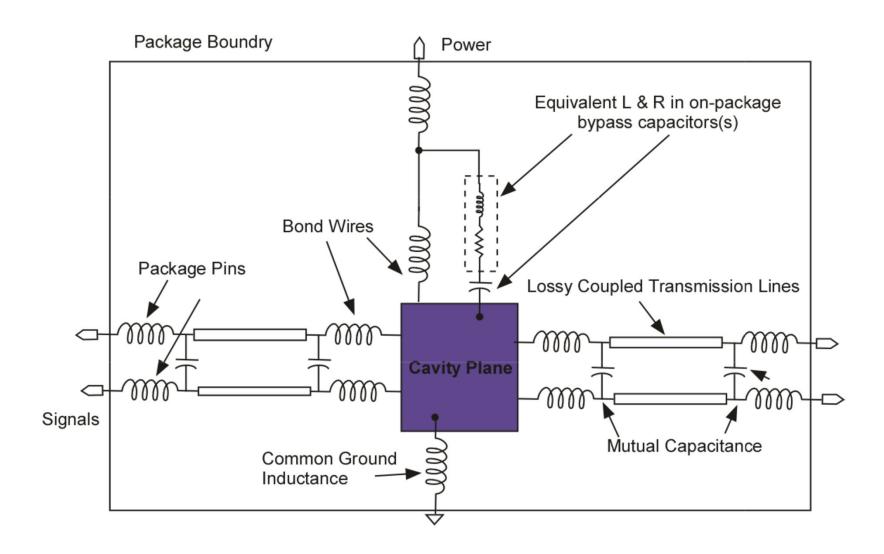
ECE 546 Lecture -20 Power Distribution Networks

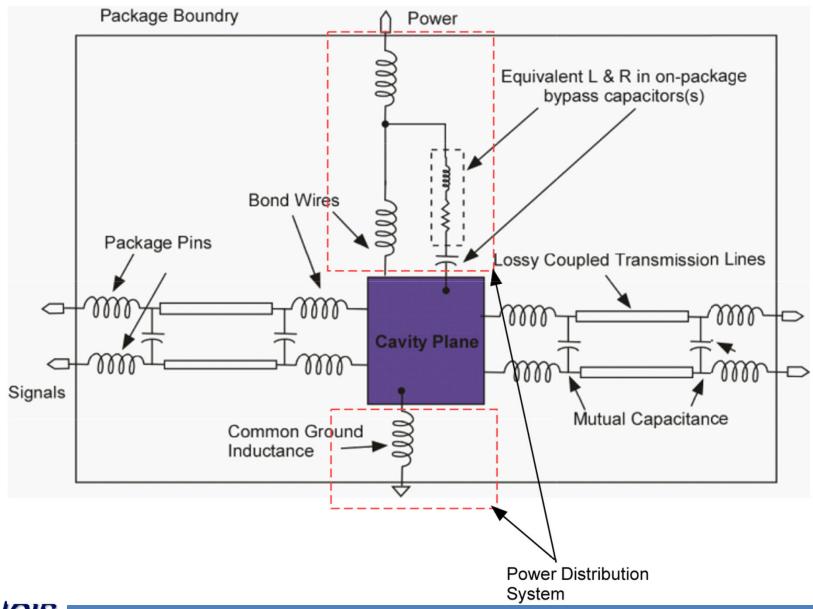
Spring 2024

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu

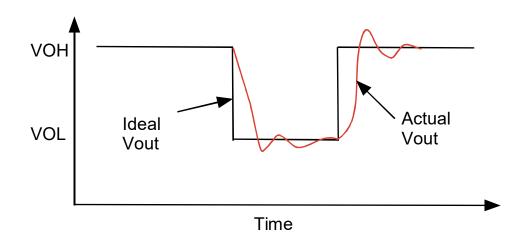

References

[1] J H. B. Bakoglu, "Circuits, Interconnections, and Packaging for VLSI", Addison Wesley, 1990.

[2] W. J. Dally and J. W. Poulton, "Digital Systems Engineering", Cambridge University Press, 1998.



IC on Package


IC on Package

Power-Supply Noise

- Power-supply-level fluctuations
- Delta-I noise
- Simultaneous switching noise (SSN)
- Ground bounce

Voltage Fluctuations

- Voltage fluctuations can cause the following
 - Reduction in voltage across power supply terminals. May prevent devices from switching
 - ➤ Increase in voltage across power supply terminals → reliability problems
 - ► Leakage of the voltage fluctuation into transistors
 - Timing errors, power supply noise, delta-I noise, simultaneous switching noise (SSN)

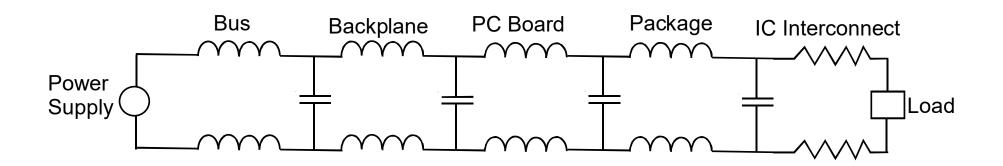
Power-Supply-Level Fluctuations

- Total capacitive load associated with an IC increases as minimum feature size shrinks
- Average current needed to charge capacitance increases
- Rate of change of current (dI/dt) also increases

- Total chip current may change by large amounts within short periods of time
- Fluctuation at the power supply level due to self inductance in distribution lines

Reducing Power-Supply-Level Fluctuations

Minimize dI/dt noise

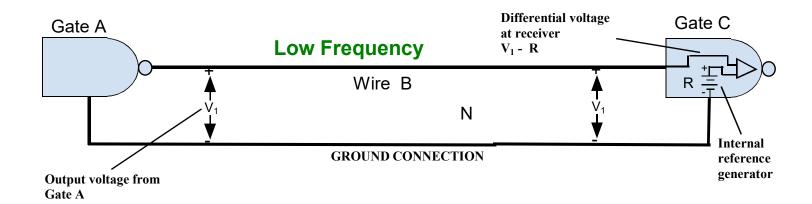

- Decoupling capacitors
- Multiple power & ground pins
- Taylored driver turn-on characteristics

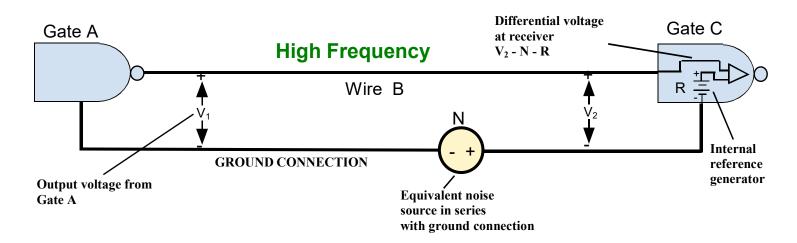
Decoupling capacitors

- Large capacitor charges up during steady state
- Assumes role of power supply during current switching
- Leads should be small to minimize parasitic inductance
- Must be placed as close as possible to the chip

Power Supply Network

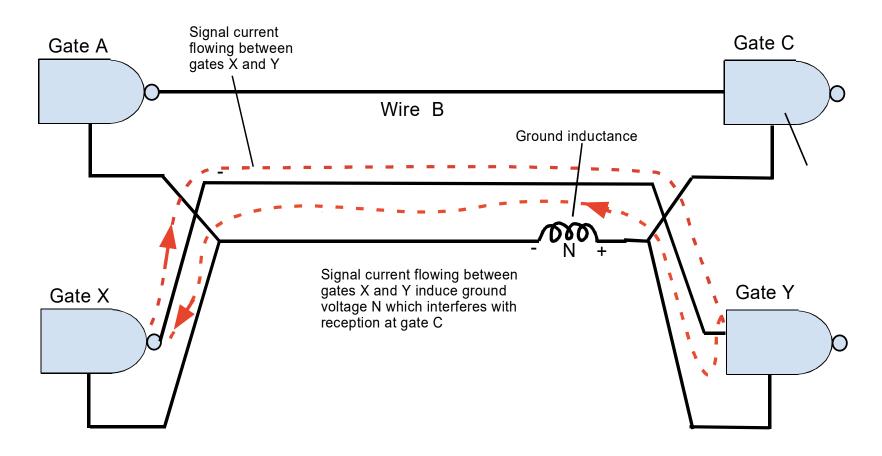
- On board inductance and on-chip resistance
- Symmetry between power and ground (return path)
- Distributed over several levels of interconnections


Motivation and Objectives


- > Provide stable, quiet DC supply voltage
- > Compensate for large AC current draws
- > Compensate for fast transients

- Current draws of 200A
- Rate of change of 200 GA/s
- Voltage supply needs to be maintained within 10%

Interconnects and PDN



At high frequencies, Wire B is a transmission line and ground connection is no longer the reference voltage

Rules for Power Distribution

- Use low-impedance ground connections between gates
- Provide low-impedance path between power and ground
- Minimize voltage differences between power lines

Effects of SSN

SSN can affect circuits in 3 ways

- 1) SSN may increase chip-to-chip delays
- 2) Affects the operation of the receiving chips
- 3) May affect gates on the sending chip

Current driven off-chip has only one return path: power and ground pins of the chip carrier → to minimize effective inductance of the return path and noise, many power/ground pins must be supplied for off-chip drivers

On-chip circuitry can close the loop by small inductance on chip lines

Design Criteria for SSN

Inductive time constant must be much smaller than its capacitive time constant

$$\frac{L}{R} \ll RC$$

Valid for external power distribution lines that carry the current to the chip and for internal lines that distribute it on the chip

- Presently satisfied by on-chip lines
- Board and package power lines are too high to satisfy criteria

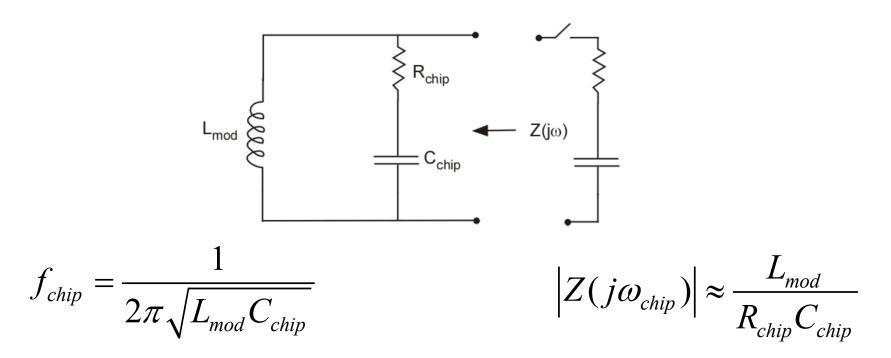
Design Criteria for SSN

- Cannot distribute power on the board simply by using the printed circuit wires and connecting them to the power/ground pins of the chip directly.
- Off chip power distribution must employ methods that reduce the effects of line and pin inductance.

To insure reliable circuit operation:

$$L\frac{dI}{dt} \ll V_{DD}$$

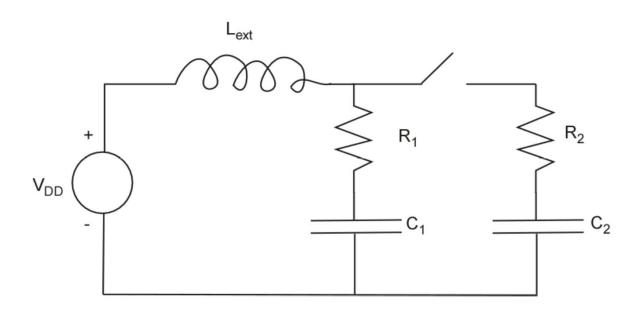
Equivalence of 2 conditions is obtained by setting:


$$dI = V_{DD} / R$$

$$dt = RC$$

Resonance Condition at Power-Supply Lines

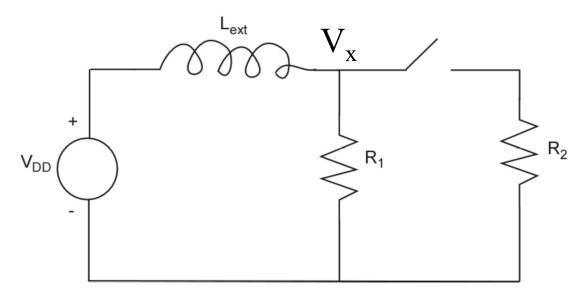
- Periodic nature of digital circuits can cause resonance
- Large fluctuation can build up and cause circuit to fail



- $-f_{chip}$ should be much larger than the clock frequency
- Resonant impedance should be kept small

Delta-I Noise in CMOS Circuits

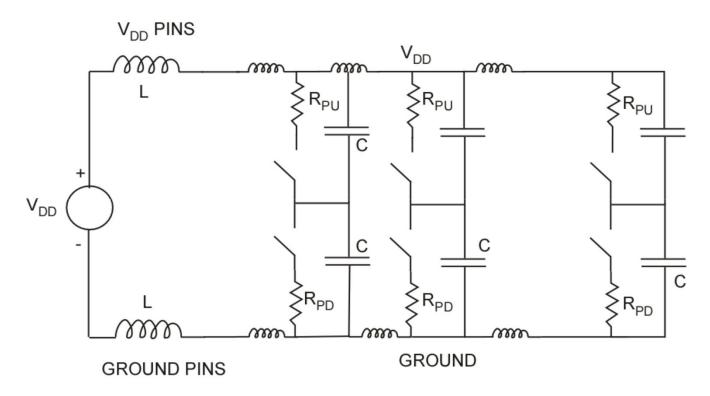
In a CMOS chip the portion of the circuit that is not switching (R_1, C_1) at a given system cycle helps the switching portion of the chip (R_2, C_2) .



$$V_{DD} + \Delta V = \frac{C_1}{C_1 + C_2} V_{DD}$$

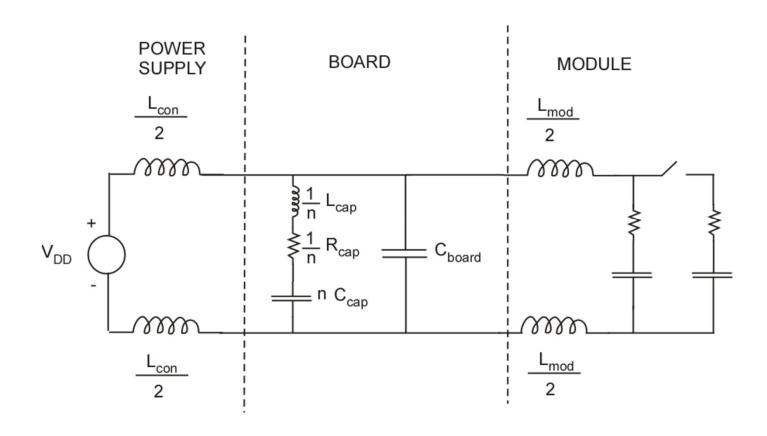
Delta-I Noise in ECL Bipolar Circuits

Because of diode structure of BJTs, current can only flow in one direction



DC current of gates (proportional to V_x) help reduce power-supply-level fluctuations

$$\Delta V = -\frac{R_1}{R_1 + R_2} V_{DD}$$
 For turn on $\Delta V = \frac{R_1}{R_2} V_{DD}$ for turn off


Model for On-Chip Power Distribution

- 1) Portion of circuits switch
- 2) V_{dd} - V_{SS} is reduced
- 3) Non-switching devices come to rescue (through low inductance)
- 4) Share charge with switching capacitors
- 5) Power-level collapse is prevented

Model for CMOS Power Distribution Network

- n decoupling capacitors
- L_{con} is due to power connectors at edge of board
- C_{board} is intrinsic power and ground capacitance

Off-Chip Driver SSN Calculations

- Worst case on-chip delta-I noise generated at beginning of clock cycle
- Main problem for on-chip drivers is lack of low-inductance return path
- Off-chip drivers are the major source of SSN

Problem:

32 low-impedance CMOS buffers ($R_S << Z_o$) are switched simultaneously. In addition, the line impedance is 50 Ω , rise time is 2 nsec, output swing is 5 V, and the allowed power-supply-level fluctuation is 0.25V. Find the effective inductance.

Solution:

First, calculate the rate of change of the output voltage from the voltage swing and rise time

$$\frac{dV}{dt} = \frac{80\% \times V_{swing}}{t_r} = \frac{80\% \times 5V}{2n \sec} = 2V/n \sec$$

Off-Chip Driver SSN Calculations

The current driven into the transmission line is $I=V/Z_o$ and its rate of change is:

$$\frac{dI}{dt} = \frac{1}{Z_0} \frac{dV}{dt} = \frac{2V/n\sec}{50\Omega} = 0.04A/n\sec$$

Total current transient for 32 drivers:

$$\frac{dI_{TOT}}{dt} = N_{drv} \frac{dI}{dt} = 1.28A/n \sec$$

Through a 1nH inductance the voltage drop is $\Delta V = L \frac{dI}{dt} = 1.28V$

To guarantee a maximum of 0.25V voltage fluctuation, the effective inductance is

$$L = \frac{\Delta V}{dI/dt} = 0.2nH$$

PDN Network

- A PDN in a system provides the interconnection framework in which gates are allowed to switch states
- Power supplies are bulky and cannot be connected directly to IC, therefore interconnections (with resistance and inductance) are used
- Current through wires create DC drop and voltage fluctuations
- PDN must be created to regulate voltage for required current to be supplied over time
- The speed at which a circuit operates determines the speed at which charge can be supplied or removed from capacitors

PDN Network

- A PDN consists of a power supply, DC-DC converters, lots of decoupling capacitors and interconnections
- Power supply provides high voltage and current to motherboard
- Voltage is reduced through a DC-DC converter
- Decoupling capacitors are distributed on the motherboard package and IC and act as charge reservoirs

General Topology for Power Distribution

- Hierarchy of distribution networks
- Usually a tree sometimes a loop
- Upper level inductive with distributed caps
- On-chip level resistive with distributed caps

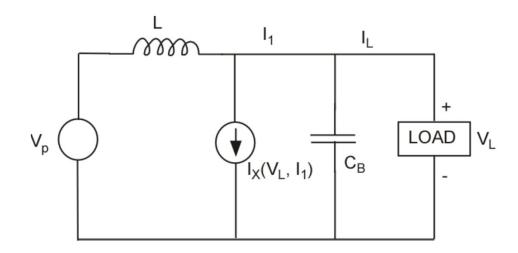
Mechanism

- For an IC, the transient current flowing through an inductor gives a voltage drop V=LdI/dt
- Positive dI/dt leads to reduction in supply voltage. Negative dI/dt results into an increase in supply voltage → reliability problems has several components
- Supply noise has several components
 - **►**Ultra high frequency noise ~ 100 GHz
 - ► High-frequency noise 100 MHz-1GHz
 - **►**Mid-frequency noise 1-10 MHz
 - **►** Low frequency noise 1-100 KHz

IC PDN

- Core: Primarily made of transistors
- I/O: Provides communication with other ICs
- Core and I/O require separate PDN

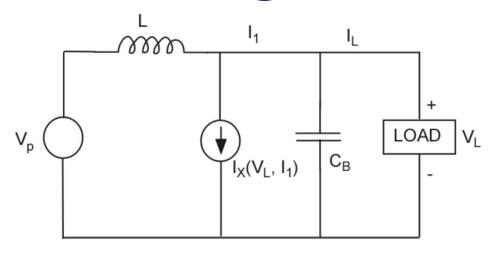
- Goal: ensure sufficient charge is supplied to switching CKT so capacitance can be charged to required voltage
- Charge has to be supplied within a short time→minimize delay need L/R<<RC

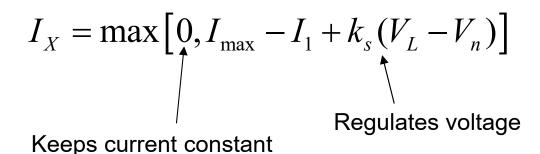


Local Regulation

- Used to prevent overshoot so voltage cannot exceed nominal value by more than a small amount.
- Supply overshoot can be reduced via clamping
- Supply voltage droops can be reduced using shunt regulators
- Clamps draw little power and are inexpensive
- Shunt regulators dissipate considerable average power and are expensive

Local Regulation Using Clamps



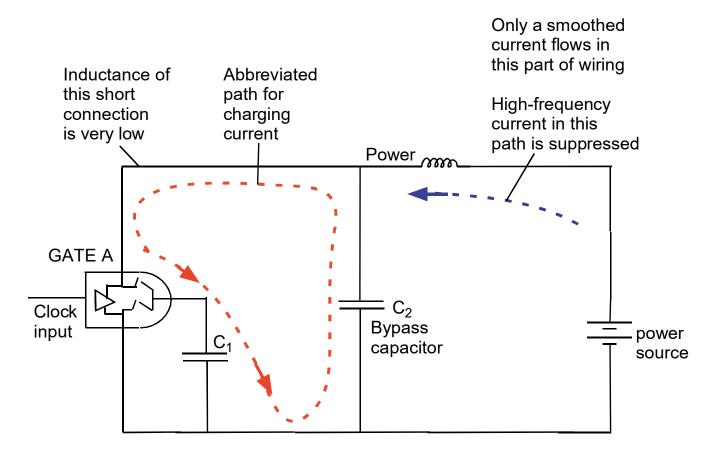

$$I_X = \begin{cases} 0 \text{ if } V_L < V_n \\ k_s (V_L - V_n) \text{ if } V_L > V_n \end{cases}$$

 k_s : transconductance of clamp

- Clips off top half cycle by directing inductor current into clamp rather than capacitor→prevents overshoot.
- Cannot prevent supply voltage drooping.

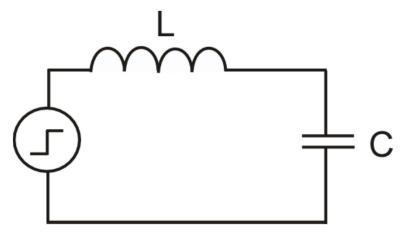
Shunt Regulators

 k_s : transconductance


- Not used on chip
- Power hungry and expensive
- Last resort to prevent supply voltage droops

Role & Function of Bypass Capacitors

- Inserted between power and ground in path between supply and load
- Supply AC current to load faster than inductor can respond
- Can be distributed or lumped intermediate between a transmission line and and an LC circuit
- In reality includes some resistance and inductance


Bypass Capacitors

• Reduce voltage drops caused by the inductance of PDN

Natural Frequency

- LC tank will resonate at natural frequency

$$\Delta V = \frac{I_{avg}}{C\omega_C} \sin(\omega_C t)$$

$$= I_{avg} \sqrt{\frac{L}{C}} \sin(\omega_C t)$$

$$\Delta V_{\text{max}} = I_{avg} \sqrt{\frac{L}{C}}$$

To keep the ripple within a prescribed ΔV , the capacitor must be sized so that

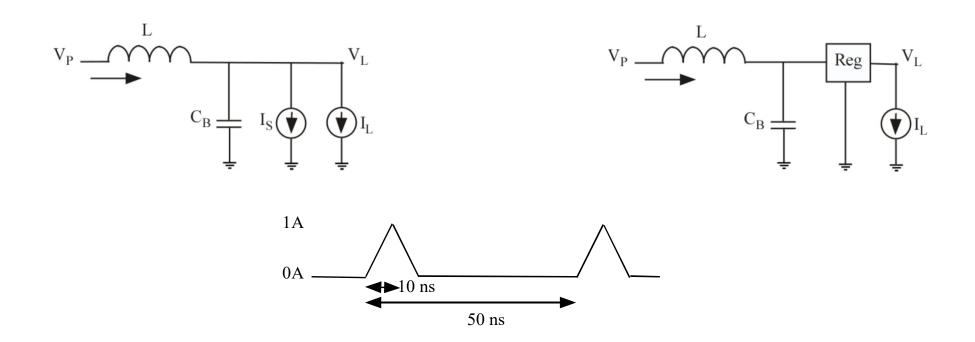
$$C_B > L \left(\frac{I_{avg}}{\Delta V}\right)^2$$

Frequency Range for Bypass Capacitors

- Capacitors at low frequencies
- Actually an RLC circuit
- Resonance frequencies
 - LC frequency
 - RC frequency
- Ineffective at either of these frequencies

Natural Frequency of Bypass Capacitors

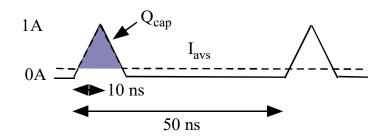
• Load currents at frequencies well below ω_c see an inductive impedance.


• Load currents at high frequencies see a capacitor.

• At ω_c , impedance is infinite

• At ω_c , even small currents will cause oscillations

Bypass Capacitor & series Regulator


L=10 nH

What value of C_B will keep V_L to 5% with

- No regulator
- Series regulator 3.3V to 2.5V

Bypass Capacitor & series Regulator

No regulator

 $\Delta V=125 \text{ mV}$

 $I_{av}=200 \text{ mA}$

 $Q_{cap}=6.4 \text{ nC}$

 $C_B > 76.8 \text{ nF}$

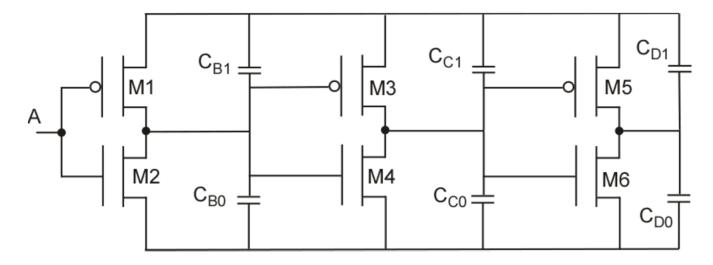
With regulator

 $\Delta V = 925 \text{ mV}$

 $I_{av}=200 \text{ mA}$

 $Q_{cap}=6.4 \text{ nC}$

 $C_B > 7.39 \text{ nF}$


$$P_{\text{supply}} = 660 \text{W}$$

Symbiotic Bypass Capacitors

On-Chip Bypass Capacitors

- MOS transistor with source and drain tied together
- About half the capacitors are symbiotic

50K Gate Module Example

- Load capacitance C_{Id}=100fF
- 4,000 gates switching simultaneously
- 46,000 gates with output loads across power supplies → 2.3 nF
- Adequate to average supply current over a cycle

On-Chip Bypass Capacitors

Area Bonding

- Flip chip
- More power distribution to next level of packaging
- Reduce inductance
- Helps metal migration problem

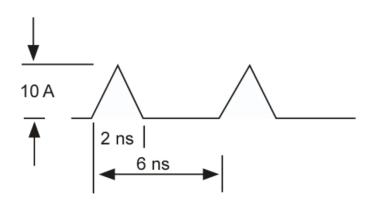
A capacitor satisfies the relation:

$$C_B > \frac{k_i I_{av} t_{ck}}{\Delta V}$$

Reduces current load to average value

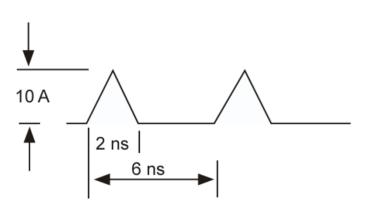
Thin oxide MOS capacitor: MOS transistor with source and drain tied together

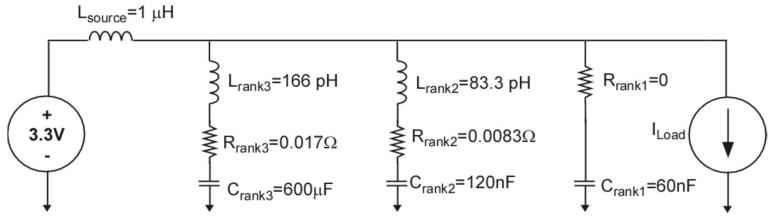
$$C_{ox} = \frac{\varepsilon_r \varepsilon_o WL}{t_{ox}}$$


Bypass Capacitor - Table

	C	R _S	$\mathbf{L}_{\mathbf{C}}$	F _{RC}	F _{LC}	$\mathbf{F}_{\mathbf{L}\mathbf{R}}$
On-chip MOS 0.35 x 114 mm)	250 fF	10 Ω	0	64 GHz		
On-chip MOS (1.4 x 115 μm)	1 pF	40 Ω	0	4 GHz		
SMT ceramic	1 nF	0.1 Ω	1 nH		160 MZ	
SMT ceramic	10 nF	0.1 Ω	1nH		50 MHz	
Ceramic disk	10 nF	0.1 Ω	5 nH		23 MHz	
Aluminum electrolytic	10 μF	1 Ω	10 nH	160 kHz		16 MHz
Aluminum electrolytic	1000μF	0.05 Ω	10 nH	3 kHz		800 kHz

Bypass Capacitor Network Design


Using the parameters of the Table, derive a parallel combination of bypass capacitors that is able to supply the current needs of a load with the periodic triangular waveform sketched below that may start and stop abruptly. Your combined capacitor should hold voltage ripple to within 5% of the supply voltage. Assume that your capacitors are fed from a DC supply voltage of 3.3V through an inductance of $1\,\mu\text{H}$.


Bypass Capacitor Network Design

- Derive parallel combination of bypass capacitors
- Hold voltage ripple to within 5% of supply voltage
- DC supply of 3.3V
- Generator internal inductance 1 μH

- 1) ΔV in AC mode < 165mV
- $2) V_{Ldrop} + V_{Cdrop} < 165 \text{ mV}$
- 3) Capacitor must be operational above breakpoints

Solution

1st Rank

Average current and charge sourced by capacitor:

$$I_{ave} = \frac{10A \times 1ns}{6ns} = 1.67A$$

$$Q_{cap} = (1ns - 0.167ns)(10 - 1.67A) = 6.94nC$$

In AC mode the ΔV of the cap should be less than 165 mV, so:

$$C_{rank1} > \frac{Q_{cap}}{\Delta V} = \frac{6.94nC}{165mV} = 42nF$$

Drop in series L must be less than 165mV

$$L_{rank1} < \frac{\Delta V}{di/dt} = \frac{165mV}{\frac{10A}{1ns}} = 16.5 \, pH$$

1st Rank

- Need breakpoints above 1 GHz to insure true capacitor
- From table, choose 60,000 1pF MOS on-chip cap (min:42,000)

$$C_{rank1} = 60nF, L_{rank1} = 0$$

$$R_{rank1} = \frac{40\Omega}{60,000} = 6.67 \times 10^{-4} \Omega$$
 \Rightarrow resistance is negligible

2nd Rank

$$L_{rank+1} < C_{rank} \left(\frac{\Delta V}{I_{ave}}\right)^2$$

Recall: To keep the ripple within a prescribed
$$\Delta V$$
, the capacitor must be sized so that

$$C_B > L \left(\frac{I_{avg}}{\Delta V}\right)^2 \Rightarrow L < C_B \left(\frac{\Delta V}{I_{avg}}\right)^2$$

$$L_{rank2} < 60nF \left(\frac{165mV}{1.67A}\right)^2 = 586pH$$

Cannot connect the first rank up to the supply voltage since supply inductance is 1µH and does not satisfy criterion

Choose 12 SMT ceramic caps → satisfies inductance calculations And doubles 1st rank cap.

$$C_{rank2} = 120nF, L_{rank2} = 83.3pH$$

$$R_{rank2} = \frac{0.1\Omega}{12} = 0.00833\Omega$$

3rd Rank

$$L_{rank3} < 120nF \left(\frac{165mV}{1.67A}\right)^2 = 1.17nH$$

Since this is less than the inductance of the supply, need to add 3rd rank of caps

Use 11 aluminum electrolytic caps

$$C_{rank3} = 110 \mu F, L_{rank3} = \frac{10nH}{11} = 909 pH$$

$$R_{rank3} = \frac{1\Omega}{11} = 0.091\Omega$$

 $R_{rank3} = \frac{1\Omega}{11} = 0.091\Omega$ This resistance looks high, need to determine the associated voltage drop...

$$0.091\Omega \times 10A = 910mV$$
 NO GOOD

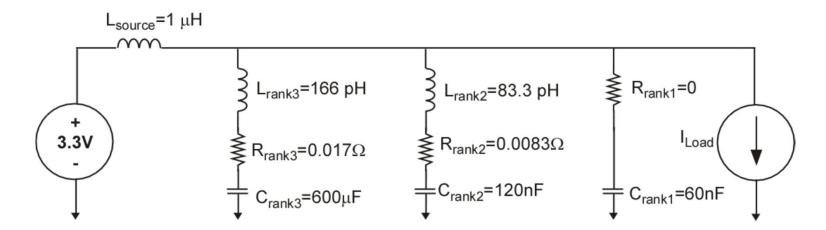
$$\Delta V_{\text{max}} = 165 mV$$

3rd Rank

Need to reduce resistance to: $R_{rank3} = \frac{165mV}{10A} = 0.0165\Omega$

Choose 60 aluminum electrolytic caps

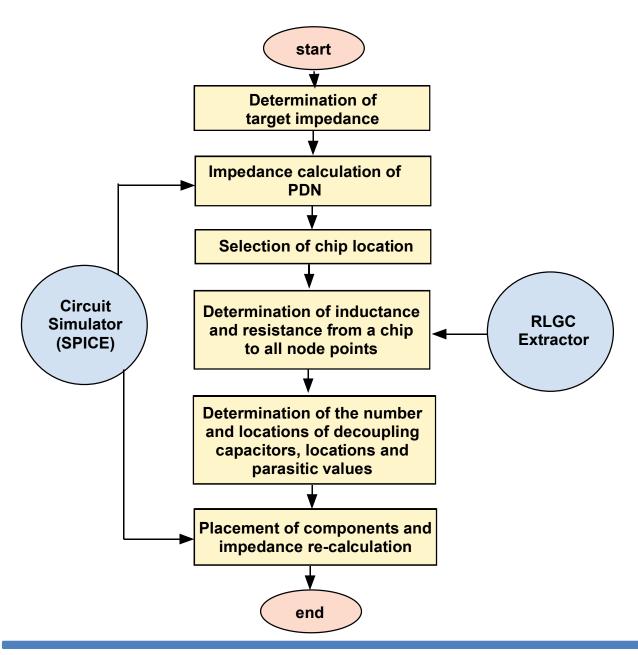
$$C_{rank3} = 600 \mu F, L_{rank3} = \frac{10nH}{60} = 166 pH$$


$$R_{rank3} = \frac{1\Omega}{60} = 0.0167\Omega$$

4th Rank

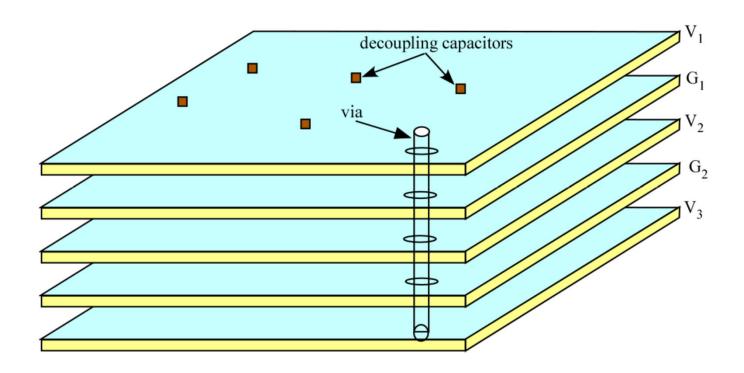
$$L_{rank4} < 600 \mu F \left(\frac{165 mV}{1.67 A}\right)^2 = 5.86 \mu H$$

The inductance of the supply voltage satisfies this criterion no need for 4th rank.

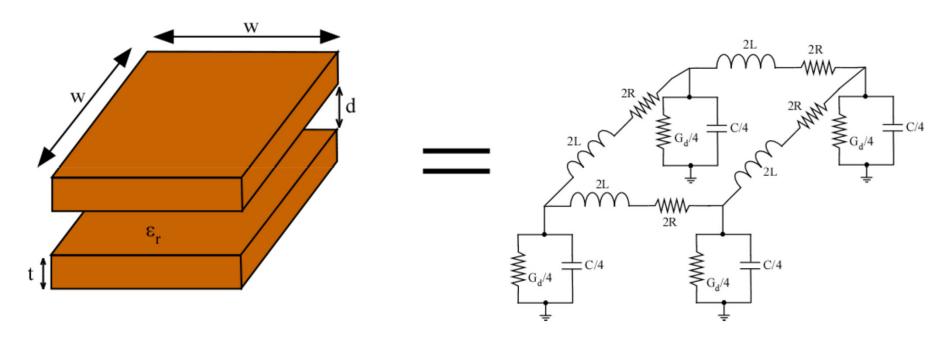


Modeling Power Distribution Networks (PDN)

- Ground planes power bus and return paths are not ideal and must be represented with parasitic inductors and resistors
- Resulting network is a two-dimensional lossy transmission line possibly non-uniform
- Bypass capacitors are needed to alleviate noise
- Simulation is computationally intensive



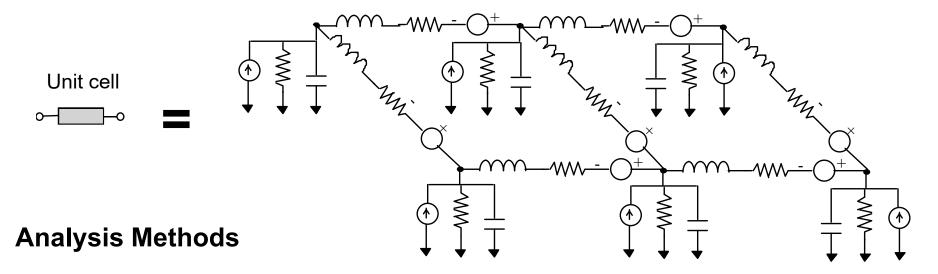
CAD Framework for PDN Design


Multilayer Power/Ground Plane

- Power planes support wave propagation
- They behave as cavity resonators supporting radial waves that propagate between the plates

Power/Ground Plane Circuit

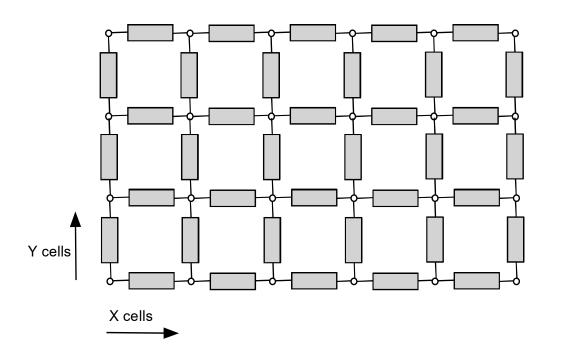
$$C = \varepsilon_o \varepsilon_r \frac{w^2}{d}$$


$$L = \mu_o d$$

$$R_{dc} = \frac{2}{\sigma_c t}$$

$$R_{ac} = 2\sqrt{\frac{\pi f \,\mu_o}{\sigma_c}} \left(1 + j\right)$$

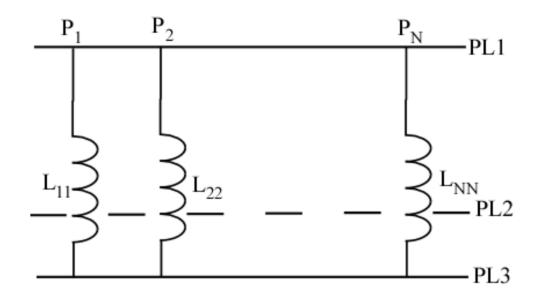
$$G_d = \omega C \tan(\delta)$$


Example: Power Bus/Ground Plane Model

- SPICE
- Transmission matrix method
- LIM

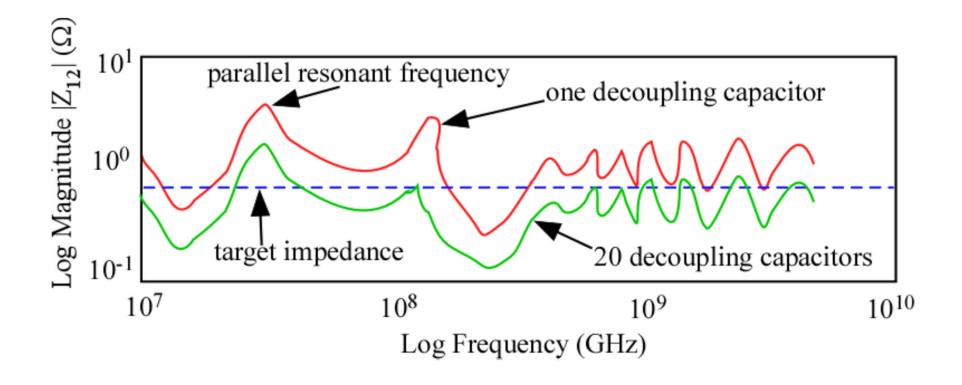
Goal is to obtain impedance matrix between some ports of interest as a function of frequency

Resonance may occur



PDN design Strategy

- Power/ground planes
 - > Define unit cell and determine parameters
 - > Synthesize complete circuit model
- Vias and via coupling
 - > Incorporate vias as inductance
 - > May or may not account for mutual inductance
- Decoupling Capacitors
 - > Must determine optimal placement
- Impedance Calculations
 - > SPICE
 - > Transmission matrix
 - **LIM**


Vias and Via Coupling

Multiyared PDN can be represented as planes connected by vias. Many such vias are for reducing inductance and for thermal dissipation.

Decoupling Capacitors

Impedance Calculations

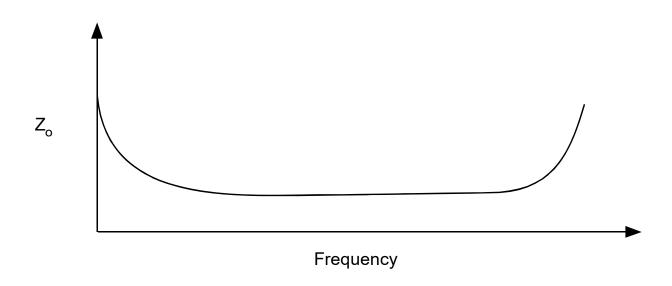
$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} + R_1 + j\omega L_1 & Z_{12} \\ Z_{21} & Z_{22} + R_2 + j\omega L_2 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

For an ideal power distribution network, the desired characteristics are zero self impedance and zero trans-impedance between ports at all frequencies

Target Impedance

The ratio of voltage to current must equal the impedance in the network

$$Z_T = \frac{V_{DD} \times ripple}{50\% \times I_{\text{max}}}$$

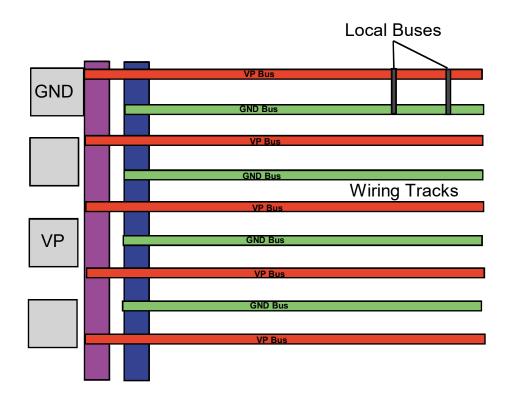

 V_{DD} : power supply voltage ripple: allowed ripple on power supply I_{max} : maximum current drawn by IC

• The target impedance is a function of frequency. The goal is to keep it as low as possible.

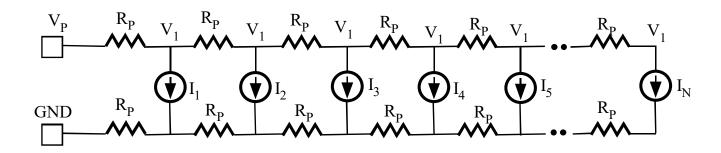
Impedance of Power Distribution Network

Influenced by Package and Bypass Cap

- Increase in low-frequency due to resonance frequency of board connector
- Increase in the high-frequency impedance due to resonance frequency of decoupling capacitor
- Keep both resonance frequencies away from operating frequency



On-Chip Power and Ground Distribution


Distribution Network for Peripheral Bonding

- Power and ground are brought onto the chip via bond pads located along the four edges
- Metal buses provide routing from the edges to the remainder of the chip

Model for On-Chip Power Distribution

$$R_P = \frac{L_P r_w}{2NW_P} \qquad \qquad A_P = \frac{L_P W_P}{2Nk_P}$$

$$V_{IR} = \sum_{i=1}^{N/2} i J_{pk} A_{p} R_{p} = \sum_{i=1}^{N/2} \frac{i J_{pk} L_{p}^{2} r}{4N^{2} k_{p}}$$

in continuum,

$$V_{IR} = \int_{0}^{L_{P}/2} \frac{J_{pk} r_{w} x}{k_{P}} dx = \frac{J_{pk} r_{w} L_{P}^{2}}{8k_{P}}$$

 r_w : resistivity

N: # of segments

 A_P : Area

 k_P : fraction of metal layer devoted to power buses

IR Drop - Example

Design a power distribution network for a peripherally bonded ASIC. Your chip is 15 mm \times 15 mm in area and contains 1M gate equivalents. Each gate equivalent drives a 200-fF load (40 fF of gate and 160 fF of wire) and switches on average every third cycle of a 100MHz clock. What is the total power dissipation of your chip? Assuming a peak current to average current ratio of 4:1, what fraction of a metal layer (or how many metal layers) do you need to distribute power so the overall supply fluctuation of a 2.5V supply is \pm 250 mV?

$$I_{avg} = C \frac{dV}{dt} = \frac{1}{3} *1M *200 fF *2.5V *100 MHz = 16.67 A$$

$$J_{avg} = I_{avg} / (15mm)^2 = 0.0740A / mm^2$$

$$J_{peak} = 4J_{avg} = 0.296A / mm^2$$

IR Drop

Therefore, the number of metal layers is

$$K_{p} = \frac{r_{W} \cdot L^{2} \cdot J_{peak}}{8 \cdot V} = \frac{0.04 \cdot (15)^{2} \cdot 0.296}{8 \cdot 0.25} = 1.332$$

If actual supply fluctuation is between Gnd and Vdd, each layer has less than ± 125mV fluctuation. Therefore, for each Gnd and Vdd,

$$K_{p} = \frac{r_{W} \cdot L^{2} \cdot J_{peak}}{8 \cdot V} = \frac{0.04 \cdot (15)^{2} \cdot 0.296}{8 \cdot 0.125} = 2.664$$

Bypass Capacitor Network Design

Chip 15 \times 15 mm in area with 1M Gates. Each has a 200 fF load (40 fF gate, 160 fF wire) and switches on average every 1/3 cycle of a 100 MHz clock. Find total power dissipation of chip. Peak current to average current ratio is 4:1, how many metal layers are needed to distribute power so the overall supply fluctuation of a 2.5V supply in \pm 250 mV?

$$I_{avg} = C \frac{dV}{dt} = \frac{1}{3} \times 1M \times 200 \, fF \times 2.5V \times 100 \, MHz = 16.67 \, A$$

$$J_{avg} = I_{avg} / (15mm)^2 = 0.0740 \, A / mm^2$$

$$J_{peak} = 4J_{avg} = 0.296 \, A / mm^2$$

From:
$$V_{IR} = \frac{J_{peak} r_W L_P^2}{8K_P} \Rightarrow K_P = \frac{r_W \times L^2 \times J_{peak}}{8 \times V_{IR}}$$

The number of metal layers is

$$K_{P} = \frac{r_{W} \times L^{2} \times J_{peak}}{8 \times V} = \frac{0.04 \times (15)^{2} \times 0.296}{8 \times 0.25} = 1.332$$

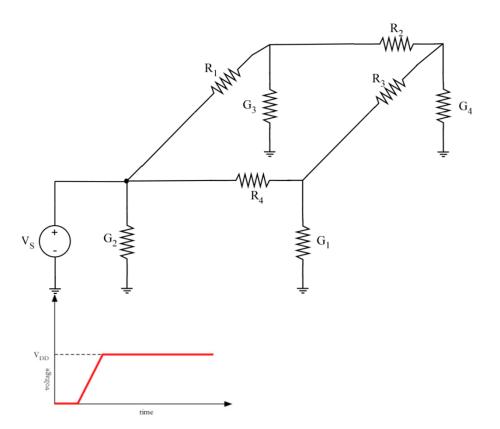
However, if we think that the supply fluctuation is between the Gnd and V_{dd} , each layer has less than \pm 125 mV. Thus for each Gnd and V_{dd}

$$K_{P} = \frac{r_{W} \times L^{2} \times J_{peak}}{8 \times V} = \frac{0.04 \times (15)^{2} \times 0.296}{8 \times 0.125} = 2.664$$

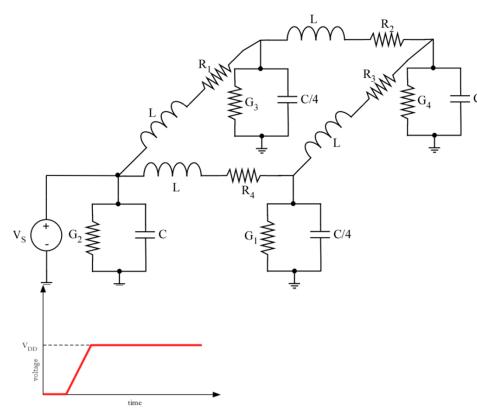
On-Chip IR Drop

Large Voltage Drop

- Example: V_{IR}=0.78V → local supply down by 1.56V:unacceptable
- Voltage drop across global buses is dependent only on the fraction of metal layer devoted to each bus


Remedy

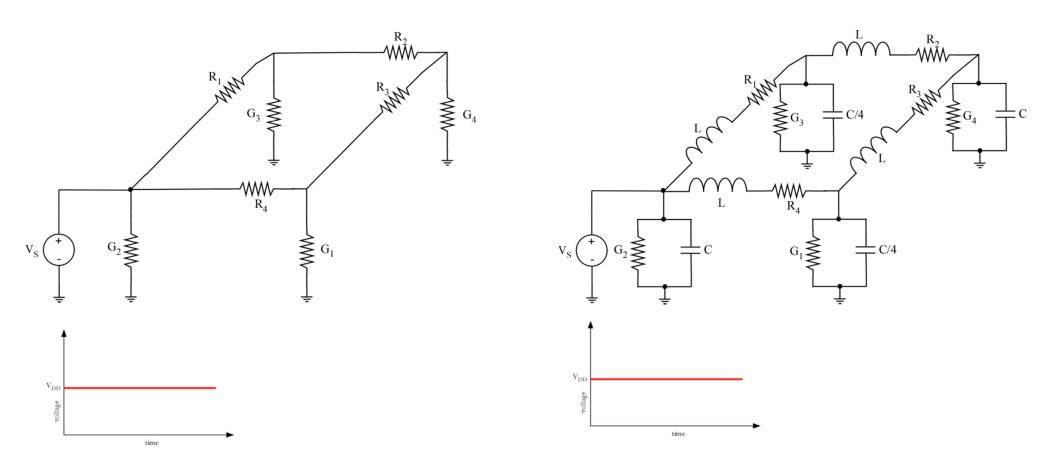
- Use area bonded chip so that power need not be distributed from chip edge
- Use more or thicker metal layers
- Use on-chip bypass capacitors



IR Drop Calculation

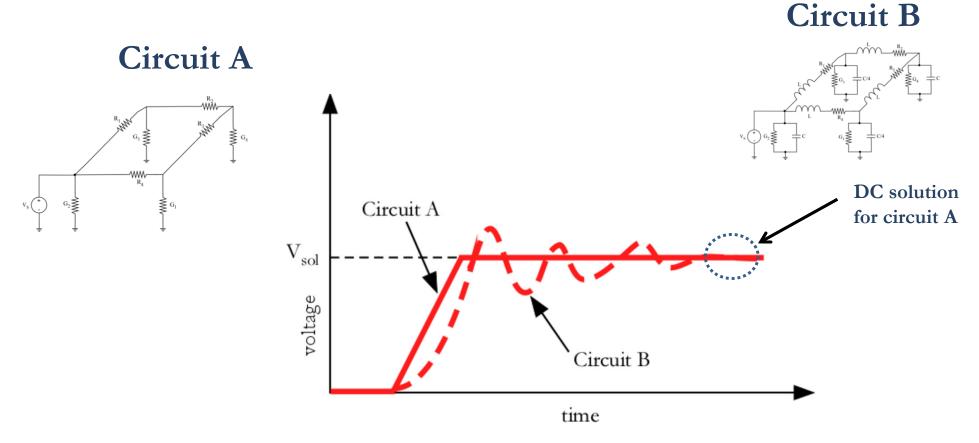
Circuit A

Circuit B



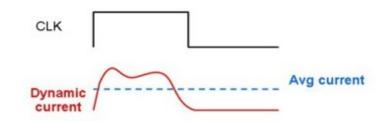
Circuit A and Circuit B will have different transient response to step excitation. However, their solutions for very large time will be same

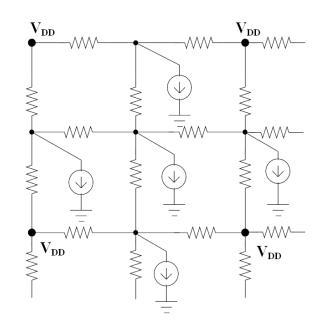
IR Drop Calculation


Circuit A Circuit B

Circuit A and Circuit B have the same DC solution

IR Drop Computation

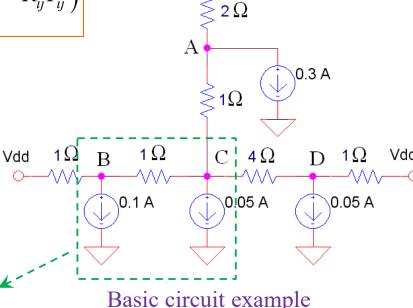

Proposition: In order to find the DC solution for Circuit A, we perform a LIM transient simulation on Circuit B and use the response for large time as the DC solution for Circuit A


For large networks this is FASTER than MNA solution

Analysis of a Power Distribution Network

- Analysis of a PDN → two types:
 - Steady state (DC) analysis
 - Dynamic (Transient simulation)
 - Capacitors → open-circuited
 - Inductors → short-circuited
 - Power sources → ideal voltage sources
 - Power drains → constant current sources
 - Transient Simulation
 - Effects of capacitance and inductance are taken into account
 - Time-varying (switching) current sources

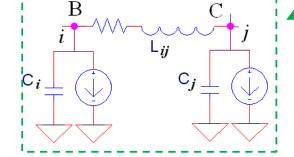
Circuit model for a steady state power grid



Steady State - Example

Vdd = 1V

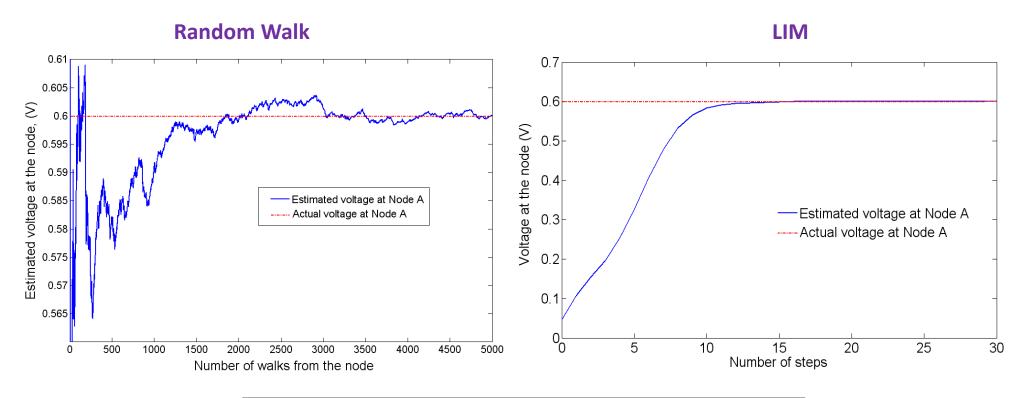
$$I_{ij}^{n+1} = I_{ij}^{n} + \frac{\Delta t}{L_{ij}} \left(V_i^{n+1/2} - V_j^{n+1/2} - R_{ij} I_{ij}^{n} \right)$$


$$V_{i}^{n+1/2} = \frac{\frac{C_{i}V_{i}^{n-1/2}}{\Delta t} + H_{i}^{n} - \sum_{k=1}^{N_{a}} I_{ik}^{n}}{\frac{C_{i}}{\Delta t} + G_{i}}$$

Steady state →

- capacitances are open-circuited
- inductances are shorts-circuited

Node	Node voltage (V)
Α	0.6
В	0.8
С	0.7
D	0.9

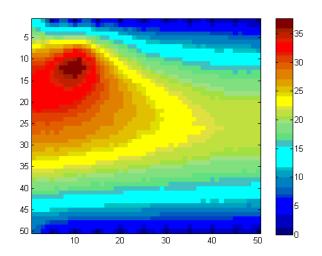

Modified segment of the basic circuit with latency elements inserted

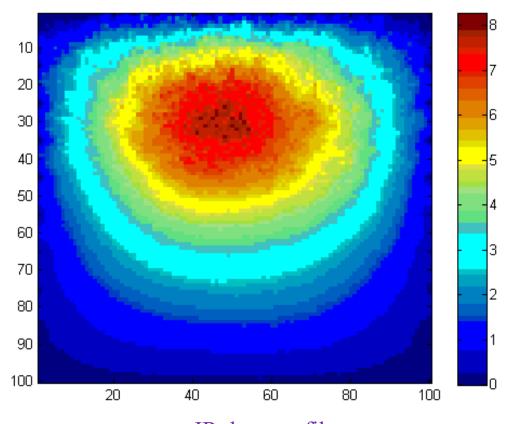
LIM requires latency elements >

- small shunt capacitances must be added at all non-Vdd nodes
- small inductances must be inserted in all branches
- ➤ all latency is purely fictitious → there is no limit on the value of inserted latency

Convergence of the Simulation

Node	Estimated voltage	Estimated	Actual voltage
	(V) (random walk)	voltage (V) (LIM)	(V) at the node
Α	0.600140	0.600007	0.6
В	0.803245	0.800009	8.0
С	0.700986	0.700010	0.7
D	0.903905	0.900013	0.9


LIM simulation demonstrates fast convergence and allows to achieve high accuracy



Numerical Results

Runtimes of the LIM simulations were compared to the ones of the Random-Walk method for several large circuits [7]

Number	Runtime	Runtime	
	(CPU sec)	(CPU sec)	
of nodes	(LIM)	(Random-Walk)	
10 K	< 1	10	
250 K	3	258	
500 K	6	509	
1 M	13	1126	
2 M	28	2528	

IR drop profile.

Color scale shows the percentage change of the supply voltage relative to Vdd

[7] D. Klokotov, P. Goh, and J. E. Schutt-Ainé, "Latency Insertion Method (LIM) for DC Analysis of Power Supply Networks," *IEEE Trans. Advanced Packaging*, in

