ECE 546 Lecture - 08 Nonideal Conductors and Dielectrics

Spring 2024

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

Material Medium

σ: conductivity of material medium (Ω^{-1} **m**⁻¹**)** $\nabla \times \vec{H} = \sigma \vec{E} + j\omega \varepsilon \vec{E} = \vec{E} (\sigma + j\omega \varepsilon) = j\omega \varepsilon \left(1 + \frac{\sigma}{j\omega \varepsilon}\right) \vec{E}$

since
$$\varepsilon \to \varepsilon \left(1 + \frac{\sigma}{j\omega\varepsilon} \right)$$
 then $\nabla^2 \vec{E} = -\omega^2 \mu \varepsilon \left(1 + \frac{\sigma}{j\omega\varepsilon} \right) \vec{E}$

$$\nabla^{2}\vec{E} = -\omega^{2}\mu\varepsilon \left(1 + \frac{\sigma}{j\omega\varepsilon}\right)\vec{E} = \gamma^{2}\vec{E}$$
$$\gamma^{2} = -\omega^{2}\mu\varepsilon \left(1 + \frac{\sigma}{j\omega\varepsilon}\right)$$

 γ is complex propagation constant

$$\gamma = j\omega\sqrt{\mu\varepsilon}\sqrt{1 + \frac{\sigma}{j\omega\varepsilon}} = \alpha + j\beta$$

 α : associated with attenuation of wave

β: associated with propagation of wave

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Solution: $\vec{E} = \hat{x}E_o e^{-\gamma z} = \hat{x}E_o e^{-\alpha z} e^{-j\beta z}$ **decaying exponential**

$$\alpha = \omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} - 1 \right]^{1/2}$$

$$\beta = \omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} + 1 \right]^{1/2}$$

Complex intrinsic impedance

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

 $\frac{\sigma}{\omega\varepsilon}$ is the loss tangent

Two special cases can be distinguished:

 $\frac{\sigma}{\omega\varepsilon} \ll 1$: poor conductor

$$\alpha \approx \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}} \left(1 - \frac{\sigma^2}{8\omega^2 \varepsilon^2} \right) \approx \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$$
$$\beta \approx \omega \sqrt{\mu \varepsilon} \left(1 + \frac{\sigma^2}{8\omega^2 \varepsilon^2} \right) \approx \omega \sqrt{\mu \varepsilon}$$

$$\eta \simeq \sqrt{\frac{\mu}{\varepsilon}} \left[1 - \frac{3\sigma^2}{8\omega^2 \varepsilon^2} + j \frac{\sigma}{2\omega\varepsilon} \right]$$

$$\frac{\sigma}{\omega\varepsilon} \gg 1$$
: good conductor

$$\gamma = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)} \simeq \sqrt{j\omega\mu\sigma} = \sqrt{\omega\mu\sigma}e^{j\pi/4}$$

$$\gamma \simeq \sqrt{\pi f \,\mu \sigma} \left(1 + j \right)$$

$$\alpha = \sqrt{\pi f \,\mu\sigma} \qquad \beta = \sqrt{\pi f \,\mu\sigma}$$

$$\eta = \sqrt{\frac{\pi f \,\mu}{\sigma}} \left(1 + j\right)$$

Skin Depth

The decay of electromagnetic wave propagating into a conductor is measured in terms of the *skin depth*

Definition: skin depth δ is distance over which amplitude of wave drops by 1/e.

$$\delta = \frac{1}{\alpha}$$

For good conductors: δ =

$$=\sqrt{\frac{2}{\omega\mu\sigma}}$$

Skin Depth

For perfect conductor, $\delta = 0$ and current only flows on the surface

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

DC Resistance

Reference plane

$$R_{dc} = \frac{l}{\sigma w t}$$

l: conductor length σ: conductivity

Frequency-Dependent Resistance

Approximation is to assume that all the current is flowing uniformly within a skin depth

Frequency-Dependent Resistance

Reference Plane Current

distance from center

$$R_{ac,ground} \approx \frac{l}{6h} \sqrt{\frac{\pi \mu f}{\sigma}}$$

Skin Effect in Microstrip

H. A. Wheeler, "Formulas for the skin effect," Proc. IRE, vol. 30, pp. 412-424,1942

Skin Effect in Microstrip

Current density varies as

$$J = J_o e^{-y/\delta} e^{-jy/\delta}$$

Note that the phase of the current density varies as a function of *y*

$$I = \int_{0}^{\infty} J_{o} w e^{-y/\delta} e^{-jy/\delta} dy = \frac{J_{o} w\delta}{1+j}$$
$$\sigma E_{o} = J_{o} \Longrightarrow E_{o} = \frac{J_{o}}{\sigma}$$

The voltage measured over a section of conductor of length *D* is:

$$V = E_o D = \frac{J_o D}{\sigma}$$

Skin Effect in Microstrip

The skin effect impedance is

$$Z_{skin} = \frac{V}{I} = \frac{J_o D}{\sigma} \frac{(1+j)}{J_o w \delta} = \frac{D}{w} (1+j) \sqrt{\pi f \mu \rho}$$

where $\rho = \frac{1}{\sigma}$ is the bulk resistivity of the conductor

$$Z_{skin} = R_{skin} + jX_{skin}$$

with

$$R_{skin} = X_{skin} = \frac{D}{w} \sqrt{\pi f \mu \sigma}$$

Skin effect has reactive (inductive) component

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Internal Inductance

The internal inductance can be calculated directly from the ac resistance

$$L_{\text{internal}} = \frac{R_{ac}}{\omega} = \frac{R_{skin}}{\omega}$$

Skin effect resistance goes up with frequency

Skin effect inductance goes down with frequency

Surface Roughness

Copper surfaces are rough to facilitate adhesion to dielectric during PCB manufacturing

Ground Plane

When the *tooth* height is comparable to the skin depth, roughness effects cannot be ignored Surface roughness will increase ohmic losses

Hammerstad Model

$$R_{H}(f) = \begin{cases} K_{H}R_{s}\sqrt{f} & \text{when } \delta < t \\ R_{dc} & \text{when } \delta \ge t \end{cases}$$

$$L_{H}(f) = \begin{cases} L_{external} + \frac{R_{H}(f)}{2\pi f} & \text{when } \delta < t \\ L_{external} + \frac{R_{H}(f_{\delta=t})}{2\pi f_{\delta=t}} & \text{when } \delta \ge t \end{cases}$$

h_{RMS}: root mean square value of surface roughness height

δ: skin depth

 $f_{\delta=t}$: frequency where the skin depth is equal to the thickness of the conductor

Hemispherical Model

 $R_{hemi}(f) = \begin{cases} K_{hemi}R_s\sqrt{f} & \text{when } \delta < t \\ R_{dc} & \text{when } \delta \ge t \end{cases}$

$$L_{hemi}(f) = \begin{cases} L_{external} + \frac{R_{hemi}(f)}{2\pi f} & \text{when } \delta < t \\ L_{external} + \frac{R_{hemi}(f_{\delta=t})}{2\pi f_{\delta=t}} & \text{when } \delta \ge t \end{cases}$$

University of Illinois at Urbana-Champaign

Hemispherical Model

$$K_{hemi} = \begin{cases} 1 & \text{when } K_s \leq 1 \\ K_s & \text{when } K_s > 1 \end{cases}$$

$$K_s = \frac{\left| \text{Re} \left[\eta \left(3\pi / 4k^2 \right) \left(\alpha (1) + \beta (1) \right) \right] \right| + \left(\mu_o \omega \delta / 4 \right) \left(A_{tile} - A_{base} \right) \right. \\ \left. \left(\mu_o \omega \delta / 4 \right) A_{tile} \right] \\ \alpha (1) = -\frac{2j}{3} (kr)^3 \frac{1 - (\delta / r)(1 + j)}{1 + (\delta / 2r)(1 + j)} \\ \beta (1) = -\frac{2j}{3} (kr)^3 \frac{1 - (4j / k^2 r \delta) (1 / (1 - j))}{1 + (2j / k^2 r \delta) (1 / (1 - j))} \end{cases}$$

University of Illinois at Urbana-Champaign

$$R_{Huray}(f) = \begin{cases} K_{Huray} R_s \sqrt{f} & \text{when } \delta < t \\ R_{dc} & \text{when } \delta \ge t \end{cases}$$

$$L_{Huray}(f) = \begin{cases} L_{external} + \frac{R_{Huray}(f)}{2\pi f} & \text{when } \delta < t \\ L_{external} + \frac{R_{Huray}(f_{\delta=t})}{2\pi f_{\delta=t}} & \text{when } \delta \ge t \end{cases}$$

Huray Model

$$K_{Huray} = \frac{P_{flat} + P_{N_spheres}}{P_{flat}}$$

$$P_{N_spheres} = -\sum_{n=1}^{N} \operatorname{Re} \left[\frac{1}{2} \eta |H_o|^2 \frac{3\pi}{k^2} \alpha(1) + \beta(1) \right]_n$$

$$P_{flat} = (\mu_o \omega \delta / 4) A_{tile} \qquad \eta = \sqrt{\mu_o / \varepsilon_o \varepsilon'}$$

$$\alpha(1) = -\frac{2j}{3} (kr)^3 \frac{1 - (\delta / r)(1 + j)}{1 + (\delta / 2r)(1 + j)} \qquad \begin{array}{l} H_o: \text{ magnitude of applied H field.} \end{array}$$

$$\beta(1) = -\frac{2j}{3} (kr)^3 \frac{1 - (4j / k^2 r \delta)(1 / (1 - j))}{1 + (2j / k^2 r \delta)(1 / (1 - j))}$$

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Dielectrics and Polarization

Field causes the formation of dipoles →polarization

Bound surface charge density $-q_{sp}$ on upper surface and $+q_{sp}$ on lower surface of the slab.

Dielectrics and Polarization

$$\vec{D} = \varepsilon_o \vec{E}_a + \vec{P} = \varepsilon_o \vec{E}_a + \varepsilon_o \chi_e \vec{E}_a = \varepsilon_o \left(1 + \chi_e\right) \vec{E}_a = \varepsilon_s \vec{E}_a$$

- \vec{P} : polarization vector
- \vec{D} : electric flux density
- \vec{E}_a : applied electric field
- χ_e : electric susceptibility
- ε_{o} : free-space permittivity
- ε_s : static permittivity

Dielectric Constant

Material	8 _r
Air	1.0006
Styrofoam	1.03
Paraffin	2.1
Teflon	2.1
Plywood	2.1
RT/duroid 5880	2.20
Polyethylene	2.26
RT/duroid 5870	2.35
Glass-reinforced teflon (microfiber)	2.32-2.40
Teflon quartz (woven)	2.47
Glass-reinforced teflon (woven)	2.4-2.62
Cross-linked polystyrene (unreinforced)	2.56
Polyphenelene oxide (PPO)	2.55
Glass-reinforced polystyrene	2.62
Amber	3
Rubber	3
Plexiglas	3.4

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Dielectric Constants

Material	ε _r
Lucite	3.6
Fused silica	3.78
Nylon (solid)	3.8
Quartz	3.8
Bakelite	4.8
Formica	5
Lead glass	6
Mica	6
Beryllium oxide (BeO)	6.8-7.0
Marble	8
Flint glass	10
Ferrite (FqO,)	12-16
Silicon (Si)	12
Gallium arsenide (GaAs)	13
Ammonia (liquid)	22
Glycerin	50
Water	81

Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

AC Variations

When a material is subjected to an applied electric field, the centroids of the positive and negative charges are displaced relative to each other forming a linear dipole.

When the applied fields begin to alternate in polarity, the permittivities are affected and become functions of the frequency of the alternating fields.

AC Variations

Reverses in polarity cause incremental changes in the static conductivity σ_s heating of materials using microwaves (e.g. food cooking)

When an electric field is applied, it is assumed that the positive charge remains stationary and the negative charge moves relative to the positive along a platform that exhibits a friction (damping) coefficient *d*.

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

- *Q* : dipole charge
- ε_o : free space permittivity
- *s* : spring (tension) factor

m : mass

- d : damping coefficient
- ω_{α} : natural frequency
- *ω*: applied frequency

$$\nabla \times \vec{H} = \vec{J}_i + \vec{J}_c + j\omega\dot{\varepsilon}\vec{E} = \vec{J}_i + \sigma_s\vec{E} + j\omega(\varepsilon' - j\varepsilon'')\vec{E}$$
$$\nabla \times \vec{H} = \vec{J}_i + (\sigma_s + \omega\varepsilon'')\vec{E} + j\omega\varepsilon'\vec{E} = \vec{J}_i + \sigma_e\vec{E} + j\omega\varepsilon'\vec{E}$$

 σ_e = equivalent conductivity = $\sigma_s + \omega \varepsilon'' = \sigma_s + \sigma_a$

 σ_a = alternating field conductivity = $\omega \varepsilon$ "

 σ_s = static field conductivity

 σ_e : total conductivity composed of the static portion σ_s and the alternative part σ_a caused by the rotation of the dipoles

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

$$\vec{J}_{t} = \vec{J}_{i} + \vec{J}_{ce} + \vec{J}_{de} = \vec{J}_{i} + \sigma_{e}\vec{E} + j\omega\varepsilon'\vec{E}$$

- \vec{J}_t : total electric current density
- \vec{J}_i : impressed (source) electric current density \vec{J}_{ce} : effective electric conduction current density \vec{J}_{de} : effective displacement electric current density

$$\vec{J}_{t} = \vec{J}_{i} + \sigma_{e}\vec{E} + j\omega\varepsilon'\vec{E} = \vec{J}_{i} + j\omega\varepsilon'\left(1 - j\frac{\sigma_{e}}{\omega\varepsilon'}\right)\vec{E} = \vec{J}_{i} + j\omega\varepsilon'\left(1 - j\tan\delta_{e}\right)\vec{E}$$

$$\tan \delta_e = \text{effective electric loss tangent} = \frac{\sigma_e}{\omega \varepsilon'} = \frac{\sigma_s + \sigma_a}{\omega \varepsilon'} = \frac{\sigma_s}{\omega \varepsilon'} + \frac{\sigma_a}{\omega \varepsilon'}$$

$$\tan \delta_e = \frac{\sigma_s}{\omega \varepsilon'} + \frac{\varepsilon''}{\varepsilon'} = \tan \delta_s + \tan \delta_a = \frac{\varepsilon_e''}{\varepsilon_e'}$$

$$\tan \delta_s = \text{static electric loss tangent} = \frac{\sigma_s}{\omega \varepsilon'}$$

$$\tan \delta_a = \text{alternating electric loss tangent} = \frac{\sigma_a}{\omega \varepsilon'} = \frac{\varepsilon''}{\varepsilon'}$$

$$\vec{J}_{cd} = \vec{J}_{ce} + \vec{J}_{de} = \sigma_e \vec{E} + j\omega\varepsilon' \vec{E} = j\omega\varepsilon' \left(1 - j\frac{\sigma_e}{\omega\varepsilon'}\right) \vec{E} = j\omega\varepsilon' \left(1 - j\tan\delta_e\right) \vec{E}$$

Dielectric Properties

Good Dielectrics:
$$\frac{\sigma_e}{\omega \varepsilon'} \ll 1$$

$$\vec{J}_{cd} = j\omega\varepsilon' \left(1 - j\frac{\sigma_e}{\omega\varepsilon'}\right) \vec{E} \simeq j\omega\varepsilon'\vec{E}$$

Good Conductors:

$$\frac{\sigma_{e}}{\omega\varepsilon'} \gg 1$$

$$\vec{J}_{cd} = j\omega\varepsilon' \left(1 - j\frac{\sigma_e}{\omega\varepsilon'}\right) \vec{E} \simeq \sigma_e \vec{E}$$

Dielectric Properties

Good Dielectrics:
$$\frac{\sigma_e}{\omega \varepsilon'} \ll 1$$

$$\vec{J}_{cd} = j\omega\varepsilon' \left(1 - j\frac{\sigma_e}{\omega\varepsilon'}\right) \vec{E} \simeq j\omega\varepsilon'\vec{E}$$

Good Conductors:

$$\frac{\sigma_{e}}{\omega\varepsilon'} \gg 1$$

$$\vec{J}_{cd} = j\omega\varepsilon' \left(1 - j\frac{\sigma_e}{\omega\varepsilon'}\right) \vec{E} \simeq \sigma_e \vec{E}$$

Kramers-Kronig Relations

There is a relation between the real and imaginary parts of the complex permittivity:

$$\varepsilon_{r}'(\omega) = 1 + \frac{2}{\pi} \int_{0}^{\infty} \frac{\omega' \varepsilon_{r}''(\omega')}{(\omega')^{2} - \omega^{2}} d\omega'$$

$$\varepsilon_{r}^{"}(\omega) = \frac{2\omega}{\pi} \int_{0}^{\infty} \frac{1 - \varepsilon_{r}^{'}(\omega')}{(\omega')^{2} - \omega^{2}} d\omega'$$

Debye Equation

$$\dot{\varepsilon}_{r}(\omega) = \varepsilon_{r}'(\omega) - j\varepsilon_{r}''(\omega) = \varepsilon_{r\infty}' + \frac{\varepsilon_{rs}' - \varepsilon_{r\infty}'}{1 + j\omega\tau_{e}}$$

Kramers-Kronig Relations

τ_e is a relaxation time constant:

$$\tau_{e} = \tau \frac{\varepsilon_{rs}^{'} + 2}{\varepsilon_{r\infty}^{'} + 2}$$

Dielectric Materials

Material	ε,'	$tan\delta$
Air	1.0006	
Alcohol (ethyl)	25	0.1
Aluminum oxide	8.8	6 x 10 ⁻⁴
Bakelite	4.74	22x10 ⁻³
Carbon dioxide	1.001	
Germanium	16	
Glass	4*7	1 x 10 ⁻³
Ice	4.2	0.1
Mica	5.4	6x10 ⁻⁴
Nylon	3.5	2x10 ⁻²
Paper	3	8 x 10 ⁻³
Plexiglas	3.45	4 x 10 ⁻²
Polystyrene	2.56	5x10 ⁻⁵
Porcelain	6	14x10 ⁻³

Dielectric Materials

Material	ε,'	tanδ
Pyrex glass	4	6x10 ⁻⁴
Quartz (fused)	3.8	7.5x10 ⁻⁴
Rubber	2.5-3	2 x 10 ⁻³
Silica (fused)	3.8	7.5 x 10 ⁻⁴
Silicon	11.8	
Snow	3.3	0.5
Sodium chloride	5.9	1x10 ⁻⁴
Soil (dry)	2.8	7 x 10 ⁻²
Styrofoam	1.03	1x10 ⁻⁴
Teflon	2.1	3x10 ⁻⁴
Titanium dioxide	100	15 x 10 ⁻⁴
Water (distilled)	80	4x10 ⁻²
Water (sea)	81	4.64
Water (dehydrated)	1	0
Wood (dry)	1.5-4	1x10 ⁻²

PCB Stackup

Layer Number		Layer Name	Layer Type	Impedance	Trace Width Nelco 4000-13 Si	Trace Width Rogers 4350	Trace W Taconic TM-29 FastRise	
LAYER 1		Тер	Signal		11	11	11	
AYER 2		DGND	Ground Plase				-	Neico 4000-13
AYER 3		INRI	Signal	50 Ohms +/- 5 %	9	8.9	11	
AVER 4		DGND	Ground Plane					
AYER 5		INR2	Signal	50 Ohms +/- 5 %	9	6.9	11	
AVER 8		DGND	Ground Plase					Rogers 4350
LAYER 7		INR3	Signal	50 Ohms +/- 5 %	9	8.9	11	Taconic TSM-29 / FastRise
LAYER D		DGND	Ground Plane					
LAVER 9		INR4	Signal	50 Ohms +/- 5 %	9	8.9	31	
LAYER 10		DGND	Ground Plane			Clock -		
LAYER 11		PGND1	Ground Plate					\mathbf{i}
LAYER 12		PWR	Power Place					
LAVER 13		PGND2	Ground Place					
AVTO LL		PWR2	Decision Disease					
LAVER IS		PGN03	Ground Place					
		Duga	Dratas Dibra					
CAVER 18		DOUD2	Orevert Plana					
LAPER IT		PGRUS	Ground Plane					
LAYER 18		PANKS	POWER POINE					Nelco 4000-13
LAYER 19		PWRS	Power Plane					
LAYER 20		PGND3	Ground Plate					
AYER 21		PWRS	Rover Plant					
LAYER 22		PGND3	Ground Plane					
LAYER 23		PWRE	Roser Plane					
LAYER 24		POND4	Ground Plane					
LAYER 25		PWR5	Power Plane	-			-	
LAYER 20		POND5	Ground Plane					
LAYER 27		DGND	Ground Plane					
LAVER 28		INR5	Signal	50 Ohms +/- 5 %	6.5	7.2	8.3	
LAYER 29		DGND	Ground Plane					
LAVER 30		INRA	Sinnal	50 Oams +/, 5 %	6.5	7.2	63	Nelco 4000-135
		DOUD.	Contract Discus					Rogers 4350
unit unit di		and a	Ground Plate	F2 (2) (2) (2)				recurre restrice restrice
LAVER 32		INR7	Signal	50 Ohms +/- 5 %	6.5	7.2	8.3	
			The second se					
LAYER 33		DGND	Ground Plate					
AYER 33 AYER M	<u> </u>	DGND	Ground Plate Signal	50 Onms +/- 5 %	6.5	7.2	8.3	
AYER 33 AYER 31 AYER 35		DGND INRB DGND	Ground Plate Signal Ground Plate	50 Oams +/- 5 %	6.5	7.2	8.3	2
AYER 33 AYER 34 AYER 35 AYER 36		DGND INRB DGND Bottom	Ground Plate Signal Ground Plate Signal	50 Onms +/- 5 %	6.5	7.2	8.3	Nelco 4309-13

Source: H. Barnes et al, "ATE Interconnect Performance to 43 Gps Using Advanced PCB Materials", DesignCon 2008

Differential Signaling

Differential signaling is widely used in the industry today. High-speed serial interfaces such as PCI-E, XAUI, OC768, and CEI use differential signaling for transmitting and receiving data in point-to-point topology between a driver (TX) and receiver (RX) connected by a differential pair.

The skew (time delay) between the two traces of the differential pair should be zero. Any skew between the two traces causes the differential signal to convert into a common signal.

Fiberglass weave pattern causes signals to propagate at different speeds in differential pairs

1080

2116

7628

Source: S. McMorrow, C. Heard, "The Impact of PCB Laminate Weave on the Electrical Performance of Differential Signaling at Multi-Gigabit Data Rates", DesignCon 2005.

Source: Lambert Simonovich, "Practical Fiber Weave Effect Modeling", White Paper-Issue 3, March 2, 2012.

Source: S. Hall and H. Heck , Advanced Signal Integrity for High-Speed Digital Designs, J. Wiley, IEEE , 2009.

Group delay variation

Source: S. McMorrow, C. Heard, "The Impact of PCB Laminate Weave on the Electrical Performance of Differential Signaling at Multi-Gigabit Data Rates", DesignCon 2005.

Group delay variation: effect of angle

Source: S. McMorrow, C. Heard, "The Impact of PCB Laminate Weave on the Electrical Performance of Differential Signaling at Multi-Gigabit Data Rates", DesignCon 2005.

Straight traces

Source: S. Hall and H. Heck , Advanced Signal Integrity for High-Speed Digital Designs, J. Wiley, IEEE , 2009.

45° traces

Source: S. Hall and H. Heck , Advanced Signal Integrity for High-Speed Digital Designs, J. Wiley, IEEE , 2009.

Source: PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing, Altera Application Note AN-528-1.1, January 2011.

Source: PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing, Altera Application Note AN-528-1.1, January 2011.

Skew on

straight

traces

Source: PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing, Altera Application Note AN-528-1.1, January 2011.

Mitigation Techniques

Use wider widths to achieve impedance targets.

- Specify a denser weave (2116, 2113, 7268, 1652) compared to a sparse weave (106, 1080).
- Move to a better substrate such as Nelco 4000-13
- Perform floor planning such that routing is at an angle rather than orthogonal.
- Make use of zig-zag routing

