( )Backward traveling wave at( )
Forward traveling wave at ( )

Γ = = b

f

V zzz
z V z

2 2( )
+

+ +− −
−

+ +

Γ = = = Γ
j z

j z j z
Rj z

V e Vz e e
V e V

β
β β

β

2( ) −Γ − = Γ j l
Rl e βReflection coefficient 

transformation equation

1 ( )( )
1 ( )o

zZ z Z
z

+ Γ
=

− Γ
( )( )
( )

−
Γ =

+
o

o

Z z Zz
Z z Z

Generalized Reflection Coefficient
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2( ) 1j z j z
RV z V e eβ β− +

+  = + Γ 

2 2( ) 1 1− + +
+ += + Γ = + Γj z j z j z

R RV z V e e V eβ β β

max 1 = + Γ RV

min 1 = − Γ RV

Maximum and minimum
magnitudes given by

Voltage Standing Wave Ratio (VSWR)
We follow the magnitude of the
voltage along the TL
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max

min

1
1

+ Γ
= =

− Γ
R

R

VVSWR
V

Voltage Standing Wave Ratio (VSWR)

Define Voltage Standing Wave Ratio as:

It is a measure of the interaction between 
forward and backward waves
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VSWR – Arbitrary Load

Shows variation of amplitude along line
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VSWR – For Short Circuit Load

Voltage minimum is reached at load
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Voltage maximum is reached at load

VSWR – For Open Circuit Load
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VSWR – For Open Matched Load

No variation in amplitude along line
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Application: Slotted-Line Measurement

- Measure VSWR = Vmax/Vmin
- Measure location of first minimum
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Application: Slotted-Line Measurement

At minimum, ( ) pure realΓ = = − ΓRz

Therefore, min2
min( ) −Γ − = Γ = − Γj d

R Rd e β

min2+Γ = − Γ j d
R R e βSo, 

1
1

−
Γ =

+R
VSWR
VSWR

Since min21
1

+− Γ = − + 
j d

R
VSWR e
VSWR

βthen

1
1

+ Γ =  − Γ 
R

R o
R

Z Zand
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Summary of TL Equations

( ) tan
tan

R o
o

o R

Z jZ lZ l Z
Z jZ l

β
β

 +
− =  + 

2( ) −Γ − = Γ j l
Rl e β

1 ( )( )
1 ( )o

zZ z Z
z

+ Γ
=

− Γ

( )( )
( )

−
Γ =

+
o

o

Z z Zz
Z z Z

Impedance Transformation 

Reflection Coefficient Transformation 

Reflection Coefficient – to Impedance 

Impedance to Reflection Coefficient 

2( ) 1− ++  = − Γ 
j z j z

R
o

VI z e e
Z

β β2( ) 1j z j z
RV z V e eβ β− +

+  = + Γ 

Voltage Current
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2( ) 1j z j z
RV z V e eβ β− +

+  = + Γ 

2( ) 1
j z

j z
R

o

V eI z e
Z

β
β

−
++  = − Γ R o

R
R o

Z Z
Z Z

−
Γ =

+

At z = -l, ( ) ( )S SV Z I l V l= − + −

Determining V+

For lossless TL, V and I are given by

reflection coefficient
at the load
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( ) ( )2 21 1j l j l j l j lS
S R R

o

ZV V e e V e e
Z

β β β β+ − + −
+ += + Γ + − Γ

j l j l j l j lS S
S R R

o o

Z ZV V e e e e
Z Z

β β β β+ − + −
+

 
= + Γ + − Γ 

 

1 1j l j lS S
S R

o o

Z ZV V e e
Z Z

β β+ −
+

    
= + + Γ −    

    

this leads to

or

Determining V+
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( )j l j l
S R S SV e e T Vβ β+ −

+ − Γ Γ =

Divide through by 
11 S

o S

Z
Z T

 
+ = 

 

with
1

1 S o
S

o S o

Z ZT
Z Z Z

−
 

= + =  + 
and S o

S
S o

Z Z
Z Z

−
Γ =

+

From which 21

j l
S S

j l
S R

T V eV
e

β

β

−

+ −=
− Γ Γ

Determining V+
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A signal generator having an internal resistance Zs = 25 Ω 
and an open circuit phasor voltage Vs = 1ej0 volt is connected 
to a 50-Ω lossless transmission line as shown in the above 
picture.  The load impedance is ZR= 75 Ω and the line length 
is λ/4.

Find the magnitude and phase of the load current IR.

TL Example
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21

j l
s s

j l
R s

T V eV
e

β

β

−

+ −=
− Γ Γ

50 2 / 3
50 25

o
s

s o

ZT
Z Z

= = =
+ +

25 50 1/ 3
25 50

s o
s

s o

Z Z
Z Z

− −
Γ = = = −

+ +
75 50 1/ 5
75 50

R o
R

R o

Z Z
Z Z

− −
Γ = = =

+ +

TL Example – Cont’
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[ ] [ ]R
0.714285 0.714285 0.8I 1 1 0.2

50 50R
o

V j j
Z

+ ×
= − Γ = − − = −

2
4 2

j ll e jβπ λ πβ
λ

−= = ⇒ = −

0.714285 VV j+ = −

(2 / 3)(1)( ) 2 / 3 5 / 7
1 ( 1/ 3)(1/ 5)( 1) 1 1/15

j jV j+

− −
= = = −

− − − −

RI 0.014285 Aj= −

TL Example – Cont’
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2

0

k k j kl j l
S S S R

k
V T V e eβ β

∞
− −

+
=

= Γ Γ∑21

j l
S S

j l
S R

T V eV
e

β

β

−

+ −=
− Γ Γ

( )2 1

0
( ) j l kk k j z

S S S R
k

V z T V e eβ β
∞

− + −

=

= Γ Γ∑
( )2 11

0

j l kk k j z
S S S R

k
T V e eβ β

∞
− ++ +

=

+ Γ Γ∑

v
ωβ =

( ) ( )2 1 2 11

0 0
( )

j z k l j z k lk k k kv v
S S S R S S S R

k k
V z T V e T V e

ω ω∞ ∞− + + − + +      +

= =

= Γ Γ + Γ Γ∑ ∑

Geometric Series Expansion

V+ can be expanded in a geometric series form

2 1j l
S Re β−Γ Γ ≤Since
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0

(2 1)( , ) k k
S S R s

k o

k l zv z t T v t
v

∞

=

 + +
= Γ Γ − 

 
∑

1

0

(2 1)k k
S S R s

k o

k l zT v t
v

∞
+

=

 + −
+ Γ Γ − 

 
∑

0

(2 1)(0, ) k k
S S R s

k o

k lv t T v t
v

∞

=

 +
= Γ Γ − 

 
∑

1

0

(2 1)k k
S S R s

k o

k lT v t
v

∞
+

=

 +
+ Γ Γ − 

 
∑

at z=0

TL Time-Domain Solution
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0

(2 1)( , ) k k
S S R s

k o

k l lv l t T v t
v

∞

=

 + +
− = Γ Γ − 

 
∑

1

0

(2 1)k k
S S R s

k o

k l lT v t
v

∞
+

=

 + +
+ Γ Γ − 

 
∑

At z=-l

0

2( , ) k k
S S R s

k o

klv l t T v t
v

∞

=

 
− = Γ Γ − 

 
∑

1

0

2( 1)k k
S S R s

k o

k lT v t
v

∞
+

=

 +
+ Γ Γ − 

 
∑

TL Time-Domain Solution
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( ) 2( , ) S s S R s
o

lv l t T v t T v t
v

 
− = + Γ − 

 

TL - Time-Domain Reflectometer

For TDR, ZS = Zo ΓS = 0, and retain only k=1



ECE 546 – Jose Schutt-Aine 48

1( )fv t Forward traveling wave at port 1 (measured at near end of line)

2 ( )fv t Forward traveling wave at port 2 (measured at far end of line)

1( )bv t Backward traveling wave at port 1 (measured at near end of line)

2 ( )bv t Backward traveling wave at port 2 (measured at far end of line)

Wave  Shifting  Method
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Wave  Shifting  Solution*

1 1 2 1 1( ) ( ) ( )f b gv t v t TV tτ= Γ − +

2 2 1 2 2( ) ( ) ( )b f gv t v t T V tτ= Γ − +

2 1( ) ( )f fv t v t τ= −

1 2( ) ( )b bv t v t τ= −

1
1

1

o

o

Z Z
Z Z

−
Γ =

+

1
1

o

o

ZT
Z Z

=
+

2
2

2

o

o

Z Z
Z Z

−
Γ =

+

*Schutt-Aine & Mittra, Trans. Microwave Theory Tech., pp. 529-536, vol. 36  March 1988.

1 1 1( ) ( ) ( )f bv t v t v t= +

2 2 2( ) ( ) ( )f bv t v t v t= + 2
2

o

o

ZT
Z Z

=
+

line length
delay=

velocity
τ =
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Frequency Dependence of Lumped Circuit Models 

– At higher frequencies, a lumped circuit model is no longer 
accurate for interconnects and one must use a distributed 
model 

– Transition frequency depends on the dimensions and relative 
magnitude of the interconnect parameters. 

f ≈
0.3 ×109

10d εr
tr ≈

0.35
f
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Lumped Circuit or Transmission Line?

• Determine frequency or bandwidth of signal 
– RF/Microwave: f= operating frequency
– Digital: f=0.35/tr

• Determine the propagation velocity and wavelength
– Material medium v=c/(εr)1/2

– Obtain wavelength λ=v/f

• Compare wavelenth with feature size 
– If λ>> d, use lumped circuit: Ltot= L* length, Ctot= C* length
– If λ ≈ 10d or λ<10d, use transmission-line model
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PCB line 10 in  > 55 MHz  < 7ns
Package 1 in  > 400 MHz  < 0.9 ns
VLSI int* 100 um > 8 GHz  < 50 ps

Level  Dimension Frequency  Edge rate

* Using RC criterion for distributed effect

Frequency Dependence of Lumped Circuit Models
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