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Circuit Delay

J Lav T T e
_ —O \ Vour :
Vin | / ? ,

_CAV
I

ay

At

To optimize circuit performance, the goal is to reduce the
capacitive loading C and potential swing AV while
keeping the average current drive I_, high
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Scaling of Transistors

® When scaling is applied (scaling factor S >1)

» All horizontal and vertical dimensions of
transistors are scaled down

»Substrate doping is increased by S

» All voltages are reduced by 1/S
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Scaling of Transistors
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Ideal Scaling of Transistors

Dimensions (W, L, t,,, X)) 1/S
Substrate doping (N ) S
Voltages (Vpp, Vi Vip) 1/S
Current per device (IDS) 1/S
Gate capacitance (C,=¢, WL/, ) 1/S
Transistor on-resistance 1
Intrinsic gate delay(7=R,C,) 1/S
Power-dissipation per gate (P=IV) 1/S?
Power-delay product per gate (P x 1) 1/S3
Area per device (A=WL) 1/S?
Power-dissipation density (P/A) 1

S Scaling factor for device dimensions.
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Optimal Chip Size

 Delay Factor

— On-chip delay is usually kept much smaller than chip-to-chip delay
— Choose chip delay to be 10% of chip-to-chip delay

« Optimal
— If the chips are made larger, the system will become slower
— If the chips are made smaller, the complexity of the package will

increase
C A /2+C
\/Khip _ 01 6 R C lIl pack package L
RcthCchlp Co
A, » Area of chip
A, pihaee - Area of package
"’"'ILLINOIS

ECE 546 — Jose Schutt-Aine

l*ll ld( pll-@,
Un tllll at Urbai u p




Scaling of Interconnection Capacitance

« Wiring Capacitance vs Device Capacitance
— Wiring capacitance becomes more important
— Transistor input capacitance decreases with reduced size

— Capacitance of chip-to-chip wire is an order of magnitude larger than
on-chip capacitance
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Scaling of Interconnection Capacitance
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Scaling of Local Interconnections

Parameter Ideal Quasi-ldeal Constant-R Generalized
Thickness (H,,,) 1/S 1/ S1”2 1/ S12 1/Sy
Width () 1/S 1/S 1/ S112 /S,
Separation (W) 1/S 1/S 1/ S1”2 1/8,,
Insulator thickness 1/S 1/ S1? 1/S12 1/S.,
Length (/) 1/S 1/S 1/S 1/S
Resistance (R,,,) S S12 1 S SH/S
Capacitance to subst 1/S 1/ S372 1/S S./SS,,
Capacitance between lines 1/S 1/ S1? 1/S S./SSy
RC delay (7) I 1/ 12 1/S S.,S,/S?
Voltage drop (IR) 1 1/ S1? 1/S S, Sy/S?
Current density (J) S S172 1 S, Sy/S

S: Scaling factor for device dimensions.
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Scaling of Global Interconnections

Ideal Constant Constant Generalized
Parameter Scaling Dimension Delay Scaling
Thickness (H,,,) 1/S 1 Sc 1/Sy
Width (W,,) 1/S 1 Sc 1/S,,
Separation (W) 1/S 1 1/S172 1/8,,
Insulator thickness (z,) 1/S 1 Sc 1/S,,
Length (Z;,,) Sc Sc Sc Sc
Resistance (R,,) S2S¢ Sc 1/S¢ SwSuSc
Capacitance (C,,,) Sc Sc Sc ~S¢
RC delay (7) $28.2  S2 1 S..SuSc2

S: Scaling factor for device dimensions.
S¢: Scaling factor for chip size
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Scaling of IR Voltage Drops

Ideal Improved
Parameter scaling Scaling

Total chip current S2S .2 S2S .2
Conductor thickness 1/S S
Sheet resistance (R, ) S 1/S
Number of power planes 1 S
Number of power connections 1 SS?
Effective resistance S 1/S3S 2
IR voltage drop S3S? 1/S
Signal-to-noise ratio 1/S4S 2 1

S Scaling factor for device dimensions.

Sc: Scaling factor for chip size
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Effect of Scaling on Signal-to-Noise Ratio

Signal-to-noise (S/N) ratio is reduced by: §*S;

This is an alarming ratio

* Severity is reduced by
— Off-chip wires have larger inductance
— Their current demand does not increase as fast
— Their large size allow easy decoupling
— In general off-chip transients are slower
— TAB and flip-chip technology can improve
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Different Types of Crosstalk

 Crosstalk Between Capacitive Lines
— Primarily on chip
— Major effect is increase in delay

« Crosstalk Between Transmission Lines

— Distributed and wave effects
— Approximate as near and far end crosstalks

« Signal return Crosstalk
— Imperfect ground reference
— Unbalanced currents
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Coupling to Floating Line

— Important when high-swing signal passes near a low-swing pre-charged
signal (e.g. RAM)

po——Cc
© C,+C,

k. is capacitive coupling coefficient
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Coupling to Driven Line

Vi -
[N

= RO B VB I~ % ‘AVB

— Transient decays with a time constant T.= RO (Cc + Co)
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Capacitive Crosstalk Countermeasures

e Signals on adjacent layers should be routed in
perpendicular directions

* Avoid floating signals
* Make rise time as large as possible

* Crosstalk can be made common mode by routing
true and complement lines close to each other

* Provide shielding by placing conductors tied to

GND and reference
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Example

IC package modeled as lumped 5 nH inductor will house 128 full
swing (3.3V) outputs into 50-Q lines with 1 ns rise time

— How many return pins are needed if drop across returns must be less
than 300 mV?

— How many pins if rise time is reduced to 3 ns?

IAV

At
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Solution

Assume current ramp same as voltage ramp

Al = A—V><128 = £x128 =8.44 4
R 50
Lﬂ <V =300mV = L< 300£ =0.355nH
At At
L <0.355nH = n=140.8 141 pins
n
L Al
— Whenrise timeis3ns H2=—— n=46.9
V' At

At least 46 pins
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IC Wiring

Vertical parallel-plate capacitance 0.05 fF/um?
Vertical parallel-plate capacitance (min width) 0.03 fF/um
Vertical fringing capacitance (each side) 0.01 fF/um
Horizontal coupling capacitance (each side) 0.03

Source: M. Bohr and Y. El-Mansy - IEEE TED Vol. 4, March 1998
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Integrated Circuit Wiring

: : : BB :Meta15
Metal 4

Metal 3
Metal 2
Metal 1
Substrate
Vertical parallel-plate capacitance 0.05 fF/um?
Vertical parallel-plate capacitance (min width) 0.03 fF/um
Vertical fringing capacitance (each side) 0.01 fF/um
Horizontal coupling capacitance (each side) 0.03
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Near- and Far-End Crosstalks

Line 1 (driver)

Driver
Driver Current —

——— Mutual Capacitance (Cm or C12)

— : Z > —

[(Lm) near(Cm) far(cm) Line 2 (victim)

 Crosstalk current due to mutual capacitance will split into 2
parts and flow toward both ends of victim line

 Crosstalk current due to mutual inductance will flow from the
far end toward the near end of victim line
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Transmission-Line - Crosstalk

Line A

Z >|
y |
z
Vay) _—
V) —— | T —
V() AN
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Near End Crosstalk

Line 1 (driver)

Driver
Driver Current —

——— Mutual Capacitance (Cm or C12)

< N " P

-—

1
1

[(Lm) [ .. (Cm) far(cm) Line 2 (victim)

« Crosstalk seen on the victim line at the end closest to the driver

« Assumes that load is terminated with characteristic impedance
of single isolated line

« Sum of contributions to reverse traveling wave that arrives at
point x during period equal to time of flight

=1(L,)+1,,(C,)

near
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Near End Crosstalk

* Approximate quantity

e Assumes that load is terminated with characteristic
impedance of single isolated line

* Sum of contributions to reverse traveling wave that arrives at
point x during period equal to time of flight

. (kcx +klx)
X 4
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Far End Crosstalk

Line 1 (driver)

Driver
Driver Current —

——— Mutual Capacitance (Cm or C12)

|- >
< b A —

1
1

; . . e
[(Lm) I .. (Cm) I, (Cm) Line 2 (victim)

« Crosstalk seen on the victim line at the end farthest away from
the driver

« Assumes that load is terminated with characteristic impedance
of single isolated line

Ifar :[ ar(Cm)_](Lm)
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Far End Crosstalk

« Approximate quantity

« Assumes that load is terminated with characteristic impedance
of single isolated line

« Time derivative of signal on line A scaled by forward-coupling
coefficient and coupling time
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Digital Crosstalk - Case 1

V(input) Lenath=X
< gth > A .
: Input Waveform
V(input) + '
R=Zo0 Zo R=Z0 (mput) '
V(far) :
V(near) &~ '
Tr ,
R=Zo0 Zo R=Z0 :
0 1
V(near)
A
V(far)
A —
A
Tr
X~LC
2XVLC 0 >
0 - i/ >
B .
v Tr4—p
A_V(input)(LM . CM)
4 L cC . V (input) XJLC ( Ly, CMJ
27, \L C
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Digital Crosstalk - Case 2

Length=X A

Input Waveform

Tr ,
V(near) V(far)
A
; 'y
N
| X~LC
Tr ; 0 < g
! Tr
0 : e S > D+
-« -  / Tr ¢—>»
2XANLC
2 JP ,
. V (input) X [LC (LM CMJ
A:V(i"P“f)(LM Cu Ty L C
4 \L cC
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Digital Crosstalk - Case 3

V(input) Length=X A -
+ < > : Input Waveform

Tr

v
inear) | | V(far) A :
At ' DT
Tr E E
' X~NLC '
: > ,
i 1 .
0g : : 0 4>
S xJIC - 3xLC Tr
A_V(input)(LM ICM) V (input) X ~[LC [LM CMJ V(1 ¢
= | B =-— D= |tm_Su
2 L ¢ 27, L C 7\ ¢
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Crosstalk Facts

* If the rise or fall time is short compared to
the delay of the line, the near-end crosstalk
noise is independent of the rise time.

* If the rise or fall time is long compared to
the delay of the line, the near-end crosstalk
noise is dependent on the rise time

* The far-end crosstalk is always dependent
on the rise or fall time
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Crosstalk Facts

Assume that the transmission lines are terminated

The near-end crosstalk will begin at =0 and have a
duration of 2 ¢,

The far-end crosstalk will occur at time ¢=¢, and
have a duration approximately equal to the signal
rise or fall time

X 1s the length of the lines
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Example - Determine Near- and Far-End Crosstalk

1.05T
Input waveform
0.85 +
V(input —n;
0.65 L ( i l Length=2 in. >
G 700 Z0=70 Q 70 Q
=
V(2)
f RI=70 Q Zo=710 €2 R2=70 Q?
9.869 2.103
0.25 + L(nH /in.)=
2.103 9.869
V(1) - Near end crosstalk 2.051 0.239
C(pFlin.)=
0.05 \ 0.239 2.051
\ /<¢———— V(2) - Far end crosstalk
-0.15 L
0.00 0.20 0.60 0.80 1.00 1.20 1.40 1.60
Time (ns)
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Solution

V(1= V(input)| Li» C12 _1{2.103 nH+O.239 pF
9.869 nH 2.051 pF

4 4

Ly C11

V(2)=

V(input)(X\/E)[le Ker
2Ty Ly G

1| 24/(9.869 nH)(2.051 pF
V(Z):_[ J(9.869 nH)(2.051 pF) |

|

2.103nH_0.239 pF

2(100 ps)

o IL LINOIS
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ECE 546 — Jose Schutt-Aine

j:0.082 \Y

]=—0.137 \Y

33



TL Crosstalk Countermeasures

* High-swing signals should not be routed on lines
immediately

- Match k, and k_, to eliminate far end crosstalk

 If k; is nonzero, avoid long parallel lines

« Terminate with Zs

 Make rise time as long as possible
cecILLINOIS
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Intersymbol Interference (ISI)

* Signal launched on a transmission line can be
affected by previous signals as result of reflections

* ISI can be a major concern especially if the signal
delay is smaller than twice the time of flight

* ISI can have devastating effects

* Noise must be allowed to settled before next signal
is sent
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Intersymbol Interference

Volts Ideal waveform beginning transistion

from low to high with ne noise on the bus

Timing difference
due to ISI —p»|

1
: Different starting point due to ISI
[
[

Waveform beginning transition from low to high
with unsettled noise on the bus
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Intersymbol Interference and Signal Integrity

Probe point
30 ohms

v ; Zo = 65 ohms /

200 MHz switching on above bus

4- 400 MHz sw1tch1ng on above bus
3

2

1+

0

Ideal 400 MHZ Waveform
-2 Time

= IL L INOIS ECE 546 — Jose Schutt-Aine
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Minimizing ISI

* Minimize reflections on the bus by avoiding
impedance discontinuities

* Minimize stub lengths and large parasitics from
package sockets or connectots

* Keep interconnects as short as possible (minimize
delay)

e Minimize crosstalk effects
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