ECE 546 Lecture - 14 Macromodeling

Spring 2024

Jose E. Schutt-Aine
Electrical \& Computer Engineering
University of Illinois
jesa@illinois.edu

Blackbox Macromodeling

Objective: Perform timedomain simulation of composite network to determine timing waveforms, noise response or eye diagrams

Macromodel Implementation

Blackbox Synthesis

Motivations

- Only measurement data is available
- Actual circuit model is too complex

Methods

- Inverse-Transform \& Convolution
- IFFT from frequency domain data
- Convolution in time domain
- Macromodel Approach
- Curve fitting
- Recursive convolution

Blackbox Synthesis

Terminations are described by a source vector $G(\omega)$ and an impedance matrix Z

Blackbox is described by its scattering parameter matrix S

Blackbox - Method 1

Scattering Parameters $\quad B(\omega)=S(\omega) A(\omega)$
Terminal conditions $\quad A(\omega)=\Gamma B(\omega)+T G(\omega)$
where

$$
\begin{aligned}
\Gamma & =-\left[U+Z Z_{o}^{-1}\right]^{-1}\left[U-Z Z_{o}^{-1}\right] \\
T & =\left[U+Z Z_{o}^{-1}\right]^{-1}
\end{aligned}
$$

U is the unit matrix, Z is the termination impedance matrix and Z_{o} is the reference impedance matrix

Blackbox - Method 1

Combining (1) and (2) $A(\omega)=[U-\Gamma S(\omega)]^{-1} T G(\omega)$

$$
\text { and } \quad B(\omega)=S(\omega) A(\omega)=S(\omega)[U-\Gamma S(\omega)]^{-1} T G(\omega)
$$

$$
\begin{gathered}
V(\omega)=A(\omega)+B(\omega)=[U+S(\omega)][U-\Gamma S(\omega)]^{-1} T G(\omega) \\
I(\omega)=Z_{o}^{-1}[A(\omega)-B(\omega)]=Z_{o}^{-1}[U-S(\omega)][U-\Gamma S(\omega)]^{-1} T G(\omega) \\
v(t)=\operatorname{IFFT}\{V(\omega)\} \\
i(t)=\operatorname{IFFT}\{I(\omega)\}
\end{gathered}
$$

Method 1 - Limitations

- No Frequency Dependence for Terminations
$>$ Reactive terminations cannot be simulated
- Only Linear Terminations
$>$ Transistors and active nonlinear terminations cannot be described
- Standalone
$>$ This approach cannot be implemented in a simulator

Blackbox - Method 2

In frequency domain $B=S A$

In time domain $\quad b(t)=s(t) * a(t)$
Convolution: $\quad s(t) * a(t)=\int_{-\infty}^{\infty} s(t-\tau) a(\tau) d \tau$

Discrete Convolution

When time is discretized the convolution becomes

$$
s(t) * a(t)=\sum_{\tau=1}^{t} s(t-\tau) a(\tau) \Delta \tau
$$

Isolating $a(t)$

$$
s(t) * a(t)=s(0) a(t) \Delta \tau+\sum_{\tau=1}^{t-1} s(t-\tau) a(\tau) \Delta \tau
$$

Since $a(t)$ is known for $t<t$, we have:

$$
H(t)=\sum_{\tau=1}^{t-1} s(t-\tau) a(\tau) \Delta \tau: \quad \text { History }
$$

Terminal Conditions

Defining $s^{\prime}(0)=s(0) \Delta \tau$, we finally obtain

$$
\begin{aligned}
& b(t)=s^{\prime}(0) a(t)+H(t) \\
& a(t)=\Gamma(t) b(t)+T(t) g(t)
\end{aligned}
$$

By combining these equations, the stamp can be derived

Stamp Equation Derivation

The solutions for the incident and reflected wave vectors are given by:

$$
\begin{aligned}
a(t) & =\left[1-\Gamma(t) s^{\prime}(0)\right]^{-1}[T(t) g(t)+\Gamma(t) H(t)] \\
b(t) & =s^{\prime}(0) a(t)+H(t)
\end{aligned}
$$

The voltage wave vectors can be related to the voltage and current vectors at the terminals

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left[v(t)+Z_{o} i(t)\right] \\
b(t) & =\frac{1}{2}\left[v(t)-Z_{o} i(t)\right]
\end{aligned}
$$

Stamp Equation Derivation

From which we get

$$
\frac{1}{2}\left[v(t)-Z_{o} i(t)\right]=\frac{s^{\prime}(0)}{2}\left[v(t)+Z_{o} i(t)\right]+H(t)
$$

or

$$
Z_{o} i(t)+s^{\prime}(0) Z_{o} i(t)+2 H(t)=\left[1-s^{\prime}(0)\right] v(t)
$$

or

$$
\left[1+s^{\prime}(0)\right] Z_{o} i(t)=\left[1-s^{\prime}(0)\right] v(t)-2 H(t)
$$

which leads to

$$
i(t)=Z_{o}^{-1}\left[1+s^{\prime}(0)\right]^{-1}\left[1-s^{\prime}(0)\right] v(t)-2 Z_{o}^{-1}\left[1+s^{\prime}(0)\right]^{-1} H(t)
$$

Stamp Equation Derivation

$i(t)$ can be written to take the form

$$
i(t)=Y_{\text {stamp }} v(t)-I_{\text {stamp }}
$$

in which

$$
Y_{\text {stamp }}=Z_{o}^{-1}\left[1+s^{\prime}(0)\right]^{-1}\left[1-s^{\prime}(0)\right]
$$

and

$$
I_{\text {stamp }}=2 Z_{o}^{-1}\left[1+s^{\prime}(0)\right]^{-1} H(t)
$$

Stamp Equations

$$
\begin{aligned}
i(t) & =Y_{\text {stamp }} v(t)-I_{\text {stanp }} \\
Y_{\text {stamp }} & =Z_{o}^{-1}\left[1+s^{\prime}(0)\right]^{-1}\left[1-s^{\prime}(0)\right] \\
I_{\text {stamp }} & =2 Z_{o}^{-1}\left[1+s^{\prime}(0)\right]^{-1} H(t)
\end{aligned}
$$

$$
\left(Y_{g}+Y_{s t a m p}\right) V(t)=I_{g}+I_{s t a m p}
$$

Effects of DC Data

No DC Data Point

With DC Data Point

If low-frequency data points are not available, extrapolation must be performed down to DC.

Effect of Low-Frequency Data

Effect of Low-Frequency Data

Calculating inverse Fourier Transform of: $\quad V(f)=\frac{2 \sin (2 \pi f t)}{2 \pi f t}$

Left: IFFT of a sinc pulse sampled from 10 MHz to 10 GHz . Right: IFFT of the same sinc pulse with frequency data ranging from $0-10 \mathrm{GHz}$. In both cases 1000 points are used

Convolution Limitations

Frequency-Domain Formulation $\quad Y(\omega)=H(\omega) X(\omega)$

Time-Domain Formulation

$$
y(t)=h(t) * x(t)
$$

Convolution

$$
y(t)=h(t) * y(t)=\int_{0}^{t} h(t-\tau) y(\tau) d \tau
$$

Discrete Convolution

$$
h(t) * x(t)=\sum_{\tau=1}^{t} h(t-\tau) x(\tau) \Delta \tau
$$

$$
H(t)=\sum_{\tau=1}^{t-1} h(t-\tau) x(\tau) \Delta \tau: \quad \text { History }
$$

Computing History is computationally expensive \rightarrow Use FD rational approximation and TD recursive convolution

Frequency and Time Domains

1. For negative frequencies use conjugate relation $V(-\omega)=V^{*}(\omega)$
2. DC value: use lower frequency measurement
3. Rise time is determined by frequency range or bandwidth
4. Time step is determined by frequency range
5. Duration of simulation is determined by frequency step

Problems and Issues

- Discretization: (not a continuous spectrum)
- Truncation: frequency range is band limited
F : frequency range
N : number of points
$\Delta \mathrm{f}=\mathrm{F} / \mathrm{N}$: frequency step
$\Delta \mathrm{t}=$ time step

Problems and Issues

Problems \& Limitations (in frequency domain)	Consequences (in time domain)	Solution
Discretization	Time-domain response will repeat itself periodically (Fourier series) Aliasing effects	Take small frequency steps. Minimum sampling rate must be the Nyquist rate
Truncation in Frequency	Time-domain response will have finite time resolution (Gibbs effect)	Take maximum frequency as high as possible
No negative frequency values	Time-domain response will be complex	Define negative-frequency values and use V(-f)= $V^{*}(\mathrm{f})$ which forces v(t) to be real
No DC value	Offset in time-domain response, ringing in base line	Use measurement at the lowest frequency as the DC value

Complex Plane

- An arbitrary network's transfer function can be described in terms of its s-domain representation
$-s$ is a complex number $s=\sigma+j \omega$
- The impedance (or admittance) or transfer function of networks can be described in the s domain as

$$
T(s)=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\ldots+a_{1} s+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\ldots+b_{1} s+b_{0}}
$$

$$
\begin{array}{r}
\text { Transfer Functions } \\
T(s)=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\ldots+a_{1} s+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\ldots+b_{1} s+b_{0}}
\end{array}
$$

The coefficients a and b are real and the order m of the numerator is smaller than or equal to the order n of the denominator

A stable system is one that does not generate signal on its own.

For a stable network, the roots of the denominator should have negative real parts

Transfer Functions

The transfer function can also be written in the form

$$
T(s)=a_{m} \frac{\left(s-Z_{1}\right)\left(s-Z_{2}\right) \ldots\left(s-Z_{m}\right)}{\left(s-P_{1}\right)\left(s-P_{2}\right) \ldots\left(s-P_{m}\right)}
$$

$Z_{1}, Z_{2}, \ldots Z_{m}$ are the zeros of the transfer function
$P_{1}, P_{2}, \ldots P_{m}$ are the poles of the transfer function
For a stable network, the poles should lie on the left half of the complex plane

Model Order Reduction

Model Order Reduction

Objective: Approximate frequency-domain transfer function to take the form:

$$
H(\omega)=\left[A_{1}+\sum_{i=1}^{L} \frac{a_{i i}}{1+j \omega / \omega_{c l i}}\right]
$$

Methods

- AWE - Pade
- Pade via Lanczos (Krylov methods)
- Rational Function
- Chebyshev-Rational function
- Vector Fitting Method

Model Order Reduction (MOR)

Question: Why use a rational function approximation?
Answer: because the frequency-domain relation

$$
Y(\omega)=H(\omega) X(\omega)=\left[d+\sum_{k=1}^{L} \frac{c_{k}}{1+j \omega / \omega_{c k}}\right] X(\omega)
$$

will lead to a time-domain recursive convolution:
where

$$
y(t)=d x(t-T)+\sum_{k=1}^{L} y_{p k}(t)
$$

$$
y_{p k}(t)=a_{k} x(t-T)\left(1-e^{-\omega_{k} T}\right)+e^{-\omega_{\alpha k} T} y_{p k}(t-T)
$$

which is very fast!

Model Order Reduction

Transfer function is approximated as

$$
H(\omega)=d+\sum_{k=1}^{L} \frac{c_{k}}{1+j \omega / \omega_{c k}}
$$

In order to convert data into rational function form, we need a curve fitting scheme \rightarrow Use Vector Fitting

History of Vector Fitting (VF)

- 1998 - Original VF formulated by Bjorn Gustavsen and Adam Semlyen*
- 2003 - Time-domain VF (TDVF) by S. Grivet-Talocia.
- 2005-Orthonormal VF (OVF) by Dirk Deschrijver, Tom Dhaene, et al.
- 2006 - Relaxed VF by Bjorn Gustavsen.
- 2006 - VF re-formulated as Sanathanan-Koerner (SK) iteration by W. Hendrickx, Dirk Deschrijver and Tom Dhaene, et al.

[^0]
Vector Fitting (VF)

Vector fitting algorithm

$$
\left[\begin{array}{l}
\sigma(s) f(s) \\
\sigma(s)
\end{array}\right] \approx\left[\begin{array}{l}
\sum_{n=1}^{N} \frac{c_{n}}{s-\tilde{a}_{n}}+d+s h \\
\sum_{n=1}^{N} \frac{\tilde{c}_{n}}{s-\tilde{a}_{n}}+1
\end{array}\right]
$$

Avoid ill-conditioned matrix

Guarantee stability
$\left(\sum_{n=1}^{N} \frac{c_{n}}{s-\tilde{a}_{n}}+d+s h\right)-\left(\sum_{n=1}^{N} \frac{\tilde{c}_{n}}{s-\tilde{a}_{n}}\right) f(s) \approx f(s)$.
Converge, accurate
Solve for $c_{n}, \tilde{c}_{n}, d, h$
With Good Initial Poles

Can show* that the zeros of $\sigma(s)$ are the poles of $f(s)$ for the next iteration

* B. Gustavsen and A. Semlyen, "Rational approximation of frequency responses by vector fitting," IEEE
Trans. Power Del., vol. 14, no. 3, pp 1052-1061, Jul. 1999

Examples

1.- DISC: Transmission line with discontinuities

2.- COUP: Coupled transmission line2

Frequency sweep: $300 \mathrm{KHz} \mathbf{- 6} \mathbf{~ G H z}$

DISC: Approximation Results

DISC: Approximation order 90

DISC: Simulations

Microstrip line with discontinuities Data from 300 KHz to 6 GHz

Observation: Good agreement

COUP: Approximation Results

COUP: Approximation order 75 - Before Passivity Enforcement

COUP: Simulations

Port 1: a - Port 2: d Data from 300 KHz to 6 GHz

Observation: Good agreement

Orders of Approximation

Low order

Medium order

Higher order

MOR Attributes

- Accurate:- over wide frequency range.
-Stable:- All poles must be in the left-hand side in s-plane or inside in the unit-circle in z-plane.
-Causal:- Hilbert transform needs to be satisfied.
-Passive:- $\mathrm{H}(\mathrm{s})$ is analytic

$$
h[n]=h_{e}[n]+h_{o}[n] \Leftrightarrow H(j \omega)=H_{R}(j \omega)+j H_{I}(j \omega)
$$

$$
H^{*}(s)=H\left(s^{*}\right),
$$

$$
z^{* T}\left[\boldsymbol{H}^{T}\left(s^{*}\right)+\boldsymbol{H}(s)\right] z \geq 0, \quad \mathbb{R}[s]>0 \quad \text {,for } \mathrm{Y} \text { or } \mathrm{Z} \text {-parameters. }
$$

$$
I-\boldsymbol{H}^{T}\left(s^{*}\right) \boldsymbol{H}(s) \geq 0, \quad \mathbb{R}[s]>0 \quad \text {,for S-parameters. }
$$

MOR Problems

- Bandwidth
>Low-frequency data must be added
- Passivity
>Passivity enforcement
- High Order of Approximation
> Orders > 800 for some serial links
$>$ Delay need to be extracted

Causality Violations

NON-CAUSAL

$$
Z(f)=R_{o} \sqrt{f}+j L \omega
$$

Near (blue) and Far (red) end responses of lossy TL

CAUSAL \rightarrow

$$
Z(f)=R_{o} \sqrt{f}+j R_{o} \sqrt{f}+j L \omega
$$

Fourier Transform Pairs

$a_{r e}(t)$: real part of even time-domain function
$a_{i e}(t)$: imaginary part of even time-domain function
$a_{r o}(t)$: real part of odd time-domain function
$a_{i o}(t)$: imaginary part of odd time-domain function

$$
a(t)=a_{r e}(t)+j a_{i e}(t)+a_{r o}(t)+j a_{i o}(t)
$$

In the frequency domain accounting for all the components, we can write:
$A_{R E}(\omega)$: real part of even function in the frequency domain
$A_{\text {IE }}(\omega)$: imaginary part of even function in the frequency domain
$A_{R O}(\omega)$: real part of odd function in the frequency domain
$A_{I O}(\omega)$: imaginary part of odd function in the frequency domain

$$
A(\omega)=A_{R E}(\omega)+j A_{I E}(\omega)+A_{R O}(\omega)+j A_{I O}(\omega)
$$

Fourier Transform Pairs

We also have the Fourier-transform-pair relationships:
Time Domain : $a(t)=a_{r e}(t)+j a_{i e}(t)+a_{r o}(t)+j a_{i o}(t)$

Freq Domain : $A(\omega)=A_{R E}(\omega)+j A_{I E}(\omega)+A_{R O}(\omega)+j A_{I O}(\omega)$

$$
B(\omega)=S(\omega)\left[A_{R E}(\omega)+j A_{I E}(\omega)+A_{R O}(\omega)+j A_{I O}(\omega)\right]
$$

In the time domain, this corresponds to:

$$
b(t)=s(t) *\left[\left(a_{r e}(t)+a_{r o}(t)\right)+j\left(a_{i e}(t)+a_{i o}(t)\right)\right]
$$

Fourier Transform Pairs

We now impose the restriction that in the time domain, the function must be real. As a result,

$$
a_{i e}(t)=a_{i o}(t)=0 \quad \text { which implies that: } \quad A_{I E}(\omega)=A_{R O}(\omega)=0
$$

The Fourier-transform pair relationship then becomes:
Time Domain : $a(t)=a_{r e}(t)+a_{r o}(t)$

Freq Domain: $A(\omega)=A_{R E}(\omega)+j A_{I O}(\omega)$
The frequency-domain relations reduce to:

$$
B(\omega)=S(\omega)\left[A_{R E}(\omega)+j A_{I O}(\omega)\right]
$$

Fourier Transform Pairs

In summary, the general relationship is:
Time Domain : $b(t)=b_{r e}(t)+j b_{i e}(t)+b_{r o}(t)+j b_{i o}(t)$

Freq Domain: $B(\omega)=B_{R E}(\omega)+j B_{I E}(\omega)+B_{R O}(\omega)+j B_{I O}(\omega)$
But for a real system:
Time Domain: $b(t)=b_{r e}(t)+j b_{i e}(t)+b_{r o}(t)+j b_{i o}(t)$

Freq Domain: $B(\omega)=B_{R E}(\omega)+j B_{I E}(\omega)+B_{R O}(\omega)+j B_{I O}(\omega)$

Fourier Transform Pairs

So, in summary

Time Domain : $b(t)=b_{e}(t)+b_{o}(t)$

Freq Domain : $B(\omega)=B_{R}(\omega)+j B_{I}(\omega)$

The real part of the frequency-domain transfer function is associated with the even part of the time-domain response

The imaginary part of the frequency-domain transfer function is associated with the odd part of the time-domain response

Causality Principle

Consider a function $h(t)$

$$
h(t)=0, \quad t<0
$$

Every function can be considered as the sum of an even function and an odd function

$$
\begin{aligned}
& h(t)=h_{e}(t)+h_{o}(t) \\
& h_{e}(t)=\frac{1}{2}[h(t)+h(-t)] \quad \text { Even function } \\
& h_{o}(t)=\frac{1}{2}[h(t)-h(-t)] \quad \text { Odd function } \\
& h_{o}(t)=\left\{\begin{array}{cc}
h_{e}(t), & t>0 \\
-h_{e}(t), & t<0
\end{array}\right. \\
& h_{o}(t)=\operatorname{sgn}(t) h_{e}(t)
\end{aligned}
$$

Hilbert Transform

$$
h(t)=h_{e}(t)+\operatorname{sgn}(t) h_{e}(t)
$$

In frequency domain this becomes

$$
\begin{gathered}
H(f)=H_{e}(f)+\frac{1}{j \pi f} * H_{e}(f) \\
H(f)=H_{e}(f)-j \hat{H}_{e}(f)
\end{gathered}
$$

\rightarrow Imaginary part of
transfer function is related to the real part through the Hilbert transform
$\hat{H}_{e}(f)$ is the Hilbert transform of $H_{e}(f)$

$$
\hat{x}(t)=x(t) * \frac{1}{\pi t}=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x(\tau)}{t-\tau} d \tau
$$

Discrete Hilbert Transform

\rightarrow Imaginary part of transfer function cab be recovered from the real part through the Hilbert transform
\Rightarrow If frequency-domain data is discrete, use discrete Hilbert Transform (DHT)*

$$
H\left(f_{n}\right)=\hat{f}_{k}= \begin{cases}\frac{2}{\pi} \sum_{n \text { odd }} \frac{f_{n}}{k-n}, & k \text { even } \\ \frac{2}{\pi} \sum_{n \text { even }} \frac{f_{n}}{k-n}, & k \text { odd }\end{cases}
$$

*S. C. Kak, "The Discrete Hilbert Transform", Proceedings of the IEEE, pp. 585-586, April 1970.

HT for Via: 1 MHz - 20 GHz

\Longrightarrow Transform
Real(S11) - Via

Actual
Transform

Imag(S11) - Via

Actual is red, HT is blue

Observation: Poor agreement (because frequency range is limited)

Observation: Good agreement

Microstrip Line S11

Microstrip Line S21

Discontinuity S11

Discontinuity S21

Backplane S11

Backplane S21

HT of Minimum Phase System

$$
\begin{aligned}
& \left|H_{i j}(s)\right|=\left|M_{i j}(s)\left\|P_{i j}(s)\right\| e^{-s \tau_{i j}}\right| \\
& \quad\left|P_{i j}(j \omega)\right|=\left|e^{-j \omega \tau_{i j}}\right|=1 \\
& s=j \omega \quad\left|H_{i j}(j \omega)\right|=\left|M_{i j}(j \omega)\right|
\end{aligned}
$$

The phase of a minimum phase system can be completely determined by its magnitude via the Hilbert transform

$$
\begin{gathered}
\arg \left[M_{i j}(\omega)\right]=\frac{2 \omega}{\pi} \int_{0}^{\infty} \frac{U(\xi)-U(\omega)}{(\xi+\omega)(\xi-\omega)} d \xi \\
U(\omega)=\ln \left|M_{i j}(\omega)\right|=\ln \left|H_{i j}(\omega)\right|
\end{gathered}
$$

Enforcing Causality in TL

The complex phase shift of a lossy transmission line

$$
X=e^{-\gamma l}=e^{-\sqrt{(R+j \omega L)(G+j \omega C) l}} \text { is non causal }
$$

We assume that

$$
\begin{aligned}
& e^{-j \phi(\omega)} e^{-\alpha(\omega)}=e^{+j \omega \sqrt{L C} l} e^{-\sqrt{(R+j \omega L)(G+j \omega C) l}} \quad \text { is minimum phase non causal } \\
& H T\left\{\ln \left|e^{-j \phi(\omega)} e^{-\alpha(\omega)}\right|\right\}=H T\left\{\ln \left|e^{-\gamma l}\right|\right\}=-\phi^{\prime}(\omega) \\
& \qquad e^{-j \phi^{\prime}(\omega)} e^{-\alpha(\omega)} \text { is minimum phase and causal } \\
& \qquad X^{\prime}=e^{-j \phi^{\prime}(\omega)} e^{-\alpha(\omega)} e^{-j \omega \sqrt{L C} l} \quad \text { is the causal phase shift of the TL } \\
& \text { In essence, we keep the magnitude of the propagation function of the TL but we } \\
& \text { calculate/correct for the phase via the Hilbert transform. }
\end{aligned}
$$

Passivity Assessment

Can be done using S parameter Matrix

$$
D=\left(1-S^{* T} S\right)=\text { Dissipation Matrix }
$$

All the eigenvalues of the dissipation matrix must be greater than 0 at each sampled frequency points.

This assessment method is not very robust since it may miss local nonpassive frequency points between sampled points.
\Rightarrow Use Hamiltonian from State Space Representation

MOR and Passivity

State-Space Representation

The State space representation of the transfer function is given by

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

The transfer function is given by

$$
S(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D}
$$

Procedure

- Approximate all N^{2} scattering parameters using Vector Fitting
- Form Matrices A, B, C and D for each approximated scattering parameter
- Form A, B, C and D matrices for complete Nport
- Form Hamiltonian Matrix H

Constructing $\boldsymbol{A}_{i j}$

Matrix $A_{i i}$ is formed by using the poles of $S_{i i}$. The poles are arranged in the diagonal.

$$
\boldsymbol{A}_{i i}=\left(\begin{array}{cccc}
a_{1}^{(i i)} & b_{1}^{(i i)} & 0 & 0 \\
-b_{1}^{(i i)} & a_{1}^{(i i)} & 0 & 0 \\
0 & 0 & \bullet & \bullet \\
0 & 0 & \bullet & a_{L}^{(i i)}
\end{array}\right)
$$

Complex poles are arranged with their complex conjugates with the imaginary part placed as shown.
$A_{i i}$ is an $L \times L$ matrix

Constructing $C_{i j}$

Vector $C_{i j}$ is formed by using the residues of $S_{i j}$.

$$
\boldsymbol{C}_{i j}=\left(\begin{array}{llll}
c_{1}^{(i j)} & c_{2}^{(i j)} & \cdot c_{N}^{(i j)}
\end{array}\right)
$$

where $c_{k}^{(i)}$ is the k th residue resulting from the L th order approximation of $S_{i j}$

$C_{i j}$ is a vector of length L

Constructing $B_{i j}$

For each real pole, we have an entry with a 1
$\begin{aligned} & \text { For each complex conjugate pole, } \\ & \text { pair we have two entries as: }\binom{2}{0}\end{aligned} \quad \boldsymbol{B}_{i i}=\left(\begin{array}{l}2 \\ 0 \\ \cdot \\ 1\end{array}\right)$
$B_{i i}$ is a vector of length L

Constructing $D_{i j}$

$D_{i j}$ is a scalar which is the constant term from the Vector fitting approximation:

$$
S_{i j} \simeq d_{i j}+\sum_{k=1}^{L} \frac{c_{k}^{(i j)}}{s-a_{k}^{(i i)}}
$$

$$
\boldsymbol{D}_{i j}=d_{i j}
$$

Constructing A

Matrix A for the complete N -port is formed by combining the $A_{i i}$'s in the diagonal.

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
A_{11} & & & \\
& A_{22} & & \\
& & \bullet & \\
& & & A_{N N}
\end{array}\right)
$$

A is a $N L \times N L$ matrix

Constructing C

Matrix C for the complete N -port is formed by combining the $C_{i j}$'s.

$$
\boldsymbol{C}=\left(\begin{array}{cccc}
C_{11} & C_{12} & \bullet & \\
C_{21} & C_{22} & & \\
\bullet & & \bullet & \\
& & & C_{N N}
\end{array}\right)
$$

C is a $N \times N L$ matrix

Constructing B

Matrix B for the complete two-port is formed by combining the $B_{i i}$'s.

$$
\boldsymbol{B}=\left(\begin{array}{cccc}
B_{11} & 0 & 0 & \\
0 & B_{22} & 0 & \\
\bullet & & \bullet & \\
0 & & & B_{N N}
\end{array}\right)
$$

B is a $N L \times N$ matrix

Hamiltonian

Construct Hamiltonian Matrix M

$$
\begin{gathered}
\boldsymbol{M}=\left[\begin{array}{cc}
\boldsymbol{A}-\boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{D}^{T} \boldsymbol{C} & -\boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{B}^{T} \\
\boldsymbol{C}^{T} \boldsymbol{S}^{-1} \boldsymbol{C} & -\boldsymbol{A}^{T}+\boldsymbol{C}^{T} \boldsymbol{D} \boldsymbol{R}^{-1} \boldsymbol{B}^{T}
\end{array}\right] \\
\boldsymbol{R}=\left(\boldsymbol{D}^{T} \boldsymbol{D}-\boldsymbol{I}\right) \text { and } \boldsymbol{S}=\left(\boldsymbol{D} \boldsymbol{D}^{T}-\boldsymbol{I}\right)
\end{gathered}
$$

The system is passive if \boldsymbol{M} has no purely imaginary eigenvalues
If imaginary eigenvalues are found, they define the crossover frequencies $(j \omega)$ at which the system switches from passive to non-passive (or vice versa)
\rightarrow gives frequency bands where passivity is violated

Perturb Hamiltonian

Perturb the Hamiltonian Matrix \boldsymbol{M} by perturbing the pole matrix A

$$
A \rightarrow A^{\prime}=A+\Delta A
$$

$$
\boldsymbol{M}+\boldsymbol{\Delta} \boldsymbol{M}=\left[\begin{array}{cc}
\boldsymbol{A}+\boldsymbol{\Delta} \boldsymbol{A}-\boldsymbol{B}\left(\boldsymbol{D}+\boldsymbol{D}^{T}\right)^{-1} \boldsymbol{C} & \boldsymbol{B}\left(\boldsymbol{D}+\boldsymbol{D}^{T}\right)^{-1} \boldsymbol{B}^{T} \\
-\boldsymbol{C}^{T}\left(\boldsymbol{D}+\boldsymbol{D}^{T}\right)^{-1} \boldsymbol{C} & -(\boldsymbol{A}+\boldsymbol{\Delta} \boldsymbol{A})^{T}+\boldsymbol{C}^{T}\left(\boldsymbol{D}+\boldsymbol{D}^{T}\right)^{-1} \boldsymbol{B}^{T}
\end{array}\right]
$$

$$
\Delta M=\left[\begin{array}{cc}
\Delta A & 0 \\
0 & -(\Delta A)^{T}
\end{array}\right]
$$

This will lead to a change of the state matrix:

$$
A \rightarrow A^{\prime}=A+\Delta A
$$

State-Space Representation

The State space representation of the transfer function in the time domain is given by

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

The solution in discrete time is given by

$$
\begin{gathered}
\boldsymbol{x}[k+1]=\boldsymbol{A}_{\boldsymbol{d}} \boldsymbol{x}[k]+\boldsymbol{B}_{\boldsymbol{d}} \boldsymbol{u}[k] \\
\boldsymbol{y}[k]=\boldsymbol{C}_{\boldsymbol{d}} \boldsymbol{x}[k]+\boldsymbol{D}_{\boldsymbol{d}} \boldsymbol{u}[k]
\end{gathered}
$$

State-Space Representation

where

$$
\begin{array}{ll}
\boldsymbol{A}_{\boldsymbol{d}}=e^{\boldsymbol{A} T} & \boldsymbol{B}_{\boldsymbol{d}}=\left(\int_{0}^{T} e^{\boldsymbol{A} \tau} d \tau\right) \boldsymbol{B} \\
\boldsymbol{C}_{\boldsymbol{d}}=\boldsymbol{C} & \boldsymbol{D}_{\boldsymbol{d}}=\boldsymbol{D}
\end{array}
$$

which can be calculated in a straightforward manner

When $y(t) \rightarrow b(t)$ is combined with the terminal conditions, the complete blackbox problem is solved.

State-Space Passive Solution

If \boldsymbol{M}^{\prime} is passive, then the state-space solution using A^{\prime} will be passive.

$$
A \rightarrow A^{\prime}=A+\Delta A
$$

The passive solution in discrete time is given by

$$
\begin{aligned}
& \boldsymbol{x}[k+1]=\boldsymbol{A}_{\boldsymbol{d}}^{\prime} \boldsymbol{x}[k]+\boldsymbol{B}_{\boldsymbol{d}} \boldsymbol{u}[k] \\
& \boldsymbol{y}[k]=\boldsymbol{C}_{\boldsymbol{d}} \boldsymbol{x}[k]+\boldsymbol{D}_{\boldsymbol{d}} \boldsymbol{u}[k]
\end{aligned}
$$

Size of Hamiltonian

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\boldsymbol{A}-\boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{D}^{T} \boldsymbol{C} & -\boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{B}^{T} \\
\boldsymbol{C}^{T} \boldsymbol{S}^{-1} \boldsymbol{C} & -\boldsymbol{A}^{T}+\boldsymbol{C}^{T} \boldsymbol{D} \boldsymbol{R}^{-1} \boldsymbol{B}^{T}
\end{array}\right]
$$

M has dimension 2NL
For a 20-port circuit with VF order of $40, \mathrm{M}$ will be of dimension $2 \times 40 \times 20=1600$

The matrix M has dimensions 1600×1600
Too Large!
\rightarrow Eigen-analysis of this matrix is prohibitive

Example

$$
\begin{array}{clrl}
\boldsymbol{A}=\left[\begin{array}{ccc}
-10 & 0 & 0 \\
0 & -1 & 100 \\
0 & -100 & -1
\end{array}\right] & \boldsymbol{B}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \\
\boldsymbol{C}=\left[\begin{array}{lll}
1 & 1 & 0.1
\end{array}\right] & \boldsymbol{D}=\left[10^{-5}\right]
\end{array}
$$

This macromodel is nonpassive between 99.923 and 100.11 radians

Example

$$
\boldsymbol{A}^{\prime}=\left[\begin{array}{ccc}
-10 & 0 & 0 \\
0 & -1-0.005 & 100 \\
0 & -100 & -1-0.005
\end{array}\right]
$$

The Hamiltonian M^{\prime} associated with A^{\prime} has no pure imaginary \rightarrow System is passive

Passivity Enforcement Techniques

\Rightarrow Hamiltonian Perturbation Method ${ }^{(1)}$

\Rightarrow Residue Perturbation Method ${ }^{(2)}$
(1) S. Grivet-Talocia, "Passivity enforcement via perturbation of Hamiltonian matrices," IEEE Trans. Circuits Syst. I, vol. 51, no. 9, pp. 1755-1769, Sep. 2004.
(2) D. Saraswat, R. Achar, and M. Nakhla, "A fast algorithm and practical considerations for passive macromodeling of measured/simulated data," IEEE Trans. Adv. Packag., vol. 27, no. 1, pp. 57-70, Feb. 2004.

Benchmarks*

Data file	No. of points	MOR with Vector Fitting					Fast Convolution
		Order	Time (s)				Time (s)
			VFIT ${ }^{\ddagger}$	Passivity Enforcement	Recursive Convolution\#	TOTAL	
Blackbox 1	501	10*	0.14	$0.01{ }^{\text {NV }}$	0.02	0.17	0.078
Blackbox 2	802	20*	0.41	5.47	0.03	5.91	0.110
Blackbox 3	802	40*	1.08	$0.08{ }^{\mathrm{NV}}$	0.06	1.22	0.125
Blackbox 4	802	60*	2.25	1.89	0.09	4.23	0.125
		100	3.17	5.34	0.16	8.67	
Blackbox 5	2002	50*	4.97	0.09 NV	0.28	5.34	0.328
Blackbox 6	802	100*	3.17	$0.56{ }^{\text {NV }}$	0.16	3.89	0.109
Blackbox 7	1601	100*	24.59	28.33	1.31	53.23	0.438
		120	31.16	27.64	1.58	60.38	
Blackbox 8	5096	220	250.08	$25.77{ }^{\text {NV }}$	10.05	285.90	2.687
Blackbox 9	1601	200*	58.47	91.63	2.59	152.69	0.469
		250	80.64	122.83	3.22	206.69	
		300	106.53	$61.58{ }^{\text {NV }}$	3.86	171.97	

* J. E. Schutt-Aine, P. Goh, Y. Mekonnen, Jilin Tan, F. Al-Hawari, Ping Liu; Wenliang Dai, "Comparative Study of Convolution and Order Reduction Techniques for Blackbox Macromodeling Using Scattering Parameters," IEEE Trans. Comp. Packaging. Manuf. Tech., vol. 1, pp. 1642-1650, October 2011.

Passive VF Simulation Code

\rightarrow Performs VF with common poles
\rightarrow Assessment via Hamiltonian
\rightarrow Enforcement: Residue Perturbation Method
\Rightarrow Simulation: Recursive convolution

Number of Ports	Order	CPU-Time
4-Port	20	1.7 secs
6-port	32	3.69 secs
10 -port	34	8.84 secs
20 -port	34	33 secs
40	50	142 secs
80	12	255 secs

Passive VF Code - Examples

Example 1
4 ports
order $=60$

Example 2
40 ports
order $=50$

Passivity Enforced VF

4 ports, 2039 data points - VFIT order $=60$ (4 iterations $\sim 6-7 \mathrm{mins}$), Passivity enforcement: 58 Iterations (~ 1 hour)

Passive Time-Domain Simulation

40-Port Passivity Enforced VF

Magnitude of S_{1-21}

40-Port Passivity Enforced VF

Phase of S_{1-21}

40-Port Passivity Enforced VF

Phase of S_{21}

40-Port Passivity Enforced VF

Magnitude of S_{21}

40-Port Passivity Enforced VF

Magnitude of S_{11}

40-Port Passivity Enforced VF

Phase of S_{11}

40-Port Time-Domain Simulation

40-Port Time-Domain Simulation

[^0]: * B. Gustavsen and A. Semlyen, "Rational approximation of frequency responses by vector fitting," IEEE Trans. Power Del., vol. 14, no. 3, pp 1052-1061, Jul. 1999

