ECE 546 Lecture - 21 Noise in Digital Circuits

Spring 2024

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

Circuit Delay

To optimize circuit performance, the goal is to reduce the capacitive loading C and potential swing ΔV while keeping the average current drive I_{av} high

Scaling of Transistors

• When scaling is applied (scaling factor S >1)

All horizontal and vertical dimensions of transistors are scaled down

Substrate doping is increased by S

>All voltages are reduced by 1/S

Scaling of Transistors

Drain Current

$$I_{DS} = \mu C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$
$$I_{DS} \propto 1 \times S \times \frac{1/S}{1/S} \times (1/S)^2 = \frac{1}{S}$$

Capacitance

$$C_g = WLC_{ox}$$
$$C_g \propto \frac{1}{S} \times \frac{1}{S} \times S = \frac{1}{S}$$

Ideal Scaling of Transistors

Dimensions (W, L, t_{gox} , X_i)	1/S
Substrate doping (N_{SUB})	S
Voltages (V_{DD} , V_{TN} , V_{TP})	1/S
Current per device (IDS)	1/S
Gate capacitance ($C_g = \varepsilon_{ox} WL/t_{gox}$)	1/S
Transistor on-resistance	1
Intrinsic gate delay($\tau = R_{tr}C_{g}$)	1/S
Power-dissipation per gate $(P=IV)$	$1/S^{2}$
Power-delay product per gate $(P \times \tau)$	$1/S^{3}$
Area per device $(A=WL)$	$1/S^{2}$
Power-dissipation density (P/A)	1

S: Scaling factor for device dimensions.

Optimal Chip Size

Delay Factor

- On-chip delay is usually kept much smaller than chip-to-chip delay
- Choose chip delay to be 10% of chip-to-chip delay

Optimal

- If the chips are made larger, the system will become slower
- If the chips are made smaller, the complexity of the package will increase

$$\sqrt{A_{chip}} = 0.16 \sqrt{\frac{R_o C_o}{R_{chip} C_{chip}}} \ln\left(\frac{C_{pack} \sqrt{A_{package}} / 2 + C_L}{C_o}\right)$$

 A_{chip} : Area of chip

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Scaling of Interconnection Capacitance

• Wiring Capacitance vs Device Capacitance

- Wiring capacitance becomes more important
- Transistor input capacitance decreases with reduced size
- Capacitance of chip-to-chip wire is an order of magnitude larger than on-chip capacitance

Scaling of Interconnection Capacitance

$$T_{50\%} = R_{tr} (C_{int} + C_{gate})$$

$$R_{tr} \approx \frac{1}{\frac{W}{L} \mu C_{gox} (V_{DD} - V_T)} \propto 1$$

$$C_{gate} = \varepsilon_{ox} \frac{W_n L_n + W_p L_p}{t_{gox}} \propto 1/S$$

$$C_{int} = \varepsilon_{ox} \frac{W_{inxt} l_{int}}{t_{ox}} \propto S_C$$

Scaling of Local Interconnections

Parameter	Ideal	Quasi-Ideal	Constant-R	Generalized
Thickness (H_{int})	1/S	$1/ S^{1/2}$	$1/S^{1/2}$	$1/S_{H}$
Width (W_{int})	1/S	1/S	$1/S^{1/2}$	$1/S_w$
Separation (W_{sp})	1/S	1/S	$1/S^{1/2}$	$1/S_{sp}$
Insulator thickness	1/S	$1/ S^{1/2}$	$1/S^{1/2}$	$1/S_{ox}^{-r}$
Length (l_{loc})	1/S	1/S	1/S	1/S
Resistance (R_{int})	S	$\mathbf{S}^{1/2}$	1	$S_w S_H / S$
Capacitance to subst	1/S	$1/ S^{3/2}$	1/S	S_{ox}/SS_{w}
Capacitance between lines	1/S	$1/ S^{1/2}$	1/S	S_{ox}/SS_{H}
RC delay (<i>T</i>)	1	$1/ S^{1/2}$	1/S	$S_w S_H / S^2$
Voltage drop (IR)	1	$1/ S^{1/2}$	1/S	$S_w S_H / S^2$
Current density (J)	S	$\mathbf{S}^{1/2}$	1	$S_w S_H / S$

S: Scaling factor for device dimensions.

Scaling of Global Interconnections

Parameter	ldeal Scaling	Constant Dimension	Constant Delay	Generalized Scaling
Thickness (H_{int})	1/S	1	S _C	$1/S_{H}$
Width (W_{int})	1/S	1	$\mathbf{S}_{\mathbf{C}}$	$1/S_w$
Separation (W_{sp})	1/S	1	$1/S^{1/2}$	$1/S_{sp}$
Insulator thickness (t_{ox})	1/S	1	$\mathbf{S}_{\mathbf{C}}$	$1/S_{ox}$
Length (l_{int})	$\mathbf{S}_{\mathbf{C}}$	S _C	$\mathbf{S}_{\mathbf{C}}$	$\mathbf{S}_{\mathbf{C}}$
Resistance (R_{int})	S^2S_C	S _C	$1/S_{C}$	$S_w S_H S_C$
Capacitance (C_{int})	S_{C}	S _C	$\mathbf{S}_{\mathbf{C}}$	$\sim S_{\rm C}$
RC delay (T)	$S^2S_C^2$	S_{C}^{2}	1	$S_w S_H S_C^2$

S: Scaling factor for device dimensions. S_C : Scaling factor for chip size

Scaling of IR Voltage Drops

Parameter	ldeal scaling	Improved Scaling
Total chip current	$S^2S_c^2$	$S^2S_c^2$
Conductor thickness	1/S	S
Sheet resistance (R _{int})	S	1/S
Number of power planes	1	S
Number of power connections	1	SS_{C}^{2}
Effective resistance	S	$1/S^{3}S_{C}^{2}$
IR voltage drop	$S^3S_C^2$	1/S
Signal-to-noise ratio	$1/S^4S_C^2$	1

S: Scaling factor for device dimensions. S_C : Scaling factor for chip size

Effect of Scaling on Signal-to-Noise Ratio

Signal-to-noise (S/N) ratio is reduced by: $S^4 S_C^3$

This is an alarming ratio

- Severity is reduced by
 - Off-chip wires have larger inductance
 - Their current demand does not increase as fast
 - Their large size allow easy decoupling
 - In general off-chip transients are slower
 - TAB and flip-chip technology can improve

Different Types of Crosstalk

Crosstalk Between Capacitive Lines

- Primarily on chip
- Major effect is increase in delay

Crosstalk Between Transmission Lines

- Distributed and wave effects
- Approximate as near and far end crosstalks

Signal return Crosstalk

- Imperfect ground reference
- Unbalanced currents

Coupling to Floating Line

Important when high-swing signal passes near a low-swing pre-charged signal (e.g. RAM)

$$k_c = \frac{C_C}{C_O + C_C}$$

 k_c is capacitive coupling coefficient

Coupling to Driven Line

- Transient decays with a time constant $\tau_{xc} = R_o (C_c + C_o)$

Capacitive Crosstalk Countermeasures

- Signals on adjacent layers should be routed in perpendicular directions
- Avoid floating signals
- Make rise time as large as possible
- Crosstalk can be made common mode by routing true and complement lines close to each other
- Provide shielding by placing conductors tied to GND and reference

Example

- IC package modeled as lumped 5 nH inductor will house 128 full swing (3.3V) outputs into 50- Ω lines with 1 ns rise time
- How many return pins are needed if drop across returns must be less than 300 mV?
- How many pins if rise time is reduced to 3 ns?

Solution

Assume current ramp same as voltage ramp

$$\Delta I = \frac{\Delta V}{R} \times 128 = \frac{3.3}{50} \times 128 = 8.44A$$
$$L\frac{\Delta I}{\Delta t} \le V = 300 \text{ mV} \implies L \le 300\frac{\Delta I}{\Delta t} = 0.355 \text{ nH}$$
$$\frac{L}{n} \le 0.355 \text{ nH} \implies n \ge 140.8$$
 141 pins

When rise time is 3 ns

$$n \ge \frac{L}{V} \frac{\Delta I}{\Delta t}$$
 $n \ge 46.9$

At least 46 pins

IC Wiring

Vertical parallel-plate capacitance Vertical parallel-plate capacitance (min width) Vertical fringing capacitance (each side) Horizontal coupling capacitance (each side) 0.05 fF/μm² 0.03 fF/μm 0.01 fF/μm 0.03

Source: M. Bohr and Y. El-Mansy - IEEE TED Vol. 4, March 1998

University of Illinois at Urbana-Champaigr

Integrated Circuit Wiring

Vertical parallel-plate capacitance Vertical parallel-plate capacitance (min width) Vertical fringing capacitance (each side) Horizontal coupling capacitance (each side) 0.05 fF/μm² 0.03 fF/μm 0.01 fF/μm 0.03

Near- and Far-End Crosstalks

- Crosstalk current due to mutual capacitance will split into 2
 parts and flow toward both ends of victim line
- Crosstalk current due to mutual inductance will flow from the far end toward the near end of victim line

Transmission-Line - Crosstalk

Near End Crosstalk

- Crosstalk seen on the victim line at the end closest to the driver
- Assumes that load is terminated with characteristic impedance
 of single isolated line
- Sum of contributions to reverse traveling wave that arrives at point x during period equal to time of flight

$$I_{near} = I(L_m) + I_{near}(C_m)$$

Near End Crosstalk

- Approximate quantity
- Assumes that load is terminated with characteristic impedance of single isolated line
- Sum of contributions to reverse traveling wave that arrives at point x during period equal to time of flight

$$k_{rx} = \frac{\left(k_{cx} + k_{lx}\right)}{4}$$

Far End Crosstalk

- Crosstalk seen on the victim line at the end farthest away from the driver
- Assumes that load is terminated with characteristic impedance of single isolated line

$$I_{far} = I_{far}(C_m) - I(L_m)$$

Far End Crosstalk

- Approximate quantity
- Assumes that load is terminated with characteristic impedance of single isolated line
- Time derivative of signal on line A scaled by forward-coupling coefficient and coupling time

$$k_{fx} = \frac{k_{cx} - k_{lx}}{4}$$

Digital Crosstalk - Case 1

University of Illinois at Urbana-Champaigr

Digital Crosstalk - Case 2

Electrical and Computer Engineering University of Illinois at Urbana-Champaigu

Digital Crosstalk - Case 3

University of Illinois at Urbana-Champaig

Crosstalk Facts

- If the rise or fall time is short compared to the delay of the line, the near-end crosstalk noise is independent of the rise time.
- If the rise or fall time is long compared to the delay of the line, the near-end crosstalk noise is dependent on the rise time
- The far-end crosstalk is always dependent on the rise or fall time

Crosstalk Facts

- Assume that the transmission lines are terminated
- The near-end crosstalk will begin at t=0 and have a duration of $2 t_D$.
- The far-end crosstalk will occur at time $t=t_D$ and have a duration approximately equal to the signal rise or fall time

$$t_{D} = X\sqrt{LC}$$

X is the length of the lines

Example - Determine Near- and Far-End Crosstalk

Electrical and Computer Engineering University of Illinois at Urbana-Champaigr

Solution

$$V(1) = \frac{V(input)}{4} \left(\frac{L_{12}}{L_{11}} + \frac{C_{12}}{C_{11}}\right) = \frac{1}{4} \left(\frac{2.103 \text{ nH}}{9.869 \text{ nH}} + \frac{0.239 \text{ pF}}{2.051 \text{ pF}}\right) = 0.082 \text{ V}$$

$$V(2) = -\frac{V(input) \left(X \sqrt{LC} \right)}{2T_{r}} \left(\frac{L_{12}}{L_{11}} - \frac{C_{12}}{C_{11}} \right)$$

V(2)=
$$-\frac{1\left[2\sqrt{(9.869 \text{ nH})(2.051 \text{ pF})}\right]}{2(100 \text{ ps})}\left(\frac{2.103 \text{ nH}}{9.869 \text{ nH}} - \frac{0.239 \text{ pF}}{2.051 \text{ pF}}\right) = -0.137 \text{ V}$$

TL Crosstalk Countermeasures

- High-swing signals should not be routed on lines immediately
- Match k_{lx} and k_{cx} to eliminate far end crosstalk
- If k_{fx} is nonzero, avoid long parallel lines
- Terminate with Zs
- Make rise time as long as possible

Intersymbol Interference (ISI)

- Signal launched on a transmission line can be affected by previous signals as result of reflections
- ISI can be a major concern especially if the signal delay is smaller than twice the time of flight
- ISI can have devastating effects
- Noise must be allowed to settled before next signal is sent

Intersymbol Interference

Intersymbol Interference and Signal Integrity

Minimizing ISI

- Minimize reflections on the bus by avoiding impedance discontinuities
- Minimize stub lengths and large parasitics from package sockets or connectors
- Keep interconnects as short as possible (minimize delay)
- Minimize crosstalk effects

