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Bounded Uncorrelated Jitter
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BUJ is primarily due to crosstalk

The PDF for BUJ is given by



ECE 546 – Jose Schutt-Aine 3

Mix of  Random and Periodic Jitters
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 Obtain convolution of 2 PDFs
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Gaussian RJ and Rectangle PJ

Result is the sum of 2 Gaussian distributions with 
equal RMS value offset by the PJ peak-to-peak value .  
It is called the DUAL DIRAC DISTRIBUTION
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•Problem
 In tests, we have measured jitter histograms and 

need to extract the individual jitter components
 Ideally, we could use deconvolution into 

components. However without prior knowledge 
of deterministic jitter, it is not possible

Use dual Dirac distribution model which would 
yield the worst case deterministic jitter

Jitter Mixing
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Q-Scale Transformation
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Use CDF

Q-scale is defined such that the Gaussian distribution 
mapped onto the Q-scale is a straight line

( )1( ) 2 2 ( ) 1 xQ x erf CDF x
σ
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A Gaussian CDF is a straight line in the Q 
scale with slope 1/σ. DJ is given by distance d
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Q-Scale Transformation
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Gaussian RJ
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Q-Scale Transformation
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Q-Scale - Generalization
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Mixed Gaussian RJ and PJ

σ = 0.1
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PDF
CDF

Q-Scale - Generalization
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Mixed Gaussian RJ and PJ

σ = 0.25
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Dual Dirac Model
Mixed Gaussian RJ and Triangular PJ
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•Problem
In tests, we have measured jitter histograms 

and need to extract the individual jitter 
components
Ideally, we could use deconvolution into 

components. However without prior 
knowledge of deterministic jitter, it is not 
possible
Use dual Dirac distribution model which 

would yield the worst case deterministic 
jitter

Jitter Mixing



ECE 546 – Jose Schutt-Aine 12
12

Random  Jitter Extraction
• Spectrum Analysis

Extract random jitter by using the 
assumption that it has a piecewise linear 
spectrum

Impulses are attributed to DJ

Noise floor is due to RJ
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Extracting Random Jitter

Total jitter Random jitter

Time domain

Statistical domain

Spectral domain
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Jitter Spectrum

A longer FFT yields a spectrum with greater frequency resolution and 
lower noise floor.

Time record: 10N Time record: N
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Random  Jitter Extraction
• Tail-Fit
Extract random jitter under the assumption 

that its probability density function follows a 
Gaussian distribution

Make use of  the Dual-Dirac Model
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Dual Dirac Model

• Equal Amplitudes
 Two unknown variables
 Linear Problem
 Explicit solution

- gap between 2 impulses
- σ for Gaussian distribution

Unknowns
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Dual Dirac Model

• Unequal Amplitudes
 Three unknown variables
 Nonlinear Problem
 No explicit solution

- gap between 2 impulses
- σ for Gaussian distribution
- ratio of  2 impulse amplitudes

Unknowns
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Dual Dirac Model
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Assume Gaussian RJ and Rectangle PJ

Result is the sum of 2 Gaussian distributions with 
equal RMS value offset by the PJ peak-to-peak value .  
It is called the DUAL DIRAC DISTRIBUTION
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DDJ and DC D
• DDJ and DCD are correlated to the data pattern

For N bits, transmitted at rate FR, the jitter components 
due to DDJ and DCD will appear in the spectrum at 
multiple of FR/N

FR=1.0625 Gbits/s
N=40 bits
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Pattern Correlation
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Pattern Correlation

The phase errors from all occurrences of each M-bit 
patterns are averaged together to estimate the phase 
error due to that M-bit pattern
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Extracting DDJ

Spectral domain Eye

DDJ Dominant

RJ Dominant

DDJ & RJ
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Periodic Jitter

PJ PJ subcomponent

Time domain

Statistical domain

Spectral domain
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Clock jitter is the single most important degrader of  
clock performance

Clock Jitter
In a computer system, the clock is used to provide timing or 
synchronization for the system.

In a communication system, the clock is used to specify 
when a data switch or bit transaction should be transmitted 
and received

In a synchronized system, a central global clock is 
distributed to its subsystem
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Definition
• Most of the definitions of data jitter (DJ, Rj,…) 

apply to clock jitter

• ISI does not apply to clock jitter
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Synchronized System

- Initial clock pulse causes A to latch data from input 
and launch it into channel
- Second clock causes B to latch the incoming data
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Timing Parameters
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The minimum conditions are that both setup time and 
hold time margin should be larger than 0

0 _ _ _c jitt c skew d pd suT T T T T≥ − + + +

_ _ _hd d pd c skew c jittT T T T≤ + −

Timing Conditions

These give a quantitative description of  how clock 
jitter and clock skew affect the performance of  the 
synchronized system in which a common or global 
clock for both driver and receiver is used
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Skew Impact

• Tc_jitter=0, Tc_skew>0
The minimum clock period increases. The maximum 

hold time increases hold time condition easier to 
meet

• Tc_jitter=0, Tc_skew<0
The minimum clock period decreases. The maximum 

hold time decreases hold time condition harder to 
meet (race condition)
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Jitter Impact

• Tc_skew=0, Tc_jitter>0 (longer cycle)
The minimum clock period increases. The maximum 

hold time decreases hold time condition harder to 
meet

• Tc_skew=0, Tc_jitter<0 (shorter cycle)
The minimum clock period decreases. The maximum 

hold time increases hold time condition easier to 
meet
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1. Positive jitter over one clock period makes both 
clock period and hold time hard to meet

2. A longer cycle does more harm to system 
performance

3. When both skew and jitter are present, system 
performance can be any of  the four scenarios just 
discussed

System Performance
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Asynchronized System
The skew of a synchronized system becomes hard to 
manage when the data rate increases(~1 Gb/s). At 
multiple Gb/s data rates, an asynchronized system is 
commonly used.
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• Synchronized System
Global clock is used to update and determine bits

• Asynchronized System
Only data is sent
Clock is embedded in data
Clock recovery unit (CRU) recovers clock at receiver

Clock Types
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Asysnchronized Link

_ _ _clk tot clk tx clk rxDJ DJ DJ= +

_ _ _

2 2 2
clk tot clk tx clk rx

σ σ σ= +

Low-frequency jitter from the transmitter clock can be 
tracked or attenuated by the clock recovery function if  
it has a high enough corner frequency.  A low phase 
noise oscillator within a PLL clock recovery also 
provides smaller random jitter generations.
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Phase Jitter

n n nt t T∆ = −

nt : timing for nth edge for jittery clock

nT : timing for nth edge for ideal clock

oT : ideal  clock period

n oT nT=
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Phase Jitter

Phase jitter captures the instance timing deviation 
from the ideal for each transition. Jitter measured with 
phase jitter is absolute and accumulates over time.

2n
n

o

t
T

φ π=

In frequency domain



ECE 546 – Jose Schutt-Aine 37

Period Jitter

Period jitter is defined as the period deviation from the 
ideal period.

( )1pn n n ot t t T−∆ = − −

1pn n nt t t −∆ = ∆ − ∆

using previous relations

in terms of phase units

'
1n n nφ −= Φ − Φ

Period jitter and phase jitter are not independent we 
can derive one from the other.
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Phase, Period and CTC Jitter
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Phase Jitter in Time Domain

If  the phase varies, the waveform V(t) shifts back and 
forth along the time axis and this creates phase jitter
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Phase Jitter in Spectral Domain

Phase noise appears as sidebands centered around 
the carrier frequency
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Phase Jitter
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Phase noise magnitude is specified relative to the 
carrier’s power on a per-hertz basis

: PSD of phase noise( )S fΦ
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Phase Noise to Phase Jitter

From the phase noise PSD, random jitter and 
deterministic jitter can be identified

Need: convert phase noise measured in the frequency 
domain to phase jitter for PLLs, clocks and oscillators
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Phase Lock Loop

Phase noise or jitter is the key metric for 
evaluating the performance of a PLL system
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• External Source
Reference clock input

• Internal Source
Voltage controlled oscillator (VCO)

Jitter in PLLs
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Time Domain PLL Analysis

• When PLL is a first-order system, it can be 
modeled by a closed-form solution

• It is not straightforward to model jitter/noise 
process with loop components in the time 
domain
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Frequency- Domain PLL Analysis
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The error transfer function is:
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PLL Transfer Function
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• Large peaking causes PLL to be unstable
• Larger 3dB frequency  faster PLL tracking 
• Larger peaking  jitter amplification bit 

error

PLL Frequency Response

( ) 1d o
F sK K

s
=

For PLL stability, Barkhausen condition must be satisfied

( ) 180d o
F sArg K K

s
  =  
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PLL Frequency Response
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