ECE 546 Lecture 10 MOS Transistors

Spring 2024

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

MOS Technologies

	0.8 μm	0.8 μm	0.5 μm	0.5 μm	0.25 μm	0.25 μm	0.18 μm	0.18 μm	<mark>0.13 μ</mark> m	0.13 μm	65 nm	65 nm	28 nm	28 nm
Parameter	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
t _{ox} (nm)	15	15	9	9	6	6	4	4	2.7	2.7	1.4	1.4	1.4	1.4
C _{ox} (fF/µm²)	2.3	2.3	3.8	3.8	5.8	5.8	8.6	8.6	12.8	12.8	25	25	34	34
μ(cm²/V.s)	550	250	500	180	460	160	450	100	400	100	216	40	220	200
μC _{ox} (μΑ/V²)	127	58	190	68	267	93	387	86	511	128	540	100	750	680
V _{to} (V)	0.7	-0.7	0.7	-0.8	0.5	-0.6	0.5	-0.5	0.4	-0.4	0.35	-0.35	0.3	-0.3
V _{DD} (V)	5	5	3.3	3.3	2.5	2.5	1.8	1.8	1.3	1.3	1	1	0.9	0.9
V _A (V/μm)	25	20	20	10	5	6	5	6	5	6	3	3	1.5	1.5
C _{ov} (fF/μm)	0.2	0.2	0.4	0.4	0.3	0.3	0.37	0.33	0.36	0.33	0.33	0.31	0.4	0.4

22nm BSIM4 32nm BSIM4 45nm BSIM4 65nm BSIM4 90nm BSIM4 130nm BSIM3 130nm BSIM3 180nm BSIM3

NMOS Transistor

NMOS Transistor

- N-Channel MOSFET
- Built on p-type substrate
- MOS devices are smaller than BJTs
- MOS devices consume less power than BJTs

NMOS Transistor - Layout

MOS Regions of Operation

 $V_{GS} > V_T$ V_{DS} small **Nonlinear** $V_{GS} > V_T$ $V_{DS} < (V_{GS} - V_T)$

Resistive

Active

Triode

Saturation

$$V_{GS} > V_T$$

 $V_{DS} \geq V_{GS} - V_T$

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

MOS Transistor Operation

• As V_G increases from zero

- Holes in the p substrate are repelled from the gate area leaving negative ions behind
- A depletion region is created
- No current flows since no carriers are available
- As V_G increases
 - The width of the depletion region and the potential at the oxide-silicon interface also increase
 - When the interface potential reaches a sufficiently positive value, electrons flow in the "*channel*". The transistor is turned on
- As V_G rises further
 - The charge in the depletion region remains relatively constant
 - The channel current continues to increase

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

MOS – Triode Region

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

MOS – Triode Region - 2

- Charge distribution is nonuniform across channel
- Less charge induced in proximity of drain

MOS – Active Region

MOS Threshold Voltage

The value of V_G for which the channel is *"inverted"* is called the threshold voltage V_T (or V_t).

- Characteristics of the threshold voltage
 - Depends on equilibrium potential
 - Controlled by inversion in channel
 - Adjusted by implantation of dopants into the channel
 - Can be positive or negative
 - Influenced by the body effect

- Channel is pinched off
- Increase in V_{DS} has little effect on i_D
- Square-law behavior wrt ($V_{GS} V_T$)
- Acts like a current source

٠

Body Effect

The body effect

- $-V_{\tau}$ varies with bias between source and body
- Leads to modulation of V_{T}

Potential on substrate affects threshold voltage

$$V_{T}(V_{SB}) = V_{To} + \gamma \left[\left(2 \left| \phi_{F} \right| + V_{SB} \right)^{1/2} - \left(2 \left| \phi_{F} \right| \right)^{1/2} \right]$$

 $\gamma = \frac{\left(2qN_a\varepsilon_s\right)^{1/2}}{C}$

Body bias coefficient

Channel-Length Modulation

With depletion layer widening, the channel length is in effect reduced from L to $L - \Delta L \rightarrow$ Channel-length modulation

This leads to the following I-V relationship

$$i_{D} = \frac{1}{2} k_{n} \frac{W}{L} \left(v_{GS} - V_{T} \right)^{2} \left(1 + \lambda v_{DS} \right)$$

Where λ is a process technology parameter

Channel-Length Modulation

Channel-length modulation causes i_D to increase with v_{DS} in saturation region

Gate Capacitance

 $V_{GT} < 0$

 $V_{GT} > 0, V_{DS}$ small

$$V_{GT} > 0, V_{DS}$$
 large

Electrical and Computer Engineering University of Illinois at Urbana-Champaigr

ECE 546 – Jose Schutt-Aine

Capacitance

- Depends on bias
- Fringing fields are present
- Account for overlap C

Capacitance

Gate Capacitance

- $-C_G$ determines the amount of charge to switch gate
- Several distributed components
- Large discontinuity as device turns on
- At saturation capacitance is entirely between gate and source

$$C_{gs} = C_{gso} + \frac{2}{3}WLC_{ox} \left[1 - \left(\frac{1-X}{2-X}\right)^2 \right]$$

Define $X = \frac{V_{DS}}{V_{GS} - V_T}$
 $C_{gd} = C_{gdo} + \frac{2}{3}WLC_{ox} \left[1 - \left(\frac{1}{2-X}\right)^2 \right]$

MOS Capacitances

• Expect capacitance between every two of the four terminals.

PMOS Transistor

- All polarities are reversed from nMOS
- v_{GS} , v_{DS} and V_t are negative
- Current i_D enters source and leaves through drain
- Hole mobility is lower \Rightarrow low transconductance
- nMOS favored over pMOS

Complementary MOS

- CMOS Characteristics
 - Combine nMOS and pMOS transistors
 - pMOS size is larger for electrical symmetry

CMOS

Advantages

- Virtually, no DC power consumed
- No DC path between power and ground
- Excellent noise margins ($V_{OL}=0$, $V_{OH}=V_{DD}$)
- Inverter has sharp transfer curve

Drawbacks

- Requires more transistors
- Process is more complicated
- pMOS size larger to achieve electrical symmetry
 Latch up

Voltage Transfer Characteristics (VTC)

The static operation of a logic circuit is determined by its VTC

• In low state: noise margin is NM_L

$$NM_L = V_{IL} - V_{OL}$$

 In high state: noise margin is NM_H

$$NM_{H} = V_{OH} - V_{IH}$$

 An ideal VTC will maximize noise margins

Optimum: $NM_I = NM_H = V_{DD} / 2$

 V_{IL} and V_{IH} are the points where the slope of the VTC=-1

Switching Time & Propagation Delay

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Switching Time & Propagation Delay

 t_r =rise time (from 10% to 90%) t_f =fall time (from 90% to 10%) t_{pLH} =low-to-high propagation delay t_{pHL} =high-to-low propagation delay

Inverter propagation delay:

$$t_p = \frac{1}{2} \left(t_{pLH} + t_{pHL} \right)$$

CMOS switch is called an inverter

The body of each device is connected to its source → NO BODY EFFECT

CMOS Switch – Input Low

NMOS

CMOS Switch – Input High

NMOS

$$r_{dsn} = \frac{1}{k'_n \left(\frac{W}{L}\right)_n \left(V_{DD} - V_{TN}\right)}$$

1

r_{dsn} is low

PMOS

 $V_{GSP} > V_{TP} \Longrightarrow OFF$

 r_{dsp} high

University of Illinois at Urbana-Champaign

CMOS Inverter V_{DD} V_{DD} 𝕐_{dsn} $= \frac{1}{k_N' \left(\frac{W}{L}\right) \left(V_{DD} - V_T\right)}$ ₹^rdsp Q_P ۷_I٥ • V₀ ۰Vo Q_{N} 0.10 mA **Short switching** transient current → low power 5 V_{in}(volts)

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

CMOS Inverter

Advantages of CMOS inverter

- Output voltage levels are 0 and V_{DD} → signal swing is maximum possible
- Static power dissipation is zero
- \blacktriangleright Low resistance paths to V_{DD} and ground when needed
- High output driving capability → increased speed
- Input resistance is infinite > high fan-out

Load driving capability of CMOS is high. Transistors can sink or source large load currents that can be used to charge and discharge load capacitances.

Matched CMOS Inverter VTC

CMOS inverter can be made to switch at specific threshold voltage by appropriately sizing the transistors

$$\left(\frac{W}{L}\right)_p = \frac{\mu_n}{\mu_p} \left(\frac{W}{L}\right)_n$$

Symmetrical transfer characteristics is obtained via matching → equal current driving capabilities in both directions (pull-up and pull-down)

University of Illinois at Urbana-Champai

CMOS Dynamic Operation

- Exact analysis is too tedious
- Replace all the capacitances in the circuit by a single equivalent capacitance C connected between the output node of the inverter and ground
- Analyze capacitively loaded inverter to determine propagation delay

CMOS Dynamic Operation

$$t_P = \frac{1}{2} \left(t_{PHL} + t_{PLH} \right)$$

- Components can be equalized by matching transistors
- \succ t_P is proportional to $C \rightarrow$ reduce capacitance
- \succ Larger V_{DD} means lower t_p
- Conflicting requirements exist

CMOS – Dynamic Power Dissipation

If inverter is switched at *f* cycles per second, dynamic power dissipation is: $P_D = fCV_{DD}^2$

University of Illinois at Urbana-Champa

Digital Logic - Generalization

De Morgan's Law

$$A + B + C + \dots = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \dots$$

$$A \cdot B \cdot C \cdot \ldots = A + B + C + \ldots$$

Distributive Law

$$AB + AC + BC + BD = A(B + C) + B(C + D)$$

General Procedure

- 1. Design PDN to satisfy logic function
- 2. Construct PUN to be complementary of PDN in every way
- 3. Optimize using distributive rule

Pull-Down and Pull-Up

Truth Tables

Two-Input NOR Gate

Two-Input NAND Gate

CMOS Logic Gate Circuits

Two Networks

- Pull-down network (PDN) with NMOS
- Pull-up network (PUN) with PMOS

PUN conducts when inputs are low and consists of PMOS transistors

PDN consists of NMOS transistors and is active when inputs are high

- PDN and PUN utilize devices
 - In parallel to form OR functions
 - In series to form AND functions

Basic Logic Function

Example

Implement the function

 $\overline{Y} = A\overline{B} + C$

$Y = \overline{A\overline{B} + C} = \overline{A\overline{B} \cdot \overline{C}} = (\overline{A} + B) \cdot \overline{C}$

Exclusive-OR (XOR) Function $Y = A\overline{B} + \overline{A}B \qquad \overline{Y} = (\overline{A} + B)(A + \overline{B})$ $= \prod_{\overline{B}} \prod_{\overline{B}} \prod_{\overline{A}} \prod$

Electrical and Computer Engineering University of Illinois at Urbana-Champaign