ECE 546 Lecture - 27 Equalization

Spring 2024

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

Signal Integrity Impairments In High-Speed Buses

- SI issues limit system performance to well below channel Shannon capacity
- Inter-Symbol Interference (ISI) is an issue for long backplane buses
- For short, low-cost parallel links, dominant noise source is crosstalk
 - Far-end crosstalk (FEXT) induces timing jitter (CIJ), impacts timing budget
- Other SI impairments:
 - Simultaneous-switching (SSO) noise
 - Thermal noise
 - Jitter from PLL/DLL

FEXT increases with routing density

Channel Impairments

- Modern computer systems require Tb/s aggregate off-chip signaling throughput
 - Interconnect resources are limited
 - Parallel buses with fast edge rates must be used
 - Stringent power and BER requirements to be met
 - High-performance signaling requires high-cost channels
 - Difficult to design and costly to manufacture
 - One of main limiting factors: crosstalk-induced jitter

trace

Channel Equalization

Frequency

Off-chip bandwidth scales at a much lower rate than on-chip bandwidth. Primary objective is to have low bit error rate (BER). Typical BER is 10⁻¹².

Frequency shaping filters that flatten the channel response up to a certain frequency. Objective is to improve BER and increase eye opening.

Pre-Emphasis and Equalization

- Pre-emphasis boosts the high-frequency contents of the signal at the transmitter before the signal is sent through the channel.
- A two-tap finite impulse response (FIR) filter is an example of pre-emphasis implementation.
- Pre-emphasis has high power requirements, aggravates crosstalk and increase EMI.
- Pre-emphasis cannot improve SNR
- Data converters are required to implement preemphasis

Receiver Equalization

- The loss in the channel is suppressed by boosting the high-frequency content of the signal.
- Often results in larger noise margins.
- Receivers can be implemented in discrete-time or continuous time.
- Implementations include digital FIR equalizer, analog FIR equalizer, continuous time equalizer.

Equalization Techniques

Continuous Time Passive Equalizer

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

Channel-Equalization

Typical Channel Response w/o Equalization:

- Equalization at TX and RX needed to counter the effects of channel, properly decode signals.
- TX: FFE (Feed-Forward Equalizer)
- RX: DFE (Decision-Feedback Equalizer)

D. R. Stauffer et al., "High Speed Serdes Devices and Applications", Springer 2008

FFE Circuit Architecture

Typical Channel Response at Receiver with FFE at TX:

Sample 3-tap FFE Architecture:

- FFE taps selected to generate a filter with the inverse transferfunction as that of channel.
- Trade-off b/w signal amplitude at receiver and jitter.

3-tap FFE D. R. Stauffer et al., *"High Speed Serdes Devices and Applications"*, Springer 2008

DFE Circuit Architecture

Typical Channel Response at Receiver with DFE at RX:

Sample 5-tap DFE Architecture:

D. R. Stauffer et al., "High Speed Serdes Devices and Applications", Springer 2008

- DFE is needed in links with a high-baud rate to min. signal ampl. at high freq. caused by channel jitter.
- Filter weights selected dynamically in a feedback loop to max. eye opening.

FFE vs. DFE • FFE

- Can mitigate the pre-cursor channel response in low-BW channels.
- Can compensate ISI arising from transient TL loss over wide time-spans.

• DFE

- Cannot equalize ISI arising from pre-cursor channel response.
- Can only compensate ISI from a fixed time-span.

FFE + DFE

- Guarantees max. performance from the SerDes.
- Advantage:
 - DFE permits use of low-frequency de-emphasis at TX resulting in a larger received signal envelope, smaller signal/crosstalk ratio.
 - System capable of employing continuous adaptive equalization of its feedback taps to optimize performance.

Equalization Techniques

- CTLE (Continuous-Time Linear Equalizer) Basics
- FFE (Feed-Forward Equalizer) Basics
- DFE (Decision Feedback Equalizer) Basics
- More Complex Equalization

Continuous Time Linear Equalization

- Goal: To counteract the effects of the channel's transfer function (s-domain)
- Accomplished via amplification
 - More amplification at operating frequency
 - Less amplification at << operating frequency (DC Gain)
 - Reduce higher frequency noise

Drawbacks of CTLE Design

- Drawbacks of RX CT Equalization:
 - Amplifying signal also amplifies noise + crosstalk (SNR stays same)
 - Trade-off: High Gain + Output Swing vs. Small Size + Low Power Consumption
- When designing CTLE, need to iterate in order to optimize on all of these ends
- Still need to utilize filtering for noise and crosstalk

Continuous Time Linear Equalizer (CTLE)

– Pros

- Single block → lower power consumption and smaller sizing
- Easy to cancel precursor and more ISI
- Cons
 - Noise+Crosstalk amplified as well
 - Hard to tune

Continuous Time Linear Equalizer (CTLE)

- Active equalizer topology shown to right
- Differential amplifier with degeneration
 - Introduces an extra pole and zero
 - Total: One zero, two poles
- Transfer Function = Peaking Amplifier

Equations for CTLE (Derived from Circuit)

$$H(s) = \frac{g_m}{C_L} \frac{s + \frac{1}{R_D C_D}}{(s + \frac{g_m R_D + 1}{R_D C_D})} \frac{1}{(s + \frac{1}{R_L C_L})}$$
$$\omega_z = \frac{1}{R_D C_D}$$
$$\omega_{p1} = \frac{g_m R_D + 1}{R_D C_D}$$
$$\omega_{p2} = \frac{1}{R_L C_L}$$
$$DC \ Gain = \frac{g_m R_L}{g_m R_D + 1}$$

CTLE Design Process

- 1) Choose DC Gain and Peaking Gain (use insertion loss curve)
- 2) Decide optimal poles and zero frequency placements
- 3) Determine load capacitance from next stage (CDR input)
- 4) Determine equalizer output swing
- 5) Calculate component parameters to meet above specs
- 6) Test and optimize as necessary (iterative process)

CTLE Transfer Function (Bode Plot)

Effects of CTLE (Eye Diagram)

- Eyes
 - Yellow = TX end
 - Green = Post-Channel
 - Red = Post-EQ

Precursors and Postcursors

Understanding FFE

• Pros

- Simple to implement
- Doesn't amplify noise
- Easily cancels precursors
- Cons
 - Signal Attenuated due to peak-power limitation (output swing limit)
 - Hard to tune taps

$D_n \longrightarrow \Delta \xrightarrow{D_{n-1}} \Delta \xrightarrow{D_{n-2}}$	
Ŧ	
đ	

FFE Coefficient Calculation

- Need to calculate FFE coefficients such that convolution with channel results in solely the main cursor
 - A = channel coefficients
 - b = FFE coefficients
 - c = equalized response

 $\mathbf{A} \times \mathbf{b} = \mathbf{c}$

$$\begin{bmatrix} a_0 & a_{-1} & 0 & 0 & 0 \\ a_1 & a_0 & a_{-1} & 0 & 0 \\ a_2 & a_1 & a_0 & a_{-1} & 0 \\ a_3 & a_2 & a_1 & a_0 & a_{-1} \\ 0 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \times \begin{bmatrix} b_{-1} \\ b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

FFE Coefficient Calculation (Only precursor)

- When solely eliminating precursor, matrix becomes:
 - Only b_{-1} and b_0 matter to eliminate precursor
- Appending an extra zero at beginning in order to properly account for full sampled response
- A-matrix goes down to n amount of postcursors
 - Can match number with number of FFE coefficients
 - However, more postcursors → more ISI eliminated

Effects of FFE

Full FFE Precursor Only

ECE 546 – Jose Schutt-Aine

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

IL LINO

IS

EEE I

Actual FFE Design: Normalize Coefficients

- Why?
 - Output swing is limited by headroom of design
 - Extra taps → reduction of cursor's tap weight
- In order to account for limitations, currents must add up to equal output termination current, meaning that:

$$I \times \Sigma |b_i| = I \quad \Rightarrow \quad \Sigma |b_i| = 1$$

Understanding the DFE

- Continuous-Time
 Transfer Function of
 Channel (s-domain):
 - Low Pass Filter

Understanding the DFE

 Discrete-Time Transfer Function of the Channel (z-domain):

x[n]
$$H_1(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3}$$
 x[n]

 $x[n] + a_1x[n-1] + a_2x[n-2] + a_3x[n-3]$

Simple DFE System

Understanding the DFE

- Pulse Response of Channel:
 - Top = Continuous Time Plot
 - Bottom = Sampled Plot

Pulse Response (Testbench)

																							ORTR										
																			ine			n41			inn								
																			1111		+			+	 щΡ								
•																			•							·							
•																			nn		<u>+</u>			+'	 • V	inp	•						
•																																	
•																							nmon										
•																						•	— ·										
														<u>ا</u> د									· ·										
							•	V	in				_	_A.7	١٨		•		inr) ·								·V	inn				
•														V	۷.۱	×.																• <u> </u>	
																=2(· 5	
•															- 1	ίΛ.	۸.	înp) · (1.0	-50	\geq	
											ف.					۷V	V.														-3ø R5	\leq	
] .					Ņ																						
																															R4	•	
										1																				• []	=50	\leq	
	eg	ain=	Q	ð.5	Ť		\mathbb{I}	$\frac{1}{2}$	Ľ.,	՝ Լ		. (ega	în≓	Ø.5																	\geq	
					Ę	<u>)</u>	_^		÷).		Ŀ	\downarrow														. [Inp				
							\uparrow	· .																									
							•	(٦																					
									Ľ.,	l vdes	-80	101-0	in n																				
									;)		-0£																						
																							.										
									1														gnd										
																						1	\sim										
								~	Ļ																								
									✓ .																								

Normalized Pulse Response

- Next, normalize the pulse response:
 - Set time of peak = n*T
 - Post cursors =
 Response(T*(n+1)),
 Response(T*(n+2)),
 Response(T*(n+3)), ...

Post Cursor Calculations

• Calculated Postcursors:

Postcursor $a_1 = 0.2605$

Postcursor $a_2 = 0.104$

Postcursor $a_3 = 0.0588$

Postcursor $a_4 = 0.0387$

Postcursor $a_5 = 0.0284$

Understanding the DFE

Objective: Negate the effects of the post-cursors (a₁, a₂, a_{3...}) through feedback FIR filter and accurate sampling (decision circuit)

– Pros:

- No amplification of noise+crosstalk
- Can make feedback filter adaptive
- Cons:

Electrical and Computer Engineerin University of Illinois at Urbana-Champ

- Can only account for post-cursors (no pre-cursors)
- Critical feedback timing path

DFE Tap Coefficients

- If channel causes postcursors a₁, a₂, a₃, etc.,
- DFE tap coefficients must negate postcursors
- Thus, DFE tap coefficients
 = negative postcursors

. . .

Implementation of DFE

//Verilog-AMS HDL for "ece546", "dfe_sampler" "verilogams"

```
`include "constants.vams"
`include "disciplines.vams"
module dfe_sampler (in, inbar, out, outbar, Dout, clk, rst);
input in, inbar, clk, rst;
output reg Dout;
output out, outbar;
electrical in, inbar, out, outbar;
logic clk, rst;
parameter real tap1 = 0;
parameter real tap2 = 0;
parameter real tap3 = 0;
parameter real tap4 = 0;
parameter real tap5 = 0;
reg[4:0] data history;
analog begin
        V(out) <+ slew(V(in)+tap1*(2*data history[0]-1)+tap2*(2*data history[1]-1)+tap3*(2*data history[2]-1)+tap4*</p>
(2*data_history[3]-1)+tap5*(2*data_history[4]-1),1e11, 1e11);
        V(outbar) <+ slew(V(inbar)-tap1*(2*data_history[0]-1)-tap2*(2*data_history[1]-1)-tap3*(2*data_history[2]-1)-tap4*</pre>
(2*data_history[3]-1)-tap5*(2*data_history[4]-1),1e11, 1e11);
end
always@(posedge(clk), rst) begin
        if(rst) begin
                data history <= 5'b00000;</pre>
                Dout <= 1'b0;
        end
        else begin
                if(V(out) - V(outbar) > 0.2)
                        Dout <= 1'b1;
                else if (V(out) - V(outbar) < -0.2)
                        Dout <= 1'b0;
                data_history[4:0] = {data_history[3:0],Dout};
        end
end
```

endmodule

```
Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
```

Effects of DFE (Eye diagram)

MORE COMPLEX EQUALIZATION (SETUP)

Full equalization setup with FFE + CTLE + DFE (in SERDES)

COMPLEX EQUALIZATION DESIGN PROCESS

- 1) Design CTLE to account for as much loss @ operating frequency
- Design RX Driver Amp to account for remaining loss (~5-10 dB)
- 3) Analyze pulse response of channel+CTLE+RX Driver to calculate FFE coefficients (solely precursor) and test FFE behaviorally
- 4) Analyze pulse response again (no precursor this time) to determine postcursors for DFE coefficients and test DFE behaviorally

