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Need for Heterogeneous Integration - 1

Al Requirements

Training a large language model like
GPT-3, for example, is estimated to
use just under 1,300 megawatt
hours (MWh) of electricity; about as
much power as consumed annually
by 130 US homes. To put that in
context, streaming an hour of Netflix
requires around 0.8 kWh (0.0008
MWh) of electricity. That means you’d
have to watch 1,625,000 hours to
consume the same amount of power it
takes to train GPT-3.

Source: James Vincent, How much electricity does Al consume? The Verge - 2/16/2024
https://www.theverge.com/24066646/ai-electricity-energy-watts-generative-consumption
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Need for Heterogeneous Integration - 2
Brain-Inspired Computing
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SOURCE: Wei Wang, Wenhao Song, Peng Yao, Yang Li, Joseph Van Nostrand, Qinru Qiu, Daniele lelmini and

J. Joshua Yang, "Integration and Co-design of Memristive Devices and Algorithms for Artificial Intelligence"”,
iScience 23, 101809, December 18, 2020
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Need for Heterogeneous Integration - 3

Chiplet PDN
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Need for Heterogeneous Integration - 4
The Problem of Disagreggation

Architecting an IC as a chiplet-based SiP rather than a SoC is referred to as
disaggregation of function. Today, it is performed ad hoc; there is no established
methodology to optimize the disaggregation, i.e., to determine how many separate
chiplets should be used in order to meet specifications. Once chiplet design is
democratized, there will be more choices from different vendors which could make
the process more chaotic.

SOC

o ILLINOIS

Blectrical and Computer Engn ECE 546 — Jose Schutt-Aine 5

University flll at Urbai Lhmpg



Heterogeneous Integration

Focus on minimizing energy and delay

Identify and address conflicting requirements,
Take advantage of novel interconnect technologies
Leverage from Al methodologies

Address design and computational complexity
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System-Level Integration
(Microelectronic Packaging)

Semiconductor
* Unprecedented Innovations in CMOS, Si-Ge,Copper Wiring
* Fundamental technical Limits

Electronic Systems
* Computers, telecom & Consumer Products Merge
* Portable, Wireless, & Internet Accessible
* Very Low Cost & Very High Performance

Microelectronic Packaging
* High Cost, Low Performance, Low Reliability
* Lack of Skilled Human Resources
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Packaging Challenges

- Package is bottleneck to system performance
- Package cost is increasing percentage of system cost
- Package limits IC technology

- On-chip system can outperform package capability
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Levels of Integration

T'W_'\-_ } SN\ NRTRPI77//777 4
T T ==
CHIP PACKAGE BOARD
- Transistors - Interconnects - Transmission lines, sensors
- Nonlinear - Linear - Linear+Nonlinear
- SPICE - EM Tools - EM Extraction, SPICE, IBIS,...
- Scaling with tech - Scaling with A - Scaling with A
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Advantages of SOC

* Fewer Levels of Interconnections
* Reduced Size and Weight

* Merging of Voice, Video, Data,...

Arguments against SOC
* Challenges too Big

* Legal issues
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Challenges for SOC

* Different Types of Devices

* Single CMOS Process for RF and Digital

* Design Methodology not available

* EDA Tools cannot handle level of complexity
* Intellectual Property

* Signal Integrity

* High-Power Requirements of PA
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System on a Chip (SOC)
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ATPG = automatic test pattern generation  IP = intellectual property
BIST = built-in self-test TAP = test access port

Source: Mentor Graphics Corp.
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SOC vs SOP

System on Chip
Silicon
substrate Spiral

Voltage Controlled Oscillator
(UIUC-CAD group — 1999)
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System on Package
Passive Ceramic
Components Substrate

o

Triple-band GSM/EDGE Power Amp Module
(RF Design Magazine — 4/02)
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SOP vs SOC

SOP SOC

Low cost consumer products (<$200) YES

Portable products ($200-$2000)

Single processor products ($1-$5K)

High Performance Products (>5K)

Automotive and Space Applications YES NO
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Dual-in-Line (DIP) Package

P2\

0@7}4&
%

- Mounted on PWB in pin-through-hole (PTH) configuration
- Chip occupies less than 20% of total space
- Lead frame with large inductance
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Package Types

DIP QFP CSP Flip Chip
] DIP QFP csp Flip Chip
Top View %g 2 2 e
(showing chip topackage connection) E E E ; :g g: i
AN INF - co0oo0
st G SMT/BGA DCA |
Plane View ﬁ @ |
showing package to board connection)
Chip Size (mm x mm) 5 x5 16 x 16 25 x25 36 x 36
Chip Perimeter (mm) 20 64 100 144
Number of I/Os 64 500 1600 3600
Chip Pad Pitch (um) 312 128 625 600
Package Size (in xin) 3.3x1.0 2.0x2.0 1.0x1.0 14x1.4
Lead Pitch (mils) 100 16 25 24
Chip Area (mm?2) 25 256 625 1296
Feature Size (um) 2.0 0.5 0.25 0.125
Gates/Chip 30K 300K 2M 10M
Max Frequency (MHz) 5 80 320 1280
Power Dissipation (W) 0.5 7.5 30 120
Chip Pow Dens (W/cm?2) 2.9 4.8 9.3 2.0
Pack Pow Dens (W/cm?2) 0.024 0.3 4.8 9.8
Supply Voltage (V) 5 3.3 2.2 1.5
Supply Current (A) 0.1 2.3 13.6 80
e ILLINOIS
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Material

Air (dry)

Alumina:
99.5%
96%

85%

Sapphire

Glass, typical

Polyimide
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Substrate Materials

Surface
roughne
ss (um)

N/A

0.05-0.25
5-20
30-50

0.005-
0.025

0.025

104 tand
at 10
GHz

0.4-0.7

20

50

10.1
9.6
15

9.4,11.

3.2
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Thermal

conductivity K
(W/cm?/°C)

0.00024

0.37
0.28
0.2

0.01

0.002

Dielectric
strength
(kV/cm)

30

4x103
4x103
4x103

4x103

4.3
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Material

Irradiated polyolefin

Quartz
(fused) i.e. SiO2

Beryllia
Rutile

Ferrite/garnet
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Substrate Materials

Surface
roughne
ss (um)

0.006-
0.025

0.05-1.25

0.25-2.5

0.25

104 tand
at 10
GHz

2.3

3.8

6.6

100

13-16
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Thermal
conductivity K
(W/cm?/°C)

0.001

0.01

2.5

0.03

Dielectric
strength
(kV/cm)

~300

10x103

4x103
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Material

FRA4 circuit board

RT-duroid 5880

RT-duroid 6010

AT-1000

Cu-flon
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Substrate Materials

Surface
roughne
ss (um)

0.75-1
4.25-8.75

0.75-1
4.25-8.75

104 tand
at 10
GHz

100

5-15

10-60

20

4.5
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4.3-4.5

2.16-
2.24

10.2-
10.7

10.0-
13.0

2.1

Thermal
conductivity K
(W/cm?/°C)

0.005

0.0026

0.0041

0.0037

Dielectric
strength
(kV/cm)
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Material

Si (high resistivity)
GaAs

InP

SiO2 (on chip)

LTCC (typical green
tape 951)
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Thermal
conductivity K
(W/cm?/°C)

0.9

0.3

0.4

Dielectric
strength
(kV/cm)

300

350

350

400
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Ceramic Substrate
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Stacked Wire Bonds
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Ball Bonding for Flip Chip
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Flip Chip Pin Grid Array

Bumped

Die

Package
Body

(FC-PGA)

Pins

o ILLINOIS

ina amp ign

ECE 546 — Jose Schutt-Aine

24



3D Packaging

Packaging-Based Chip Stack Die-to-Wafer
Eondlng SoC

BEOL Wafer-to-Wafer Bonding
3D Hyper-Integration

Sequentially E E E
align, bond,
£ BER
interconnect
3-D Chip
Stack

D, A, Ople8ie
i sansors or MEMS

HTW (i) I '| (k)

Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE
pp 18-30, Vol. 97, No. 1, January 2009.
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3D Packaging

“Via-Last” TSV “Via-First” TSV

“Integrated passive”

- Decoupling Capacitors,
Inductors...

LA A " :-:-';;';'L-_-s..
IPD Digital
interposer
.l'..il Key concepts
PCB /laminated substrate .
*  Wires
Source: Yole Report 2009. » shorter

> lots of it
°* Heterogeneous integration
» Analog and digital
» Technologies (GaAs and Si?)

et ILLINOIS

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

ECE 546 — Jose Schutt-Aine 26



3D Industry

» 16Gb NAND flash (2Gx8 chips) Wide Bus DRAM
®  Micron
» Wide Bus DRAM

* Intel

» CPU + Memory
° OKI

» CMOS Sensor
* Xilinx

» 4 die 65 nm interposer
* Raytheon/Ziptronix
» PIN Detector Device

° IBM
» REF Silicon Circuit Board/ TSV Logic & Analog
* Toshiba
» 3D NAND
e ILLINOIS
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Through-Silicon Vias

IO Pad

FISONN

Through Si Via
(TSV)

L13450Nd

LIISONN

Sl ZI‘

NMOSFET
Substrate

PMOSFET

Adhesive
Layer
Metal
Microbump

™ Insulating
Layer

«—— Supporting

Iop

PMOSFET

NMOSFET

Material

ad

~Through Si Via

NMOSFET

Si L‘"

(TSV)
~ Adhesive
Layer

\Mctﬂl

NMOSFET
Substrate

PMOSFET

Microbump

(b)

Mitsumasa Koyanagi," High-Density Through Silicon Vias for 3-D LSIs"
Proceedings of the IEEE, Vol. 97, No. 1, January 2009

cet ILLINOIS

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

From: M. Motoshi, "Through-Silicon Via,
Proc. of IEEE Vol. 97, No. 1, January 2009.

TSV Density: 10/cm? - 108/cm?
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Through-Silicon Vias (TSV)

Advantages

» Make use of third dimension
> several orders of magnitude (10/cm? to 108/cm?)

» Minimize interconnection length
> More design flexibility

Issues

Metal Mic ml’urn|

» 3D Infrastructure & supply chain | E : __};.f

.I-'n':lh::lqr.ru l F.I.It'—“l'
» 1/0 Standardization ;
> EMI Supporfing Subskat8 &
. ope ()]
» Thermal management and reliability From Koyanagi et al., IEEE Proceedings, Feb 2009
~re
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TSV Pitch # Area / Number of TSVs
* TSV pitch example

» 1024 bit busses require a lot of and
space with larger TSVs S

TSV Pitch

3rd
Stratum ¥

{Thinned
Substrate)

Substrate)

» They connect to the heart and

Interstrata pads, 1/0s, or power/ground

wemanangs ON-Chip
wene  INtEFCGARECE

Bonding

{Metal,
Eutectic,
ar solder}

Adhesive
Bonding,
Oide

most dense area of processing — B
1st . or Oxide
elements El'g:;:':ll ol Multi-level on-chip interconnects [:ﬁgﬂs;:
» The 45nm bus pitch is ~100 Substrat]
nm; TSV pitch is > 100x greater
Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE,
pp 18-30, Vol. 97, No. 1, January 2009.
~rr-
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Through-Silicon Vias (TSV)

® Via First f;f%g IF
* Via Last e
® Via at Front End (FEOL) s
* Via at Mid line searea
® Via at Back end (BEOL) it

Bond
ﬂhdheslve
or Oxide)

A= [eyice
surface

Bond

Multi-level on-chip interconnects

(Adhesive
or Oxide)

+— Device

Si Substrate surface

Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE,

pp 18-30, Vol. 97, No. 1, January 2009.
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Through-Silicon Vias (TSV)

iy

BC

Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE,
pp 18-30, Vol. 97, No. 1, January 2009.
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TSV-Based Products

STMicro CMOS Sony Video / DSC .
image sensor in camera with BSI Elpida’s 3D TSV stacked DRAM memory
WLP/TSV package CMOS image

sensors

There are currently about 15 different 3D-IC pilot lines worldwide
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3D-IC and TSV

* Stacking of chips makes heat transfer through
the z-direction difficult.

* Lossy silicon substrate makes coupling between
adjacent TSVs strong.

* TSV noise can be easily coupled to the adjacent
TSV through conductive silicon substrate

* 3D IC yields are much lower than 2D-IC

* Difficult to detect TSV and MOS failures

Solution: Use 2.5D integration
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2.5D Integration

2.5D-IC emerges as a temporary solution

* In 2.5D-IC, several chips are stacked on interposer
only homogeneous chip stacking is used.

* fine-pitch metal routing is necessary because it
increase I/0O counts

* For this purpose, an interposer is used where small
width and small space metal routing is possible.

* Silicon substrate is usually used for an interposer

because on-silicon metallization process is mature

and fine-pitch metal routing is possible

l-fu-
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Silicon Interposers

'
{
b

Memory
o5 (a»]
Memory
o) x5
Memory
= @ ]
Memory Processor
o
‘ l ﬂ 1 ﬂlnterposer ‘

Source: J. Kim et al — DesignCon 2013.
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Silicon Interposers

Multi-layer Signals

|

Front-side
insulator

Back-side

Silicon
J— insulator

Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim,
"Double-sided Si-Interposer with Embedded Thin Film Devices",
2013 IEEE 15th Electronics Packaging Technology Conference
(EPTC 2013), pp 757-760.
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Silicon Interposers

Signal W/S=10/10 pm

Low-loss Via

IC #1 IC #2

L T XY FYYYY YN Y . 4 N TSN
High @ Inductors

Organic 3

ﬂarli[: 1

Organic 2

Organic 4

Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim,
"Double-sided Si-Interposer with Embedded Thin Film Devices",
2013 IEEE 15th Electronics Packaging Technology Conference
(EPTC 2013), pp 757-760.
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Hybrid Bonding

simultaneous bonding of dielectric and metal bond pads in one bonding step

Oxide fo Oxide Internal Heat Closes Dishing Gap Further Heating Compresses
Bond at Room Temperature (Metal CTE > Oxide CTE) Metal without External Pressure

>

Silicon
(MOS Back End of Line
” 7 ”

Silicon Silicon

(MOS Back End of Line
Oxide Meial Dxide

Oxide Metal Oxide
CMOS Back End of Line
Silicon

CMOS Back End of Line
ﬂ){idﬂ Hnlnl UIIdE

Oxide Metal Oxide ¥ 0xide %+ Oxide W
(MOS Back End of Line (MOS Back tnd of Line
Silicon Silicon

[mage Cradit Imed Jani. Tast and charocierizafion of 3D high-densidy interconnacts. Micro and Nonotechnolo- gies/Microalacironics. Université Grancble Alpes, 2019, Englich. NINT : 20T $GREATOP4 . fel- 02434259

cet ILLINOIS

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

ECE 546 — Jose Schutt-Aine




Hybrid Bonding
Advantages

* Allows advanced 3D device stacking

* Highest I/O

* Enables sub-10-um bonding pitch

* Higher memory density

* Expanded bandwidth

* Increased power

* Improved speed efficiency

* Eliminates the need for bumps, improving
performance with no power or signal penalties
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Hybrid Bonding
Processing Steps

Simplified process to show how permanent bonding adhesive can be used in hybrid bonding

Oxide/Metal H'p'l.'!rld Eum:ling w
i - e - e - SO

Copper Fillar Oxide Deposition Plunarizafion Alignment & Bonding

Palymer/Metal Hybrid Bonding w
. S e -

Patternad Polymer Electroplating Mlignment & Bonding
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Hybrid Bonding
Applications

L=

HBM stack for maximum data throughput. Source: Rambus

a0 ILI.INOIS
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Hybrid Bonding

Comparison

Hybrid Bonding
Micro Bump

-5}
)
)
Wi
)
=)
©
o
Loy
(7

.,(.\“

SolderBump

6 8 ecsi2 14 16
Frequency [GHz]

Hybrid bonding virtually eliminates signal loss. Source: Applied

Materials
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Thermal Management

Manage heat within a system to ensure efficient and safe operation.

Thermal Management Techniques
- Air Cooling, Liquid Cooling, and Two Phase Cooling
- Conduction Cooling

Passive Cooling Technology

- Thermal Interface Materials
- Heat Spreaders

- Heat Sinks

Source: C.Bailey, "Thermal Management Technologies for
Electronic Packaging: Current Capabilities and Future
Challenges for Modelling Tools", 2008 10th Electronics
Packaging Technology Conference, 2008.
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Thermal Management

Boundary CFD, FEA, optimisation
conditions

Temperature,
thermal resistance
stress

Material
behaviour

suonesayl ubisaqg

Failure

st Damage model

Reliability

*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future
Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.
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Thermal Management

Passive Technology Materials*

Material Thermal CTE Price/
conductivity 10K

CVD diamond 1300 2.0 High
Aldumimium Nitrigde 260 4.0 Medium
Cubic boron nitride 200-250 | High
Silicon Carbide 200 2.8 Medium
Alumina 30 5 L.ow
Copper 400 16 L ow
Aluminim 200 23 Low
Molvbdenum 138 5.1 Low
Copper Molvbdenum |65-215 6.8-4 Medium
Copper Tungsten 175-235 6.5-9 Medium
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*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future
Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.
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Electrical-Thermal AC Analysis

Electrical Analysis: Thermal Analysis:
V x (iv X E) —ko2e,E = —jkoZo) V-kVI=-P
Fr
T = T. on [ e
» Waveguide port boundary OT
condition k% — _h(T — Ta) on [cony
» Absorbing boundary
condition
"’"'ILLINOIS
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Electrical-Thermal DC Analysis

Electrical Analysis: Thermal Analysis:
V.-oVo=0 V- kVT =-P
O = Oc on [ ve T =T on [ .
do 0 orT
— = == k— = —h(T — Ta rconv
U@n PTS on Moad e ( ) on [,

~re
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Electrical-Thermal Isomorphism

Current Flow (1) i Heat Flow (Q)

Voltage Drop (VI=V2) | Temperature Drop (T1 = T2)

Electrical Resistance (K ) E Thermal Resistance (Ry)
i

I Q
—_— —_—
vl =M\ v2 =12 Tle—AW—oT2
Ra E Ry
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Thermal/Electrical Co-Simulation
Thermal Modeling Using Circuit Simulgtor*

Source Oxide SO, Drain
i (thickness: t )
Current Flow (1) : Heat Flow (Q)

Voltage Drop (VI-V2) | Temperature Drop (T1 = T2)
Electrical Resistance (K ) i Thermal Resistance (R ——

| ' Q ] | | i

—= : — n+ n+

vl —MW— v2 =1 Tle—MA\—oT2

Ra : By

- ' p-type substrate (body)

Cross section. Temperature °C, Time:395ns

100

50
80

> 100
60

150
40

200

20 40 60 80 100 120
X

* Klokotov, D., Schutt-Aine, J.E., "Latency Insertion Method (LIM) for Electro-Thermal Analysis of 3-D Integrated
Systems at Pre-Layout Design Stages", IEEE Trans. Compon., Packag. Manuf. Technol., vol: 3, no. 7, pp. 1138-1147,
July 2013
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Electro-Thermal Analysis. Motivation

— 3D stacked IC designs
— Increased power density
— Heat removal difficulties

— Electrical reliability (electro-migration)
— Power delivery (IR drop)

— Signal propagation (RC delay)

— Memory retention time (Leakage)

— Thermal-aware design at the earliest stages

— Using the floor plan and early power distribution analysis (know the
current distribution — want to use that information)

.l-l\l-
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Temperature distribution in IC structure

* Modeling methodology

Use thermal — electrical analogy

Thermal problem - electrical circuit

Bulk of the material = 3D Resistive network

Heat sources = Constant current sources
Convective boundaries = Effective resistances
Ambient temperature > Constant voltage sources

Heat sources > & R,

— —

—  Ambient air

—

Current Flow (1)
Voltage Drop (V1-V2)

I

Heat Flow (Q)

i Temperature Drop (T1 - T2)
Elecirical Resistance (R ) E

Thermal Resistance (R;)
Q

— : —_—
Vi =M v2 =1 Tle—\\=T2
1

Re

R

"

e Solve the resulting network for node voltages

— A major issue — the SIZE of the model
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Benchmark Thermal Problem

e 2D benchmark problem (NAFEMS) D * —
. _ |
— Simple geometry Convectionto |
|
— Has all typical components e euiator 1.0m
I
_ . . o E |
There is analytical solutlc-)n o o105 1 i
— Target temperature at Eis 18.3 °C —
N
e ___96m ___
100¢
3 ——LIM solution
80 —o- Analytical solution
O 1
2 0 |
% ' x=20cm
£ 40f T=183C
& =60
20+ E i : AN .. D o 1oms
. , | , 1 ;ﬂ,_ﬁ._HL\H e
0 20 40 60 80 100 B E T o C
Distance from point B, cm

[10] Davies, G.A.O. and Fenner, R. T. and Lewis, R. W., Background to benchmarks, NAFEMS, 1993
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What is Co-Design?

* Level Co-design ° Function-based Co-design
»Chip » Thermal aware
»Package »Signal integrity aware
»Board » Testability

»Security aware

* Physics-based Co-design < pomain-based Co-design

» Thermal »Hardware

> Electrical » Software

» Mechanical » Architecture
»Optical

o ILLINOIS
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Traditional Design Flow

IC Technology selection

v

Active circuit synthesis

Y

Layout tape-out

cet ILLINOIS

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

v

Package/module selection

v

Y

PC board selection

v

Passive integration
(filters, switches,...)

Placement routing

v

Y

I/O Pad design

Antenna

ECE 546 — Jose Schutt-Aine
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Co-Design Flow

IC Design Flow

IC Technology Selection

Y

Package Design Flow

Package
Technology Selection

Y

Routing and /O

Pad placement & I/O

Y

Y

PCB Design Flow

PCB
Technology Selection

v

Component placement

v

Passive implementation: filters, switches, etc...

Y

Y

Matching networks

Y

!

Decoupling network/Power distribution

Y

Layout

v

Layout

v

v

Routing

Layout

Antenna Integration

v

!

RF Simulation

ECE 546 — Jose Schutt-Aine
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Co-Design Requirements

- Tradeoffs in advance
- Translation and domains
- Propagate information

- Manage connectivity

- Database formats

Courtesy of Zuken
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Thermal-Aware Co-Design

3D/2.5D INTEGRATION

Current
density

Interconnect/
TSV density

Thermal
coupling
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Dissipated Heat

Fower

Power

i

Electrical Thermal

equivalent
circuit

equivalent
circuit

Update Material | Temperature
Resistivity PTUD'EITY Distribution
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Difficulty in Co-Design

Current co-design methods are simply a cascade or combination of
independent solutions. Real co-design requires concurrent solution from
a formulation that accounts for all multi-physics interactions while
embodying conflicting requirements

Constraints

Traditional Approach Co-Design Approach - Bandwidh
| _ " S s ~ - Thermal
A: Architecture * [2] = O Q@ B ® : g;wn: Integrity
E: Electrical @ «+ B = @ @ @ @ a ® - g(e)curity
* - SO
M: Mechanical @ * H = (w) @ @ @ [4] @ : Es\llie:'gglzent
- Size
T: Thermal @ * = @ @ @ @ [] @ st
constraints parameters  solutions \ iR _/ p:ramet:rs 8 :

solutions

o IL LINOIS
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Computational Research Needs

* Methodical abstractization -
» Compact models
» Reduced-order models
» Behavioral models

* Faster verification platforms (>10X)

» Multi-physics solvers (EM , thermal
management, materials)

» Transistor-level circuit simulation
* AI/ML assisted solutions

Model-Order Reduction

s

Model-Order Reduction

» Optimization, mitigationof | .
uncertainty e [T -_’ i e
T e
cccILLINOIS
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