ECE 546 Lecture 12 Integrated Circuits

Spring 2024

Jose E. Schutt-Aine
Electrical \& Computer Engineering
University of Illinois
jesa@illinois.edu

Integrated Circuits

- IC Requirements
- Biasing of ICs is based on the use of constant current sources
- Use current mirrors
- Source circuits are used as loads

Integrated Circuits

- Analog Design Requirements
- Analog ICs may need resistors and capacitors for the design of amplifiers
- Resistors and capacitors occupy the space of tens or hundreds of MOS devices
- It is important to minimize their use

Transistor Biasing

Transistor Biasing

Current Mirrors

A current mirror will reproduce a reference current to the output while allowing the output voltage to assume any value within a specified range. $I_{o}=K I_{i n}$ where K is a factor that can be less than or equal or greater than 1

MOS Current Mirror

R is usually external to IC

MOS Current Mirror

Assuming that the transistors are using the same process

$$
\frac{I_{o}}{I_{R E F}}=\frac{(W / L)_{2}}{(W / L)_{1}}=\frac{W_{2} L_{1}}{W_{1} L_{2}}
$$

- Can be limited by
- Channel length modulation (λ)
- Threshold voltage mismatch
- Imperfect geometrical matching

MOS Current Mirror

$$
\frac{I_{o}}{I_{R E F}}=\frac{W_{2} L_{1}}{W_{1} L_{2}}\left[\frac{1+\lambda\left(V_{D S 2}-V_{D S P 2}\right)}{1+\lambda\left(V_{D S 1}-V_{D S P 1}\right)}\right]
$$

- Some Properties

1. MOS current mirrors draw zero control current \rightarrow better than BJT's
2. Matching of threshold voltages harder than in BJT's

Example

A matched pair of MOSFETs are used in a current mirror witl $\lambda=0.032 \mathrm{~V}^{-1}, \mu \mathrm{C}_{o \mathrm{x}}=70 \mu \mathrm{~A} / \mathrm{V}^{2}, W / 2 L=10$, and $V_{T}=0.9$ V . Find the value of R to create an input current of 100 $\mu \mathrm{A}$. Calculate the output current when $V_{o}=3 \mathrm{~V}$.

Use drain current equation in active region to calculate

$$
\begin{gathered}
I_{D 1}=\frac{\mu C_{o x} W}{2 L}\left[V_{G S}-V_{T}\right]^{2}\left(1+\lambda V_{D S 1}\right) \\
I_{D 1}=100=700\left[V_{G S}-0.9\right]^{2}\left(1+0.032 * V_{G S}\right)
\end{gathered}
$$

We can now solve for the value of $V_{G S}$

Example

MOS Current Mirror

Example

$$
V_{G S}=1.272 \mathrm{~V}
$$

The resistance needed is:

$$
R=\frac{5-V_{D S 1}}{I_{D 1}}=\frac{5-1.272}{0.1}=37.2 \mathrm{k} \Omega
$$

The output current is calculated from:

$$
\begin{aligned}
& I_{D 2}=\frac{\mu C_{o x} W}{2 L}\left[V_{G S}-V_{T}\right]^{2}\left(1+\lambda V_{D S 1}\right) \\
& I_{D 2}=700[1.272-0.9]^{2}(1+0.032 \times 3)=106 \mu \mathrm{~A} \\
& I_{D 2}=106 \mu \mathrm{~A}
\end{aligned}
$$

Ideal MOS Common Source CKT

PMOS Implementation of Active Load

PMOS Implementation of Active Load

Can show that the 3dB point is given:

$$
f_{2 o}=\frac{\left(g_{01}+g_{02}\right)}{2 \pi\left(C_{d b 1}+C_{d b 2}+C_{g d 1}+C_{g d 2}\right)}
$$

Large incremental load leads to high gain while maintaining acceptable DC current (resistor would not work)

