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To optimize circuit performance, the goal is to reduce the 
capacitive loading C and potential swing ∆V while 
keeping the average current drive Iav high
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• When scaling is applied (scaling factor S >1)

All horizontal and vertical dimensions of 
transistors are scaled down

Substrate doping is increased by S

All voltages are reduced by 1/S

Scaling of  Transistors
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Scaling of  Transistors

Drain Current Time Delay

Capacitance Power
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Dimensions (W, L, tgox, Xj)     1/S
Substrate doping (NSUB)     S
Voltages (VDD, VTN, VTP)     1/S
Current per device (IDS)     1/S
Gate capacitance (Cg=εox WL/tgox)    1/S
Transistor on-resistance     1
Intrinsic gate delay(τ=RtrCg)     1/S
Power-dissipation per gate (P=IV)    1/S2

Power-delay product per gate (P × τ)    1/S3

Area per device (A=WL)     1/S2

Power-dissipation density (P/A)    1

S:  Scaling factor for device dimensions.

Ideal Scaling of  Transistors
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Optimal Chip Size
• Delay Factor 

– On-chip delay is usually kept much smaller than chip-to-chip delay
– Choose chip delay to be 10% of chip-to-chip delay

• Optimal
– If the chips are made larger, the system will become slower
– If the chips are made smaller, the complexity of the package will 

increase
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:   chipA Area of chip

:   packageA Area of package
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Scaling of Interconnection Capacitance

• Wiring Capacitance vs Device Capacitance 
– Wiring capacitance becomes more important
– Transistor input capacitance decreases with reduced size
– Capacitance of chip-to-chip wire is an order of magnitude larger than 

on-chip capacitance
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Thickness (Hint)  1/S 1/ S1/2  1/ S1/2  1/SH
Width (Wint)  1/S 1/S  1/ S1/2  1/Sw
Separation (Wsp)  1/S 1/S  1/ S1/2  1/Ssp
Insulator thickness  1/S 1/ S1/2  1/S1/2  1/Sox
Length (lloc)  1/S 1/S  1/S  1/S
Resistance (Rint)  S  S1/2  1  SwSH/S
Capacitance to subst  1/S 1/ S3/2  1/S  Sox/SSw
Capacitance between lines 1/S 1/ S1/2  1/S  Sox/SSH
RC delay (T)  1 1/ S1/2  1/S  SwSH/S2

Voltage drop (IR)  1 1/ S1/2  1/S  SwSH/S2

Current density (J)  S  S1/2  1  SwSH/S

Parameter                                          Ideal          Quasi-Ideal                         Constant-R                Generalized            

S:  Scaling factor for device dimensions.

Scaling of  Local Interconnections
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Thickness (Hint)  1/S 1  SC  1/SH
Width (Wint)  1/S 1  SC  1/Sw
Separation (Wsp)  1/S 1  1/S1/2  1/Ssp
Insulator thickness (tox) 1/S 1  SC  1/Sox
Length (lint)  SC SC  SC  SC
Resistance (Rint)  S2SC SC  1/SC  SwSHSC
Capacitance (Cint)  SC SC  SC  ~SC
RC delay  (T)  S2SC

2 SC
2  1  SwSHSC

2

Ideal          Constant                            Constant        Generalized  
Parameter                                          Scaling      Dimension                           Delay                    Scaling

S:  Scaling factor for device dimensions.
SC: Scaling factor for chip size

Scaling of  Global Interconnections
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Total chip current   S2Sc
2  S2Sc

2

Conductor thickness   1/S  S
Sheet resistance (Rint�)   S  1/S
Number of power planes  1  S
Number of power connections 1  SSC

2

Effective resistance   S  1/S3SC
2

IR voltage drop   S3SC
2  1/S

Signal-to-noise ratio   1/S4SC
2 1

   Ideal   Improved
      Parameter   scaling Scaling 

S:  Scaling factor for device dimensions.
SC: Scaling factor for chip size

Scaling of  IR Voltage Drops
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• Severity is reduced by 
–  Off-chip wires have larger inductance
– Their current demand does not increase as fast
–  Their large size allow easy decoupling
–  In general off-chip transients are slower
–  TAB and flip-chip technology can improve

Effect of  Scaling on Signal-to-Noise Ratio

Signal-to-noise (S/N) ratio is reduced by:

This is an alarming ratio

4 3
CS S
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• Crosstalk Between Capacitive Lines
– Primarily on chip
– Major effect is increase in delay

• Crosstalk Between Transmission Lines
– Distributed and wave effects
– Approximate as near and far end crosstalks

• Signal return Crosstalk
– Imperfect ground reference
– Unbalanced currents

Different Types of Crosstalk
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Coupling to Floating Line

– Important when high-swing signal passes near a low-swing pre-charged 
signal (e.g. RAM)

C
c

O C

Ck
C C

=
+

kc is capacitive coupling coefficient
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Coupling to Driven Line

– Transient decays with a time constant ( )xc o C oR C Cτ = +



ECE 546 – Jose Schutt-Aine 16

• Signals on adjacent layers should be routed in 
perpendicular directions

• Avoid floating signals

• Make rise time as large as possible

• Crosstalk can be made common mode by routing 
true and complement lines close to each other

• Provide shielding by placing conductors tied to 
GND and reference

Capacitive Crosstalk Countermeasures
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IC package modeled as lumped 5 nH inductor will house 128 full 
swing (3.3V) outputs into 50-Ω lines with 1 ns rise time

– How many return pins are needed if drop across returns must be less 
than 300 mV?

– How many pins if rise time is reduced to 3 ns?

∆t

∆V

Example
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– When rise time is 3 ns
L In
V t
∆

≥
∆

46.9n ≥

At least 46 pins

Solution

3.3128 128 8.44
50

VI A
R
∆

∆ = × = × =

300 300 0.355I IL V mV L nH
t t

∆ ∆
≤ = ⇒ ≤ =

∆ ∆

0.355 140.8L nH n
n
≤ ⇒ ≥ 141 pins

Assume current ramp same as voltage ramp
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Source: M. Bohr and Y. El-Mansy - IEEE TED Vol. 4,  March 1998

Vertical parallel-plate capacitance                                 0.05 fF/µm2

Vertical parallel-plate capacitance (min width)             0.03 fF/µm
Vertical fringing capacitance (each side)                      0.01 fF/µm
Horizontal coupling capacitance (each side)                0.03

IC Wiring
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Vertical parallel-plate capacitance                               0.05 fF/µm2

Vertical parallel-plate capacitance (min width)             0.03 fF/µm
Vertical fringing capacitance (each side)                      0.01 fF/µm
Horizontal coupling capacitance (each side)                 0.03

Integrated Circuit Wiring
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• Crosstalk current due to mutual capacitance will split into 2 
parts and flow toward both ends of victim line 

• Crosstalk current due to mutual inductance will flow from the 
far end toward the near end of victim line

Near- and Far-End Crosstalks
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Transmission-Line - Crosstalk
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• Crosstalk seen on the victim line at the end closest to the driver 

• Assumes that load is terminated with characteristic impedance 
of single isolated line

• Sum of contributions to reverse traveling wave that arrives at 
point x during period equal to time of flight

Near End Crosstalk

( ) ( )near m near mI I L I C= +
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• Approximate quantity 

• Assumes that load is terminated with characteristic 
impedance of  single isolated line

• Sum of  contributions to reverse traveling wave that arrives at 
point x during period equal to time of  flight

Near End Crosstalk

( )
4

cx lx
rx

k k
k

+
=
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• Crosstalk seen on the victim line at the end farthest away from  
the driver 

• Assumes that load is terminated with characteristic impedance 
of single isolated line

Far End Crosstalk

( ) ( )far far m mI I C I L= −
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• Approximate quantity 

• Assumes that load is terminated with characteristic impedance 
of single isolated line

• Time derivative of signal on line A scaled by forward-coupling 
coefficient and coupling time

Far End Crosstalk

4
cx lx

fx
k kk −

=
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2 X LC

Digital Crosstalk - Case 1

X LC

( )
4

M MV input L CA
L C

 = + 
  ( )

2
M MV input X LC L CB

T L Cr
 =− − 
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2 X LC

Digital Crosstalk - Case 2

V(far)

0

D
Tr

X LC

( )
4

M MV input L CA
L C

 = + 
 

( )
M M

V input X LC L CD Tr L C

 
 = − −
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2 X LC

Digital Crosstalk - Case 3

Tr

V(far)

0 Tr
B

D

X LC

3 X LC

( )
2

M MV input L CA
L C

 = + 
  4

M M
V L CD

L C

 
 = −
 

( )
2

M M
V input X LC L CB Tr L C

 
 = − −
 



ECE 546 – Jose Schutt-Aine 30

• If  the rise or fall time is short compared to 
the delay of  the line, the near-end crosstalk 
noise is independent of  the rise time.

• If  the rise or fall time is long compared to 
the delay of  the line, the near-end crosstalk 
noise is dependent on the rise time 

• The far-end crosstalk is always dependent 
on the rise or fall time

Crosstalk Facts
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• Assume that the transmission lines are terminated

• The near-end crosstalk will begin at t=0 and have a 
duration of  2 tD.

• The far-end crosstalk will occur at time t=tD and 
have a duration approximately equal to the signal 
rise or fall time 

Crosstalk Facts

Dt X LC=

X is the length of the lines
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9.869 2.103
( / .)

2.103 9.869
L nH in  

= 
 

2.051 0.239
( / .)

0.239 2.051
C pF in  

= 
 

Example - Determine Near- and Far-End Crosstalk
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Solution

12 12

11 11

( ) 1 2.103 nH 0.239 pF(1) 0.082 V
4 4 9.869 nH 2.051 pF

V input L CV
L C

   
= + = + =   

  

( ) 12 12

11 11

( )
V(2)=-

2

V input X LC L C
T L Cr

 
− 

 

1 2 (9.869 nH)(2.051 pF) 2.103 nH 0.239 pFV(2)=- 0.137 V
2(100 ps) 9.869 nH 2.051 pF

    − =− 
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• High-swing signals should not be routed on lines 
immediately

• Match klx and kcx to eliminate far end crosstalk

• If kfx is nonzero, avoid long parallel lines

• Terminate with Zs

• Make rise time as long as possible

TL Crosstalk Countermeasures



ECE 546 – Jose Schutt-Aine 35

• Signal launched on a transmission line can be 
affected by previous signals as result of  reflections

• ISI can be a major concern especially if  the signal 
delay is smaller than twice the time of  flight

• ISI can have devastating effects

• Noise must be allowed to settled before next signal 
is sent

Intersymbol Interference (ISI)
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Intersymbol Interference
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Intersymbol Interference and Signal Integrity
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• Minimize reflections on the bus by avoiding 
impedance discontinuities

• Minimize stub lengths and large parasitics from 
package sockets or connectors

• Keep interconnects as short as possible (minimize 
delay)

• Minimize crosstalk effects

Minimizing ISI
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