ECE 546 Lecture 11 MOS Amplifiers

Spring 2024

Jose E. Schutt-Aine
Electrical \& Computer Engineering
University of Illinois
jesa@illinois.edu

Amplifiers

- Definitions
- Used to increase the amplitude of an input signal to a desired level
- This is a fundamental signal processing function
- Must be linear (free of distortion) - Shape of signal preserved

$$
v_{o}(t)=A v_{i}(t), \text { where } A \text { is the voltage gain }
$$

$$
\text { Voltage Gain : } A_{v}=\frac{v_{o}}{v_{i}}
$$

$$
\text { Power Gain: } A_{p}=\frac{\text { Load Power }\left(P_{L}\right)}{\text { Input Power }\left(P_{I}\right)}
$$

Amplifiers

$$
A_{p}=\frac{v_{o} i_{o}}{v_{I} i_{I}}
$$

Current Gain: $A_{i}=\frac{i_{o}}{i_{i}}$
Note: $A_{p}=A_{v} A_{i}$

Expressing gain in dB (decibels)

Voltage gain in $d B=20 \log \left|A_{V}\right|$

Current gain in $d B=20 \log \left|A_{I}\right|$

Power gain in $d B=10 \log \left|A_{P}\right|$

Amplifiers

Since output associated with the signal is larger than the input signal, power must come from DC supply

$$
\begin{aligned}
& P_{D C}=V_{1} I_{1}+V_{2} I_{2} \\
& P_{D C}+P_{I}=P_{L}+P_{\text {dissipated }} \\
& \eta=\frac{P_{L}}{P_{D C}} \times 100=\text { Power Efficiency }
\end{aligned}
$$

Biasing of Amp

Bias will provide quiescent points for input and output about which variations will take place. Bias maintain amplifier in active region.

Amplifier characteristics are determined by bias point

Small-Signal Model

- What is a small-signal incremental model?

- Equivalent circuit that only accounts for signal level fluctuations about the DC bias operating points
- Fluctuations are assumed to be small enough so as not to drive the devices out of the proper range of operation
- Assumed to be linear
- Derives from superposition principle

Biasing of MOS Transistors

- Bias Characteristics

- Operation in saturation region
- Stable and predictable drain current

$$
I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}
$$

Single-Supply MOS Bias

Common Source MOSFET Amplifier

Bias is to keep MOS in saturation region

Common Source MOSFET Amplifier

Small-Signal Equivalent Circuit for MOS (device only)

$$
\begin{array}{c|c}
I_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2} & \text { Which leads to } \\
g_{m}=\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{V_{G S}=V_{G S Q}}=\frac{2 I_{D}}{V_{e f f}} & g_{m}=\sqrt{2 k_{n}^{\prime}} \sqrt{W / L} \sqrt{I_{D}} \\
\text { where } V_{G S}-V_{T}=V_{\text {eff }} & g_{m} \text { is proportional to }=\sqrt{W / L}
\end{array}
$$

MOSFET Output Impedance

To calculate $r_{d s}$, account for λ

$$
\begin{aligned}
r_{d s}=\left.\frac{\partial V_{D S}}{\partial I_{D}}\right|_{V_{G S}=V_{G S Q}} & =\frac{1}{\lambda \mu \frac{W}{2 L} C_{o x}\left[V_{G S}-V_{T}\right]^{2}}=\frac{1}{\lambda I_{D P}} \\
I_{D P} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}
\end{aligned}
$$

$r_{d s}$, accounts for channel width modulation resistance.

Midband Frequency Gain

Incremental model for complete amplifier

$$
A_{M B}=\frac{v_{\text {out }}}{v_{\text {in }}}=-\frac{R_{B}}{R_{B}+R_{g}} g_{m} \frac{r_{d s} R_{D}}{r_{d s}+R_{D}}
$$

Example

For the circuit shown, $k=75 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T}=1 \mathrm{~V}, \lambda=0$
(a) Find $V_{D Q}, V_{S Q}$
(b) Find the midband gain

Example (Cont')

$$
\begin{aligned}
& I_{D Q}=3.167 \pm \frac{\sqrt{6.33^{2}-9}}{2}=0.378 \mathrm{~mA} \text { or } 5.953 \mathrm{~mA} \\
& \text { drop across } R_{D} \text { will } \\
& I_{D Q}=0.378 \mathrm{~mA} \\
& \text { be too large } \\
& V_{D Q}=V_{D D}-R_{D} I_{D Q}=20-10 \times 0.378=16.22 \mathrm{~V} \\
& V_{S Q}=R_{S} I_{D Q}=2 \times 0.378=0.756 \mathrm{~V} \\
& V_{D Q}=16.22 \mathrm{~V} \\
& V_{S Q}=0.756 \mathrm{~V}
\end{aligned}
$$

Example (Cont')

$$
\begin{gathered}
g_{m}=\sqrt{2 k_{n}^{\prime} \frac{W}{L} I_{D Q}}=\sqrt{4 \times 0.075 \times 0.378}=0.337 \\
A_{M B}=-g_{m} R_{D}=-0.337 \times 10=-3.37 \\
A_{M B}=-3.37
\end{gathered}
$$

Low-Pass Circuit

$$
\begin{aligned}
& \text { In frequency domain: } \quad V_{o}=\frac{V_{i}}{R+\frac{1}{j \omega C}} \cdot \frac{1}{j \omega C} \\
& V_{o}=\frac{V_{i}}{1+j \omega R C} \Rightarrow A_{v}=\frac{V_{o}}{V_{i}}=\frac{1}{1+j \omega R C} \\
& A_{v}=\frac{1}{1+j \omega R C}=\frac{1}{1+j f / f_{2}}
\end{aligned}
$$

Low-Pass Circuit

$\tau=2 \pi R C=$ time constant

High-Pass Circuit

$V_{o}=\frac{V_{i} R}{R+\frac{1}{j \omega C}}=\frac{V_{i}}{1+\frac{1}{j \omega R C}}$

$$
A_{v}=\frac{V_{o}}{V_{i}}=\frac{1}{1-j \frac{1}{2 \pi f R C}}=\frac{1}{1-j f_{2} / f}
$$

$$
f_{2}=\frac{1}{2 \pi R C}
$$

Model for general Amplifying Element

$C_{c 1}$ and $C_{c 2}$ are coupling capacitors (large) $\rightarrow \mu \mathrm{F}$
$C_{\text {in }}$ and $C_{\text {out }}$ are parasitic capacitors (small) $\rightarrow \mathrm{pF}$

Midband Frequencies

- Coupling capacitors are short circuits
- Parasitic capacitors are open circuits

$$
A_{M B}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{\text {in }}}{R_{g}+R_{\text {in }}} A \frac{R_{L}}{R_{\text {out }}+R_{L}}
$$

Low Frequency Model

- Coupling capacitors are present
- Parasitic capacitors are open circuits

$$
\begin{gathered}
v_{a b}=\frac{v_{i n} R_{i n}}{R_{g}+R_{i n}+\frac{1}{j \omega C_{c 1}}}=\frac{v_{i n} j \omega C_{c 1} R_{i n}}{1+j \omega C_{c 1}\left(R_{g}+R_{i n}\right)} \\
v_{a b}=v_{i n} \frac{R_{i n}}{R_{g}+R_{i n}} \cdot \frac{j \omega C_{c 1}\left(R_{g}+R_{i n}\right)}{\left[1+j \omega C_{c 1}\left(R_{g}+R_{i n}\right)\right]}
\end{gathered}
$$

MOSFET High-Frequency Model

$$
\begin{aligned}
& C_{s b}=\frac{C_{s b o}}{\sqrt{1+\frac{V_{s B}}{V_{o}}}} \\
& { }_{c_{s}} \\
& \begin{array}{l|c}
g_{m}=\mu_{n} C_{o x} \frac{W}{L} V_{e f f}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}}=\frac{2 I_{D}}{V_{e f f}} & \begin{array}{c}
r_{d s}=V_{A} / I_{D}=\frac{1}{\lambda I_{D}} \\
g_{m b}=\chi g_{m}=\frac{\gamma}{2 \sqrt{2 \phi_{F}+V_{s b}}} g_{m}
\end{array} \\
C_{g s}=\frac{2}{3} W L C_{o x}+W L_{o v} C_{o x} \\
C_{g d}=W L_{o v} C_{o x}
\end{array} \\
& C_{d b}=\frac{C_{d b o}}{\sqrt{1+\frac{V_{D B}}{V_{o}}}}
\end{aligned}
$$

CS - Three Frequency Bands

Unity-Gain Frequency $\boldsymbol{f}_{\boldsymbol{T}}$

f_{T} is defined as the frequency at which the short-circuit current gain of the common source configuration becomes unity

Define:

$$
S=j \omega
$$

$$
I_{o}=g_{m} V_{g s}-s C_{g d} V_{g s}
$$

$$
I_{o} \simeq g_{m} V_{g s} \quad V_{g s}=\frac{I_{i}}{s\left(C_{g s}+C_{g d}\right)}
$$

$$
\frac{I_{o}}{I_{i}}=\frac{g_{m}}{s\left(C_{g s}+C_{g d}\right)}
$$

Calculating f_{T}

For $s=j \omega$, magnitude of current gain becomes unity at

$$
\omega_{T}=\frac{g_{m}}{C_{g s}+C_{g d}} \Rightarrow f_{T}=\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)}
$$

$f_{T} \sim 100 \mathrm{MHz}$ for $5-\mu \mathrm{m}$ CMOS, $f_{T} \sim$ several GHz for $0.13 \mu \mathrm{~m}$ CMOS

