ECE 546 Lecture -14 Macromodeling

Spring 2024

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

Blackbox Macromodeling

Objective: Perform timedomain simulation of composite network to determine timing waveforms, noise response or eye diagrams

Macromodel Implementation

Blackbox Synthesis

Motivations

- Only measurement data is available
- Actual circuit model is too complex

Methods

- Inverse-Transform & Convolution
 - IFFT from frequency domain data
 - Convolution in time domain
- Macromodel Approach
 - Curve fitting
 - Recursive convolution

Blackbox Synthesis

Terminations are described by a source vector $G(\omega)$ and an impedance matrix Z

Blackbox is described by its scattering parameter matrix *S*

Blackbox - Method 1

- Scattering Parameters $B(\omega) = S(\omega)A(\omega)$ (1)
 - Terminal conditions $A(\omega) = \Gamma B(\omega) + TG(\omega)$ (2)
 - where $\Gamma = -\left[U + ZZ_o^{-1}\right]^{-1} \left[U ZZ_o^{-1}\right]$ and $T = \left[U + ZZ_o^{-1}\right]^{-1}$

U is the unit matrix, Z is the termination impedance matrix and Z_o is the reference impedance matrix

Blackbox - Method 1

Combining (1) and (2) $A(\omega) = [U - \Gamma S(\omega)]^{-1} TG(\omega)$ and $B(\omega) = S(\omega)A(\omega) = S(\omega)[U - \Gamma S(\omega)]^{-1}TG(\omega)$ $V(\omega) = A(\omega) + B(\omega) = \left[U + S(\omega)\right] \left[U - \Gamma S(\omega)\right]^{-1} TG(\omega)$ $I(\omega) = Z_{\alpha}^{-1} \left[A(\omega) - B(\omega) \right] = Z_{\alpha}^{-1} \left[U - S(\omega) \right] \left[U - \Gamma S(\omega) \right]^{-1} TG(\omega)$ $v(t) = IFFT \{V(\omega)\}$ $i(t) = IFFT \{I(\omega)\}$

Method 1 - Limitations

- No Frequency Dependence for Terminations
 - Reactive terminations cannot be simulated

Only Linear Terminations

Transistors and active nonlinear terminations cannot be described

Standalone

This approach cannot be implemented in a simulator

Blackbox - Method 2

In frequency domain B=SA

In time domain b(t) = s(t) * a(t)

Convolution:
$$s(t) * a(t) = \int_{-\infty}^{\infty} s(t-\tau)a(\tau)d\tau$$

Discrete Convolution

When time is discretized the convolution becomes

$$s(t) * a(t) = \sum_{\tau=l}^{t} s(t-\tau) a(\tau) \Delta \tau$$

Isolating *a*(*t*)

$$s(t) * a(t) = s(0)a(t)\Delta\tau + \sum_{\tau=1}^{t-1} s(t-\tau)a(\tau)\Delta\tau$$

Since a(t) is known for t < t, we have:

$$H(t) = \sum_{\tau=1}^{t-1} s(t-\tau) a(\tau) \Delta \tau : History$$

Terminal Conditions

Defining $s'(0) = s(0) \Delta \tau$, we finally obtain

$$b(t) = s'(0)a(t) + H(t)$$

$$a(t) = \Gamma(t)b(t) + T(t)g(t)$$

By combining these equations, the stamp can be derived

Stamp Equation Derivation

The solutions for the incident and reflected wave vectors are given by:

$$a(t) = \left[1 - \Gamma(t)s'(0)\right]^{-1} \left[T(t)g(t) + \Gamma(t)H(t)\right]$$

b(t) = s'(0)a(t) + H(t)

The voltage wave vectors can be related to the voltage and current vectors at the terminals

$$a(t) = \frac{1}{2} [v(t) + Z_o i(t)]$$
$$b(t) = \frac{1}{2} [v(t) - Z_o i(t)]$$

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Stamp Equation Derivation

From which we get

$$\frac{1}{2} \left[v(t) - Z_o i(t) \right] = \frac{s'(0)}{2} \left[v(t) + Z_o i(t) \right] + H(t)$$

or

$$Z_{o}i(t) + s'(0)Z_{o}i(t) + 2H(t) = [1 - s'(0)]v(t)$$

or

$$[1+s'(0)]Z_{o}i(t) = [1-s'(0)]v(t) - 2H(t)$$

which leads to

$$i(t) = Z_o^{-1} \left[1 + s'(0) \right]^{-1} \left[1 - s'(0) \right] v(t) - 2Z_o^{-1} \left[1 + s'(0) \right]^{-1} H(t)$$

Stamp Equation Derivation

i(t) can be written to take the form

$$i(t) = Y_{stamp}v(t) - I_{stamp}$$

in which

$$Y_{stamp} = Z_o^{-1} \left[1 + s'(0) \right]^{-1} \left[1 - s'(0) \right]$$

$$I_{stamp} = 2Z_o^{-l} \left[1 + s'(0) \right]^{-l} H(t)$$

Effects of DC Data

No DC Data Point

With DC Data Point

If low-frequency data points are not available, extrapolation must be performed down to DC.

Effect of Low-Frequency Data

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Effect of Low-Frequency Data

Calculating inverse Fourier Transform of: $V(f) = \frac{2\sin(2\pi ft)}{2\pi ft}$

Left: IFFT of a sinc pulse sampled from 10 MHz to 10 GHz. Right: IFFT of the same sinc pulse with frequency data ranging from 0-10 GHz. In both cases 1000 points are used

Convolution Limitations

Frequency-Domain Formulation

$$Y(\omega) = H(\omega)X(\omega)$$

Time-Domain Formulation

$$y(t) = h(t) * x(t)$$

Convolution
$$y(t) = h(t) * y(t) = \int_{0}^{t} h(t - \tau) y(\tau) d\tau$$

Discrete Convolution

$$h(t) * x(t) = \sum_{\tau=1}^{t} h(t-\tau) x(\tau) \Delta \tau$$

$$H(t) = \sum_{\tau=1} h(t-\tau) x(\tau) \Delta \tau : History$$

Computing History is computationally expensive → *Use FD rational approximation and TD recursive convolution*

t-1

ECE ILLINOIS

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Frequency and Time Domains

- 1. For negative frequencies use conjugate relation $V(-\omega) = V^*(\omega)$
- 2. DC value: use lower frequency measurement
- 3. Rise time is determined by frequency range or bandwidth
- 4. Time step is determined by frequency range
- 5. Duration of simulation is determined by frequency step

Problems and Issues

- **Discretization:** (not a continuous spectrum)
- **Truncation:** frequency range is band limited

F: frequency range N: number of points $\Delta f = F/N$: frequency step $\Delta t = time step$

Problems and Issues

Problems & Limitations (in frequency domain)	Consequences (in time domain)	Solution
Discretization	Time-domain response will repeat itself periodically (Fourier series) Aliasing effects	Take small frequency steps. Minimum sampling rate must be the Nyquist rate
Truncation in Frequency	Time-domain response will have finite time resolution (Gibbs effect)	Take maximum frequency as high as possible
No negative frequency values	Time-domain response will be complex	Define negative-frequency values and use V(-f)=V*(f) which forces v(t) to be real
No DC value	Offset in time-domain response, ringing in base line	Use measurement at the lowest frequency as the DC value

- An arbitrary network's transfer function can be described in terms of its s-domain representation
- -s is a complex number $s = \sigma + j\omega$
- The impedance (or admittance) or transfer function of networks can be described in the s domain as

$$T(s) = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_1 s + a_0}{s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}$$

Transfer Functions

$$T(s) = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_1 s + a_0}{s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}$$

The coefficients *a* and *b* are real and the order *m* of the numerator is smaller than or equal to the order *n* of the denominator

A stable system is one that does not generate signal on its own.

For a stable network, the roots of the denominator should have negative real parts

University of Illinois at Urbana-Champ

Transfer Functions

The transfer function can also be written in the form

$$T(s) = a_m \frac{(s - Z_1)(s - Z_2)...(s - Z_m)}{(s - P_1)(s - P_2)...(s - P_m)}$$

 $Z_1, Z_2, \dots Z_m$ are the **zeros** of the transfer function

 $P_1, P_2, \dots P_m$ are the **poles** of the transfer function

For a stable network, the poles should lie on the left half of the complex plane

Model Order Reduction

Model Order Reduction

Objective: Approximate frequency-domain transfer function to take the form:

$$H(\omega) = \left[A_{1} + \sum_{i=1}^{L} \frac{a_{1i}}{1 + j\omega / \omega_{c1i}} \right]$$

Methods

- AWE Pade
- Pade via Lanczos (Krylov methods)
- Rational Function
- Chebyshev-Rational function
- Vector Fitting Method

Model Order Reduction (MOR)

Question: Why use a rational function approximation?

Answer: because the frequency-domain relation

$$Y(\omega) = H(\omega)X(\omega) = \left[d + \sum_{k=1}^{L} \frac{c_k}{1 + j\omega / \omega_{ck}}\right]X(\omega)$$

will lead to a time-domain *recursive* convolution:

$$y(t) = dx(t-T) + \sum_{k=1}^{L} y_{pk}(t)$$

where

$$y_{pk}(t) = a_k x(t-T) (1 - e^{-\omega_{ck}T}) + e^{-\omega_{ck}T} y_{pk}(t-T)$$

which is very fast!

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Model Order Reduction

Transfer function is approximated as

$$H(\omega) = d + \sum_{k=1}^{L} \frac{c_k}{1 + j\omega / \omega_{ck}}$$

In order to convert data into rational function form, we need a curve fitting scheme → Use Vector Fitting

University of Illinois at Urbana-Champai

History of Vector Fitting (VF)

- 1998 Original VF formulated by Bjorn Gustavsen and Adam Semlyen*
- 2003 Time-domain VF (TDVF) by S. Grivet-Talocia.
- 2005 Orthonormal VF (OVF) by Dirk Deschrijver, Tom Dhaene, et al.
- 2006 Relaxed VF by Bjorn Gustavsen.
- 2006 VF re-formulated as Sanathanan-Koerner (SK) iteration by W. Hendrickx, Dirk Deschrijver and Tom Dhaene, et al.

* B. Gustavsen and A. Semlyen, "Rational approximation of frequency responses by vector fitting," IEEE Trans. Power Del., vol. 14, no. 3, pp 1052–1061, Jul. 1999

Vector Fitting (VF)

Can show* that the zeros of $\sigma(s)$ are the poles of f(s) for the next iteration

* B. Gustavsen and A. Semlyen, "Rational approximation of frequency responses by vector fitting," IEEE Trans. Power Del., vol. 14, no. 3, pp 1052–1061, Jul. 1999

1.- DISC: Transmission line with discontinuities

Length = 7 inches

2.- COUP: Coupled transmission line2

Frequency sweep: 300 KHz – 6 GHz

DISC: Approximation Results

DISC: Approximation order 90

DISC: Simulations

Microstrip line with discontinuities Data from 300 KHz to 6 GHz

А

Observation: Good agreement

COUP: Approximation Results

COUP: Approximation order 75 – Before Passivity Enforcement

Observation: Good agreement

Orders of Approximation

MOR Attributes

•Accurate:- over wide frequency range.

•Stable:- All poles must be in the left-hand side in s-plane or inside in the unit-circle in z-plane.

•Causal:- Hilbert transform needs to be satisfied.

•Passive:- H(s) is analytic

 $h[n] = h_e[n] + h_o[n] \Leftrightarrow H(j\omega) = H_R(j\omega) + jH_I(j\omega)$

 $\begin{aligned} H^*(s) &= H(s^*), \\ z^{*T}[H^T(s^*) + H(s)]z \ge 0, \quad \mathbb{R}[s] > 0 \quad \text{,for Y or Z-parameters.} \\ I - H^T(s^*)H(s) \ge 0, \quad \mathbb{R}[s] > 0 \quad \text{,for S-parameters.} \end{aligned}$

MOR Problems

Bandwidth

Low-frequency data must be added

Passivity

Passivity enforcement

• High Order of Approximation

Orders > 800 for some serial links

Delay need to be extracted

Causality Violations

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

 $a_{re}(t)$: real part of even time-domain function $a_{ie}(t)$: imaginary part of even time-domain function $a_{ro}(t)$: real part of odd time-domain function $a_{io}(t)$: imaginary part of odd time-domain function

 $a(t) = a_{re}(t) + ja_{ie}(t) + a_{ro}(t) + ja_{io}(t)$

In the frequency domain accounting for all the components, we can write:

 $A_{RE}(\omega)$: real part of even function in the frequency domain $A_{IE}(\omega)$: imaginary part of even function in the frequency domain $A_{RO}(\omega)$: real part of odd function in the frequency domain $A_{IO}(\omega)$: imaginary part of odd function in the frequency domain

$$A(\omega) = A_{RE}(\omega) + jA_{IE}(\omega) + A_{RO}(\omega) + jA_{IO}(\omega)$$

We also have the Fourier-transform-pair relationships:

Time Domain : $a(t) = a_{re}(t) + ja_{ie}(t) + a_{ro}(t) + ja_{io}(t)$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \bigtriangledown \qquad \checkmark \qquad \checkmark$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \checkmark \qquad \checkmark \qquad \checkmark$ Freq Domain : $A(\omega) = A_{RE}(\omega) + jA_{IE}(\omega) + A_{RO}(\omega) + jA_{IO}(\omega)$

$$B(\omega) = S(\omega) \Big[A_{RE}(\omega) + jA_{IE}(\omega) + A_{RO}(\omega) + jA_{IO}(\omega) \Big]$$

In the time domain, this corresponds to:

$$b(t) = s(t) * \left[\left(a_{re}(t) + a_{ro}(t) \right) + j \left(a_{ie}(t) + a_{io}(t) \right) \right]$$

We now impose the restriction that in the time domain, the function must be real. As a result,

 $a_{ie}(t) = a_{io}(t) = 0$ which implies that: $A_{IE}(\omega) = A_{RO}(\omega) = 0$

The Fourier-transform pair relationship then becomes:

Time Domain : $a(t) = a_{re}(t) + a_{ro}(t)$ $\uparrow \qquad \uparrow \qquad \uparrow$ $\downarrow \qquad \downarrow \qquad \downarrow$

Freq Domain : $A(\omega) = A_{RE}(\omega) + jA_{IO}(\omega)$

The frequency-domain relations reduce to:

$$B(\omega) = S(\omega) \Big[A_{RE}(\omega) + j A_{IO}(\omega) \Big]$$

University of Illinois at Urbana-Champa

In summary, the general relationship is:

Time Domain: $b(t) = b_{re}(t) + jb_{ie}(t) + b_{ro}(t) + jb_{io}(t)$

 $\uparrow \qquad \uparrow \qquad \uparrow$

Freq Domain : $B(\omega) = B_{RE}(\omega) + jB_{IE}(\omega) + B_{RO}(\omega) + jB_{IO}(\omega)$

But for a real system:

Electrical and Computer Engineering University of Illinois at Urbana-Champa ECE 546 – Jose Schutt-Aine

 $\overline{\ }$

 \checkmark

Fourier Transform Pairs So, in summary Time Domain : $b(t) = b_e(t) + b_o(t)$ $\uparrow \qquad \uparrow \qquad \uparrow$ $\downarrow \qquad \downarrow \qquad \downarrow$ Freq Domain : $B(\omega) = B_R(\omega) + jB_I(\omega)$

The real part of the frequency-domain transfer function is associated with the even part of the time-domain response

The imaginary part of the frequency-domain transfer function is associated with the odd part of the time-domain response

Causality Principle

Consider a function h(t)

 $h(t) = 0, \quad t < 0$

Every function can be considered as the sum of an even function and an odd function

$$h(t) = h_e(t) + h_o(t)$$

$$h_e(t) = \frac{1}{2} [h(t) + h(-t)]$$
 Even function

$$h_o(t) = \frac{1}{2} [h(t) - h(-t)]$$
 Odd function

$$h_{o}(t) = \begin{cases} h_{e}(t), & t > 0\\ -h_{e}(t), & t < 0 \end{cases}$$

$$h_o(t) = \operatorname{sgn}(t)h_e(t)$$

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Hilbert Transform

 $h(t) = h_e(t) + \operatorname{sgn}(t)h_e(t)$

In frequency domain this becomes

$$H(f) = H_e(f) + \frac{1}{j\pi f} * H_e(f)$$

$$H(f) = H_e(f) - j\hat{H}_e(f)$$

➔ Imaginary part of transfer function is related to the real part through the Hilbert transform

 $\hat{H}_{e}(f)$ is the Hilbert transform of $H_{e}(f)$

$$\hat{x}(t) = x(t) * \frac{1}{\pi t} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x(\tau)}{t - \tau} d\tau$$

University of Illinois at Urbana-Champaig

Discrete Hilbert Transform

→Imaginary part of transfer function cab be recovered from the real part through the Hilbert transform

➔If frequency-domain data is discrete, use discrete Hilbert Transform (DHT)*

$$H(f_n) = \hat{f}_k = \begin{cases} \frac{2}{\pi} \sum_{n \text{ odd}} \frac{f_n}{k - n}, & k \text{ even} \\ \frac{2}{\pi} \sum_{n \text{ even}} \frac{f_n}{k - n}, & k \text{ odd} \end{cases}$$

*S. C. Kak, "The Discrete Hilbert Transform", Proceedings of the IEEE, pp. 585-586, April 1970.

HT for Via: 1 MHz – 20 GHz

Observation: Poor agreement (because frequency range is limited)

Observation: Good agreement

University of Illinois at Urbana-Champaign

Microstrip Line S11

Microstrip Line S21

Discontinuity S11

Discontinuity S21

Backplane S11

Backplane S21

HT of Minimum Phase System

$$H_{ij}(s) \models M_{ij}(s) \parallel P_{ij}(s) \parallel e^{-s\tau_{ij}} \mid$$

$$|P_{ij}(j\omega)| = |e^{-j\omega\tau_{ij}}| = 1$$

$$s = j\omega$$
 $|H_{ij}(j\omega)| = |M_{ij}(j\omega)|$

The phase of a minimum phase system can be completely determined by its magnitude via the Hilbert transform

$$\arg[M_{ij}(\omega)] = \frac{2\omega}{\pi} \int_{0}^{\infty} \frac{U(\xi) - U(\omega)}{(\xi + \omega)(\xi - \omega)} d\xi$$
$$U(\omega) = \ln|M_{ij}(\omega)| = \ln|H_{ij}(\omega)|$$

Enforcing Causality in TL

The complex phase shift of a lossy transmission line

$$X = e^{-\gamma l} = e^{-\sqrt{(R+j\omega L)(G+j\omega C)}l}$$
 is non causal

We assume that

$$e^{-j\phi(\omega)}e^{-\alpha(\omega)} = e^{+j\omega\sqrt{LC}l}e^{-\sqrt{(R+j\omega L)(G+j\omega C)}l}$$

is minimum phase non causal

$$HT\left\{\ln\left|e^{-j\phi(\omega)}e^{-\alpha(\omega)}\right|\right\} = HT\left\{\ln\left|e^{-\gamma l}\right|\right\} = -\phi'(\omega)$$

 $e^{-j\phi'(\omega)}e^{-\alpha(\omega)}$ is minimum phase and causal

 $X' = e^{-j\phi'(\omega)}e^{-\alpha(\omega)}e^{-j\omega\sqrt{LC}l}$ is the causal phase shift of the TL

In essence, we keep the magnitude of the propagation function of the TL but we calculate/correct for the phase via the Hilbert transform.

Passivity Assessment

Can be done using S parameter Matrix

$$D = (1 - S^{*T}S) = Dissipation Matrix$$

All the eigenvalues of the dissipation matrix must be greater than 0 at each sampled frequency points.

This assessment method is not very robust since it may miss local nonpassive frequency points between sampled points.

→ Use Hamiltonian from State Space Representation

MOR and Passivity

EEE•

State-Space Representation

The State space representation of the transfer function is given by

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

The transfer function is given by

$$S(s) = \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} + \boldsymbol{D}$$

Procedure

- Approximate all N² scattering parameters using Vector Fitting
- Form Matrices A, B, C and D for each approximated scattering parameter
- Form A, B, C and D matrices for complete Nport
- Form Hamiltonian Matrix H

Matrix A_{ii} is formed by using the poles of S_{ii} . The poles are arranged in the diagonal.

$$\boldsymbol{A}_{ii} = \begin{pmatrix} a_1^{(ii)} & b_1^{(ii)} & 0 & 0 \\ -b_1^{(ii)} & a_1^{(ii)} & 0 & 0 \\ 0 & 0 & \bullet & \bullet \\ 0 & 0 & \bullet & a_L^{(ii)} \end{pmatrix}$$

Complex poles are arranged with their complex conjugates with the imaginary part placed as shown.

 A_{ii} is an $L \times L$ matrix

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Constructing C_{ii}

Vector C_{ij} is formed by using the residues of S_{ij} .

$$\boldsymbol{C_{ij}} = \begin{pmatrix} c_1^{(ij)} & c_2^{(ij)} & \bullet & c_N^{(ij)} \end{pmatrix}$$

where $c_k^{(ij)}$ is the *k*th residue resulting from the *L*th order approximation of S_{ij}

C_{ij} is a vector of length *L*

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

For each real pole, we have an entry with a 1

For each complex conjugate pole, pair we have two entries as: $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

B_{ii} is a vector of length *L*

D_{ij} is a scalar which is the constant term from the Vector fitting approximation:

$$S_{ij} \simeq d_{ij} + \sum_{k=1}^{L} \frac{c_k^{(ij)}}{s - a_k^{(ii)}}$$

$$\boldsymbol{D}_{ij} = d_{ij}$$

Matrix *A* for the complete N-port is formed by combining the A_{ii} 's in the diagonal.

$$\boldsymbol{A} = \begin{pmatrix} A_{11} & & & \\ & A_{22} & & \\ & & \bullet & \\ & & & \bullet & \\ & & & & A_{NN} \end{pmatrix}$$

A is a NL×NL matrix

Matrix *C* for the complete N-port is formed by combining the C_{ij} 's.

$$\boldsymbol{C} = \begin{pmatrix} C_{11} & C_{12} & \cdot & \\ C_{21} & C_{22} & & \\ \cdot & & \cdot & \\ & & & C_{NN} \end{pmatrix}$$

C is a *N×NL* matrix

Constructing B

Matrix *B* for the complete two-port is formed by combining the B_{ii} 's.

$$\boldsymbol{B} = \begin{pmatrix} B_{11} & 0 & 0 \\ 0 & B_{22} & 0 \\ \bullet & \bullet & \bullet \\ 0 & & B_{NN} \end{pmatrix}$$

B is a NL×N matrix

Hamiltonian

Construct Hamiltonian Matrix M

$$M = \begin{bmatrix} A - BR^{-1}D^{T}C & -BR^{-1}B^{T} \\ C^{T}S^{-1}C & -A^{T} + C^{T}DR^{-1}B^{T} \end{bmatrix}$$

$$R = (D^T D - I)$$
 and $S = (DD^T - I)$

- The system is passive if *M* has no purely imaginary eigenvalues
- If imaginary eigenvalues are found, they define the crossover frequencies ($j\omega$) at which the system switches from passive to non-passive (or vice versa)

→ gives frequency bands where passivity is violated

University of Illinois at Urbana-Champa

Perturb Hamiltonian

Perturb the Hamiltonian Matrix *M* by perturbing the pole matrix *A*

 $A \rightarrow A' = A + A A$

$$M + \Delta M = \begin{bmatrix} A + \Delta A - B(D + D^{T})^{-1}C & B(D + D^{T})^{-1}B^{T} \\ -C^{T}(D + D^{T})^{-1}C & -(A + \Delta A)^{T} + C^{T}(D + D^{T})^{-1}B^{T} \end{bmatrix}$$
$$\Delta M = \begin{bmatrix} \Delta A & 0 \\ 0 & -(\Delta A)^{T} \end{bmatrix}$$

This will lead to a change of the state matrix:

$$A \to A' = A + \varDelta A$$

State-Space Representation

The State space representation of the transfer function in the time domain is given by

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

The solution in discrete time is given by

$$x[k+1] = A_d x[k] + B_d u[k]$$
$$y[k] = C_d x[k] + D_d u[k]$$

State-Space Representation

where

$$A_{d} = e^{AT} \qquad B_{d} = \left(\int_{0}^{T} e^{A\tau} d\tau\right) B$$
$$C_{d} = C \qquad D_{d} = D$$

which can be calculated in a straightforward manner

When $y(t) \rightarrow b(t)$ is combined with the terminal conditions, the complete blackbox problem is solved.

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

State-Space Passive Solution

If *M*' is passive, then the state-space solution using *A*' will be passive.

$$A \to A' = A + \Delta A$$

The *passive* solution in discrete time is given by

$$\boldsymbol{x}[k+1] = \boldsymbol{A}_{d}'\boldsymbol{x}[k] + \boldsymbol{B}_{d}\boldsymbol{u}[k]$$

$$\boldsymbol{y}[k] = \boldsymbol{C}_d \boldsymbol{x}[k] + \boldsymbol{D}_d \boldsymbol{u}[k]$$

Size of Hamiltonian

$$M = \begin{bmatrix} A - BR^{-1}D^{T}C & -BR^{-1}B^{T} \\ C^{T}S^{-1}C & -A^{T} + C^{T}DR^{-1}B^{T} \end{bmatrix}$$

M has dimension 2NL

For a 20-port circuit with VF order of 40, M will be of dimension $2 \times 40 \times 20 = 1600$

The matrix M has dimensions 1600 × 1600

Too Large !

> Eigen-analysis of this matrix is prohibitive

University of Illinois at Urbana-Champa

$\boldsymbol{A} = \begin{bmatrix} -10 & 0 & 0 \\ 0 & -1 & 100 \\ 0 & -100 & -1 \end{bmatrix}$

$\boldsymbol{C} = \begin{bmatrix} 1 & 1 & 0.1 \end{bmatrix} \qquad \qquad \boldsymbol{D} = \begin{bmatrix} 10^{-5} \end{bmatrix}$

This macromodel is nonpassive between 99.923 and 100.11 radians

$\boldsymbol{A}' = \begin{bmatrix} -10 & 0 & 0 \\ 0 & -1 - 0.005 & 100 \\ 0 & -100 & -1 - 0.005 \end{bmatrix}$

The Hamiltonian *M*′ associated with *A*′ has no pure imaginary → System is passive

Passivity Enforcement Techniques

→ Hamiltonian Perturbation Method ⁽¹⁾

→ Residue Perturbation Method ⁽²⁾

(1) S. Grivet-Talocia, "Passivity enforcement via perturbation of Hamiltonian matrices," *IEEE Trans. Circuits Syst. I*, vol. 51, no. 9, pp. 1755-1769, Sep. 2004.

(2) D. Saraswat, R. Achar, and M. Nakhla, "A fast algorithm and practical considerations for passive macromodeling of measured/simulated data," *IEEE Trans. Adv. Packag.*, vol. 27, no. 1, pp. 57–70, Feb. 2004.

Benchmarks*

Data file	No. of points	MOR with Vector Fitting					Fast Convolution
			Time (s)				
		Order	VFIT [‡]	Passivity Enforcement	Recursive Convolution [#]	TOTAL	Time (s)
Blackbox 1	501	10*	0.14	0.01 ^{NV}	0.02	0.17	0.078
Blackbox 2	802	20*	0.41	5.47	0.03	5.91	0.110
Blackbox 3	802	40*	1.08	0.08 ^{NV}	0.06	1.22	0.125
Blackbox 4	802	60*	2.25	1.89	0.09	4.23	0.125
		100	3.17	5.34	0.16	8.67	
Blackbox 5	2002	50*	4.97	0.09 ^{NV}	0.28	5.34	0.328
Blackbox 6	802	100*	3.17	0.56 ^{NV}	0.16	3.89	0.109
Blackbox 7	1601	100*	24.59	28.33	1.31	53.23	0.438
		120	31.16	27.64	1.58	60.38	
Blackbox 8	5096	220	250.08	25.77 ^{NV}	10.05	285.90	2.687
Blackbox 9	1601	200*	58.47	91.63	2.59	152.69	0.469
		250	80.64	122.83	3.22	206.69	
		300	106.53	61.58 ^{NV}	3.86	171.97	

* J. E. Schutt-Aine, P. Goh, Y. Mekonnen, Jilin Tan, F. Al-Hawari, Ping Liu; Wenliang Dai, "Comparative Study of Convolution and Order Reduction Techniques for Blackbox Macromodeling Using Scattering Parameters," IEEE Trans. Comp. Packaging. Manuf. Tech., vol. 1, pp. 1642-1650, October 2011.

Passive VF Simulation Code

- → Performs VF with common poles
- → Assessment via Hamiltonian
- → Enforcement: Residue Perturbation Method
- Simulation: Recursive convolution

Number of Ports	Order	CPU-Time
4-Port	20	1.7 secs
6-port	32	3.69 secs
10-port	34	8.84 secs
20-port	34	33 secs
40	50	142 secs
80	12	255 secs

Passive VF Code - Examples

Example 1 4 ports order = 60

Example 2 40 ports order = 50

Passivity Enforced VF

4 ports, 2039 data points - VFIT order = 60 (4 iterations ~6-7mins), Passivity enforcement: 58 Iterations (~1hour)

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Passive Time-Domain Simulation

Phase of S₁₋₂₁

Phase of S₂₁

Magnitude of S₂₁

40-Port Time-Domain Simulation

40-Port Time-Domain Simulation

