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Parameter
0.8 µm
NMOS

0.8 µm
PMOS

0.5 µm
NMOS

0.5 µm
PMOS

0.25 µm
NMOS

0.25 µm
PMOS

0.18 µm
NMOS

0.18 µm
PMOS

0.13 µm
NMOS

0.13 µm
PMOS

65 nm
NMOS

65 nm
PMOS

28 nm
NMOS

28 nm
PMOS

tox (nm) 15 15 9 9 6 6 4 4 2.7 2.7 1.4 1.4 1.4 1.4
Cox(fF/µm2) 2.3 2.3 3.8 3.8 5.8 5.8 8.6 8.6 12.8 12.8 25 25 34 34
µ(cm2/V.s) 550 250 500 180 460 160 450 100 400 100 216 40 220 200
µCox(µA/V2) 127 58 190 68 267 93 387 86 511 128 540 100 750 680
Vto(V) 0.7 -0.7 0.7 -0.8 0.5 -0.6 0.5 -0.5 0.4 -0.4 0.35 -0.35 0.3 -0.3
VDD(V) 5 5 3.3 3.3 2.5 2.5 1.8 1.8 1.3 1.3 1 1 0.9 0.9
|VA|(V/µm) 25 20 20 10 5 6 5 6 5 6 3 3 1.5 1.5
Cov(fF/µm) 0.2 0.2 0.4 0.4 0.3 0.3 0.37 0.33 0.36 0.33 0.33 0.31 0.4 0.4

22nm BSIM4 
32nm BSIM4 
45nm BSIM4 
65nm BSIM4 
90nm BSIM4 
130nm BSIM4 
90nm BSIM3 
130nm BSIM3 
180nm BSIM3 

MOS Technologies
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• NMOS Transistor
– N-Channel MOSFET
– Built on p-type substrate
– MOS devices are smaller than BJTs
– MOS devices consume less power than BJTs

NMOS Transistor
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NMOS Transistor - Layout

Top View

Cross Section
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GS TV V>

GS TV V>

GS TV V>

Resistive

Nonlinear

Saturation

MOS Regions of Operation

< ( )DS GS TV V V−

DS GS TV V V≥ −

 DSV small
Triode

Active
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• As VG increases from zero
– Holes in the p substrate are repelled from the gate area 

leaving negative ions behind
– A depletion region is created
– No current flows since no carriers are available

MOS Transistor Operation

• As VG increases
– The width of the depletion region and the potential at the 

oxide-silicon interface also increase
– When the interface potential reaches a sufficiently 

positive value, electrons flow in the “channel”. The 
transistor is turned on

• As VG rises further
– The charge in the depletion region remains relatively 

constant
– The channel current continues to increase

6
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( )µ  = − D ox GS T DS
WI C V V V
L

( )DS GS TV V V<< −

Cox: gate oxide capacitance
µ: electron mobility
L: channel length
W: channel width
VT: threshold voltage

MOS – Triode Region - 1

3.9ε ε
= =ox o

ox
ox ox

C
t t
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FET is like a linear resistor with 
( )
1

µ
=

−
ds

n ox GS T

r WC V V
L

MOS – Triode Region
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( ) 21
2

µ  = − −  
D n ox GS T DS DS

WI C V V V V
L( )< −DS GS TV V V

>GS TV V

– Charge distribution is nonuniform across channel
– Less charge induced in proximity of drain

MOS – Triode Region - 2

9



ECE 546 – Jose Schutt-Aine

MOS – Active Region
Saturation occurs at pinch off when ( )= − =DS GS T DSPV V V V

( )2

2
µ= −D n ox GS T

WI C V V
L

( )DS GS TV V V> −

>GS TV V

(saturation)
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• Characteristics of the threshold voltage 
– Depends on equilibrium potential
– Controlled by inversion in channel
– Adjusted by implantation of dopants into the channel
– Can be positive or negative
– Influenced by the body effect

MOS Threshold Voltage

The value of VG for which the channel is “inverted” is 
called the threshold voltage VT (or Vt ).

11
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MOS – Active Region

• Saturation
– Channel is pinched off
– Increase in VDS has little effect on iD
– Square-law behavior wrt (VGS-VT)
– Acts like a current source

12
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• The body effect
– VT varies with bias between source and body
– Leads to modulation of VT

Potential on substrate affects threshold voltage

( ) ( )1/ 2 1/ 2
( ) 2 2γ φ φ = + + −

 T SB To F SB FV V V V

lnφ
  

=   
   

a
F

i

NkT
q n

( )1/ 22 ε
γ = a s

ox

qN
C

Fermi potential of material

Body bias coefficient

Body Effect
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With depletion layer widening, the channel length is in effect reduced from 
L to L-∆L  Channel-length modulation

This leads to the following I-V relationship

( ) ( )2'1 1
2D n GS T DS

Wi k v V v
L

λ= − +

Where λ is a process technology parameter

Channel-Length Modulation
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Channel-Length Modulation

Channel-length modulation causes iD to increase with vDS in 
saturation region

15
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0GTV < 0,   smallGT DSV V>

0,   largeGT DSV V>

Gate Capacitance

• Capacitance
– Depends on bias
– Fringing fields are present
– Account for overlap C

16
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Capacitance
• Gate Capacitance

– CG determines the amount of charge to switch gate
– Several distributed components
– Large discontinuity as device turns on
– At saturation capacitance is entirely between gate 

and source
22 11

3 2gs gso ox
XC C WLC
X

 − = + −  −   

22 11
3 2gd gdo oxC C WLC

X
  = + −  −   

=
−
DS

GS T

VX
V V

Define
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MOS Capacitances

• Expect capacitance between every two of the 
four terminals.
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PMOS Transistor

-700

-600

-500

-400

-300

-200

-100

0

-2.5 -2 -1.5 -1 -0.5 0

PMOS

VGS=-1.0
VGS=-1.5
VGS=-2.0
VGS=-2.5

VG
S=

-1
.0

Vds

- All polarities are reversed from nMOS
- vGS, vDS and Vt are negative
- Current iD enters source and leaves through drain 
- Hole mobility is lower ⇒ low transconductance
- nMOS favored over pMOS

19
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Complementary MOS

• CMOS Characteristics 
– Combine nMOS and pMOS transistors
– pMOS size is larger for electrical symmetry

20
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CMOS
• Advantages 

– Virtually, no DC power consumed
– No DC path between power and ground
– Excellent noise margins (VOL=0, VOH=VDD)
– Inverter has sharp transfer curve

• Drawbacks
– Requires more transistors
– Process is more complicated
–  pMOS size larger to achieve electrical symmetry
–  Latch up

21
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NMHNML

Voltage Transfer Characteristics (VTC)
The static operation of a logic circuit is determined by its VTC

• In low state: noise margin is 
NML

• In high state: noise margin is 
NMH

L IL OLNM V V= −

H OH IHNM V V= −
VIL and VIH are the points where the 
slope of the VTC=-1

• An ideal VTC will maximize noise 
margins

/ 2= =L H DDNM NM VOptimum:
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Switching Time & Propagation Delay

input

output

23
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tr=rise time (from 10% to 90%)
tf=fall time (from 90% to 10%)
tpLH=low-to-high propagation delay
tpHL=high-to-low propagation delay

Inverter propagation delay: ( )1
2p pLH pHLt t t= +

Switching Time & Propagation Delay

24
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NMOS Switch

25
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CMOS Switch

CMOS switch is called an inverter

26

The body of each device is connected to its source  NO BODY EFFECT
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CMOS Switch – Input Low
NMOS 

GSN TNV V OFF< ⇒

rdsn high 

PMOS 

( )'

1
dsp

p DD TP
p

r
Wk V V
L

=
  − 
 

rdsp is low
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PMOS 

GSP TPV V OFF> ⇒

rdsp high 

CMOS Switch – Input High
NMOS 

( )'

1
dsn

n DD TN
n

r
Wk V V
L

=
  − 
  rdsn is low
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CMOS Inverter

( )'

1
dsn

N DD T
n

r
Wk V V
L

=
  − 
 

( )'

1
dsp

P DD T
p

r
Wk V V
L

=
  − 
 

Short switching 
transient current 
 low power

29
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Load driving capability of CMOS is high. 
Transistors can sink or source large load 
currents that can be used to charge and 
discharge load capacitances.

CMOS Inverter

Advantages of CMOS inverter
 Output voltage levels are 0 and VDDsignal swing is 

maximum possible
 Static power dissipation is zero
 Low resistance paths to VDD and ground when needed
 High output driving capability increased speed
 Input resistance is infinite high fan-out
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Matched CMOS Inverter VTC

n

p np

W W
L L

µ
µ

   =   
   

CMOS inverter can be made to switch at specific threshold voltage by 
appropriately sizing the transistors

Symmetrical transfer 
characteristics is obtained via 
matching  equal current driving 
capabilities in both directions 
(pull-up and pull-down)

31
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CMOS Dynamic Operation

 Exact analysis is too tedious
 Replace all the capacitances in the circuit by a single 

equivalent capacitance C connected between the output 
node of the inverter and ground

 Analyze capacitively loaded inverter to determine 
propagation delay
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CMOS Dynamic Operation

( )1
2P PHL PLHt t t= +

 Components can be equalized by matching transistors
 tP is proportional to C reduce capacitance
 Larger VDD means lower tp
 Conflicting requirements exist
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CMOS – Dynamic Power Dissipation

In every cycle
– QN dissipate ½ CVDD

2 of energy
– QP dissipate ½ CVDD

2 of energy 
– Total energy dissipation is CVDD

2

If inverter is switched at f cycles per second, dynamic 
power dissipation is: 2

D DDP fCV=
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Digital Logic - Generalization
De Morgan’s Law

... ...A B C A B C+ + + = ⋅ ⋅ ⋅

... ...A B C A B C⋅ ⋅ ⋅ = + + +

• General Procedure
1. Design PDN to satisfy logic function
2. Construct PUN to be complementary of PDN in every way
3. Optimize using distributive rule

Distributive Law

( ) ( )AB AC BC BD A B C B C D+ + + = + + +

35
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Pull-Down and Pull-Up

Truth Tables

PDN-parallel
NMOS

PUN-series
PMOS

DPY A B= + USY AB=

36
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Two-Input NOR Gate

Y A B AB= + =

37
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Pull-Down and Pull-Up

Truth Tables

PDN-Series
NMOS

DSY AB=
UPY A B= +

PUN-Parallel
PMOS

38
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Two-Input NAND Gate

Y AB A B= = +

39
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PUN conducts when inputs are low 
and consists of PMOS transistors

PDN consists of NMOS transistors 
and is active when inputs are high

• PDN and PUN utilize devices
– In parallel to form OR functions
– In series to form AND functions

• Two Networks
– Pull-down network (PDN) with NMOS
– Pull-up network (PUN) with PMOS

CMOS Logic Gate Circuits

40
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1
PMOS

1
NMOS

2
NMOS-Parallel

2
NMOS-Series

2
PMOS-Series

2
PMOS-Parallel

Symbol

# Devices
PUN

# Devices
PDN

Truth
Table

Basic
Function INVERTER NOR NAND

Basic Logic Function

41
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( )Y AB C AB C A B C= + = ⋅ = + ⋅

pull down

Example 
Implement the function

pull up
Y AB C= +

42
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Exclusive-OR (XOR) Function

Y AB AB= + ( )( )Y A B A B= + +

pull down pull up
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR
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