ECE 546 Lecture 10 MOS Transistors

Spring 2024

Jose E. Schutt-Aine
Electrical \& Computer Engineering
University of Illinois
jesa@illinois.edu

MOS Technologies

Parameter	$0.8 \mu \mathrm{~m}$ NMOS	$0.8 \mu \mathrm{~m}$ PMOS	$0.5 \mu \mathrm{~m}$ NMOS	$0.5 \mu \mathrm{~m}$ PMOS	$0.25 \mu \mathrm{~m}$ NMOS	$0.25 \mu \mathrm{~m}$ PMOS	$0.18 \mu \mathrm{~m}$ NMOS	$0.18 \mu \mathrm{~m}$ PMOS	$0.13 \mu \mathrm{~m}$ NMOS	$0.13 \mu \mathrm{~m}$ PMOS	65 nm NMOS	65 nm PMOS	28 nm NMOS	28 nm PMOS
$\mathrm{t}_{\text {ox }}(\mathrm{nm})$	15	15	9	9	6	6	4	4	2.7	2.7	1.4	1.4	1.4	1.4
$\mathrm{C}_{\text {ox }}\left(\mathrm{fF} / \mathrm{mm}^{2}\right.$)	2.3	2.3	3.8	3.8	5.8	5.8	8.6	8.6	12.8	12.8	25	25	34	34
$\mu\left(\mathrm{cm}^{2} / \mathrm{V} . \mathrm{s}\right)$	550	250	500	180	460	160	450	100	400	100	216	40	220	200
$\mu C_{\text {ox }}\left(\mu \mathrm{A} / \mathrm{V}^{2}\right)$	127	58	190	68	267	93	387	86	511	128	540	100	750	680
$V_{\text {to }}(\mathrm{V})$	0.7	-0.7	0.7	-0.8	0.5	-0.6	0.5	-0.5	0.4	-0.4	0.35	-0.35	0.3	-0.3
$V_{\text {DD }}(\mathrm{V})$	5	5	3.3	3.3	2.5	2.5	1.8	1.8	1.3	1.3	1	1	0.9	0.9
$\left\|V_{A}\right\|(V / \mu m)$	25	20	20	10	5	6	5	6	5	6	3	3	1.5	1.5
$\mathrm{Cov}_{\text {ov }}(\mathrm{fF} / \mu \mathrm{m})$	0.2	0.2	0.4	0.4	0.3	0.3	0.37	0.33	0.36	0.33	0.33	0.31	0.4	0.4

22nm BSIM4
32nm BSIM4
45 nm BSIM4
65 nm BSIM4
90 nm BSIM4
130nm BSIM4
90 nm BSIM3
130 nm BSIM3
180nm BSIM3

NMOS Transistor

- NMOS Transistor
- N-Channel MOSFET
- Built on p-type substrate
- MOS devices are smaller than BJTs
- MOS devices consume less power than BJTs

NMOS Transistor - Layout

MOS Regions of Operation

Resistive

$$
V_{G S}>V_{T}
$$

$$
V_{D S} \text { small }
$$

Triode
Nonlinear

$$
\begin{aligned}
& V_{G S}>V_{T} \\
& V_{D S}<\left(V_{G S}-V_{T}\right)
\end{aligned}
$$

Saturation
Active

$$
\begin{aligned}
& V_{G S}>V_{T} \\
& V_{D S} \geq V_{G S}-V_{T}
\end{aligned}
$$

MOS Transistor Operation

- As V_{G} increases from zero
- Holes in the p substrate are repelled from the gate area leaving negative ions behind
- A depletion region is created
- No current flows since no carriers are available
- As V_{G} increases
- The width of the depletion region and the potential at the oxide-silicon interface also increase
- When the interface potential reaches a sufficiently positive value, electrons flow in the "channel". The transistor is turned on
- As V_{G} rises further
- The charge in the depletion region remains relatively constant
- The channel current continues to increase

MOS - Triode Region - 1

$$
\begin{gathered}
I_{D}=\mu \frac{W}{L} C_{o x}\left[\left(V_{G S}-V_{T}\right) V_{D S}\right] \\
V_{D S} \ll\left(V_{G S}-V_{T}\right) \\
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{3.9 \varepsilon_{o}}{t_{o x}}
\end{gathered}
$$

$C_{\text {ox }}$: gate oxide capacitance
μ : electron mobility
L : channel length
W: channel width
V_{T} : threshold voltage

MOS - Triode Region

FET is like a linear resistor with

$$
r_{d s}=\frac{1}{\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right)}
$$

MOS - Triode Region - 2

$$
\begin{aligned}
& V_{G S}>V_{T} \\
& V_{D S}<\left(V_{G S}-V_{T}\right)
\end{aligned}
$$

$$
I_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right]
$$

- Charge distribution is nonuniform across channel
- Less charge induced in proximity of drain

MOS - Active Region

Saturation occurs at pinch off when

$$
V_{D S}=\left(V_{G S}-V_{T}\right)=V_{D S P}
$$

$V_{G S}>V_{T}$
$V_{D S}>\left(V_{G S}-V_{T}\right)$
(saturation)

$$
I_{D}=\mu_{n} C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}
$$

MOS Threshold Voltage

The value of V_{G} for which the channel is "inverted" is called the threshold voltage $V_{T}\left(\right.$ or $\left.V_{t}\right)$.

- Characteristics of the threshold voltage
- Depends on equilibrium potential
- Controlled by inversion in channel
- Adjusted by implantation of dopants into the channel
- Can be positive or negative
- Influenced by the body effect

MOS - Active Region

Body Effect

- The body effect
- V_{T} varies with bias between source and body
- Leads to modulation of V_{T}

Potential on substrate affects threshold voltage

$$
\begin{gathered}
V_{T}\left(V_{S B}\right)=V_{T o}+\gamma\left[\left(2\left|\phi_{F}\right|+V_{S B}\right)^{1 / 2}-\left(2\left|\phi_{F}\right|\right)^{1 / 2}\right] \\
\left|\phi_{F}\right|=\left(\frac{k T}{q}\right) \ln \left(\frac{N_{a}}{n_{i}}\right) \quad \text { Fermi potential of material } \\
\gamma=\frac{\left(2 q N_{a} \varepsilon_{s}\right)^{1 / 2}}{C_{o x}} \quad \text { Body bias coefficient }
\end{gathered}
$$

Channel-Length Modulation

With depletion layer widening, the channel length is in effect reduced from L to $L-\Delta L \rightarrow$ Channel-length modulation

This leads to the following I-V relationship

$$
i_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(v_{G S}-V_{T}\right)^{2}\left(1+\lambda v_{D S}\right)
$$

Where λ is a process technology parameter

Channel-Length Modulation

Channel-length modulation causes i_{D} to increase with $v_{D S}$ in saturation region

Gate Capacitance

$$
V_{G T}<0
$$

$$
V_{G T}>0, V_{D S} \text { large }
$$

$V_{G T}>0, V_{D S}$ small

- Capacitance
- Depends on bias
- Fringing fields are present
- Account for overlap C

Capacitance

- Gate Capacitance
$-C_{G}$ determines the amount of charge to switch gate
- Several distributed components
- Large discontinuity as device turns on
- At saturation capacitance is entirely between gate and source

Define $\quad X=\frac{V_{D S}}{V_{G S}-V_{T}}$

$$
\begin{gathered}
C_{g s}=C_{g s o}+\frac{2}{3} W L C_{o x}\left[1-\left(\frac{1-X}{2-X}\right)^{2}\right] \\
C_{g d}=C_{g d o}+\frac{2}{3} W L C_{o x}\left[1-\left(\frac{1}{2-X}\right)^{2}\right]
\end{gathered}
$$

MOS Capacitances

- Expect capacitance between every two of the four terminals.

PMOS Transistor

- All polarities are reversed from nMOS
- $v_{G S}, v_{D S}$ and V_{t} are negative
- Current i_{D} enters source and leaves through drain
- Hole mobility is lower \Rightarrow low transconductance
- nMOS favored over pMOS

Complementary MOS

- CMOS Characteristics
- Combine nMOS and pMOS transistors
- pMOS size is larger for electrical symmetry

CMOS

- Advantages
- Virtually, no DC power consumed
- No DC path between power and ground
- Excellent noise margins ($\mathrm{V}_{\mathrm{OL}}=0, \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$)
- Inverter has sharp transfer curve
- Drawbacks
- Requires more transistors
- Process is more complicated
- pMOS size larger to achieve electrical symmetry
- Latch up

Voltage Transfer Characteristics (VTC)

The static operation of a logic circuit is determined by its VTC

- In low state: noise margin is $N M_{L}$

$$
N M_{L}=V_{I L}-V_{O L}
$$

- In high state: noise margin is $N M_{H}$

$$
N M_{H}=V_{O H}-V_{I H}
$$

- An ideal VTC will maximize noise margins

$V_{I L}$ and $V_{I H}$ are the points where the slope of the VTC=-1

Optimum: $\quad N M_{L}=N M_{H}=V_{D D} / 2$

Switching Time \& Propagation Delay

Switching Time \& Propagation Delay

$t_{r}=$ rise time (from 10\% to 90\%)
$t_{f}=$ fall time (from 90\% to 10\%)
$t_{p L H}=$ low-to-high propagation delay
$t_{p H L}=$ high-to-low propagation delay

Inverter propagation delay: $\quad t_{p}=\frac{1}{2}\left(t_{p L H}+t_{p H L}\right)$

NMOS Switch

CMOS Switch

CMOS switch is called an inverter
The body of each device is connected to its source \rightarrow NO BODY EFFECT

CMOS Switch - Input Low

NMOS

$r_{d s p}$ is low

CMOS Switch - Input High

NMOS

$$
r_{d s n}=\frac{1}{k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{T N}\right)}
$$

$$
r_{d s n} \text { is low }
$$

CMOS Inverter

CMOS Inverter

Advantages of CMOS inverter

$>$ Output voltage levels are 0 and $V_{D D}>$ signal swing is maximum possible
$>$ Static power dissipation is zero
$>$ Low resistance paths to $V_{D D}$ and ground when needed
$>$ High output driving capability \rightarrow increased speed
$>$ Input resistance is infinite \rightarrow high fan-out

Load driving capability of CMOS is high. Transistors can sink or source large load currents that can be used to charge and discharge load capacitances.

Matched CMOS Inverter VTC

CMOS inverter can be made to switch at specific threshold voltage by appropriately sizing the transistors

$$
\left(\frac{W}{L}\right)_{p}=\frac{\mu_{n}}{\mu_{p}}\left(\frac{W}{L}\right)_{n}
$$

Symmetrical transfer characteristics is obtained via matching \rightarrow equal current driving capabilities in both directions (pull-up and pull-down)

CMOS Dynamic Operation

$>$ Exact analysis is too tedious
$>$ Replace all the capacitances in the circuit by a single equivalent capacitance C connected between the output node of the inverter and ground
> Analyze capacitively loaded inverter to determine propagation delay

CMOS Dynamic Operation

$$
t_{P}=\frac{1}{2}\left(t_{P H L}+t_{P L H}\right)
$$

$>$ Components can be equalized by matching transistors
$\Rightarrow t_{P}$ is proportional to $C \rightarrow$ reduce capacitance
$>$ Larger $V_{D D}$ means lower t_{p}
$>$ Conflicting requirements exist

CMOS - Dynamic Power Dissipation

- Q_{N} dissipate $1 / 2 C V_{D D}{ }^{2}$ of energy
- Q_{P} dissipate $1 / 2 C V_{D D}{ }^{2}$ of energy
- Total energy dissipation is $C V_{D D}{ }^{2}$

(a)

If inverter is switched at \boldsymbol{f} cycles per second, dynamic power dissipation is: $\quad P_{D}=f C V_{D D}^{2}$

Digital Logic - Generalization

De Morgan's Law

$$
\begin{aligned}
& \overline{A+B+C+\ldots}=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \ldots \\
& \overline{A \cdot B \cdot C \cdot \ldots}=\bar{A}+\bar{B}+\bar{C}+\ldots
\end{aligned}
$$

Distributive Law

$$
A B+A C+B C+B D=A(B+C)+B(C+D)
$$

General Procedure

1. Design PDN to satisfy logic function
2. Construct PUN to be complementary of PDN in every way
3. Optimize using distributive rule

Pull-Down and Pull-Up

$$
\begin{aligned}
& Y_{D P}=\overline{A+B} \\
& \begin{array}{|l|lll|}
\hline & \mathrm{A} & \mathrm{~B} & \mathrm{Y}_{\mathrm{DP}} \\
\hline & 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Truth Tables

Two-Input NOR Gate

Pull-Down and Pull-Up

Two-Input NAND Gate

$$
Y=\overline{A B}=\bar{A}+\bar{B}
$$

CMOS Logic Gate Circuits

- Two Networks
- Pull-down network (PDN) with NMOS
- Pull-up network (PUN) with PMOS

PUN conducts when inputs are low and consists of PMOS transistors

PDN consists of NMOS transistors and is active when inputs are high

- PDN and PUN utilize devices
- In parallel to form OR functions
- In series to form AND functions

Basic Logic Function

Basic
Function

Symbol
\# Devices
PUN

PUN
\# Devices PDN

Truth
Table

1
PMOS
INVERTER

NMOS-Parallel
NOR

$$
\stackrel{2}{\text { PMOS-Series }}
$$

arallel

NAND

2
PMOS-Parallel

2
NMOS-Series

Example

Implement the function

$$
\bar{Y}=A \bar{B}+C
$$

$$
Y=\overline{A \bar{B}+C}=\overline{A \bar{B}} \cdot \bar{C}=(\bar{A}+B) \cdot \bar{C}
$$

Exclusive-OR (XOR) Function

$$
Y=A \bar{B}+\bar{A} B \quad \bar{Y}=(\bar{A}+B)(A+\bar{B})
$$

