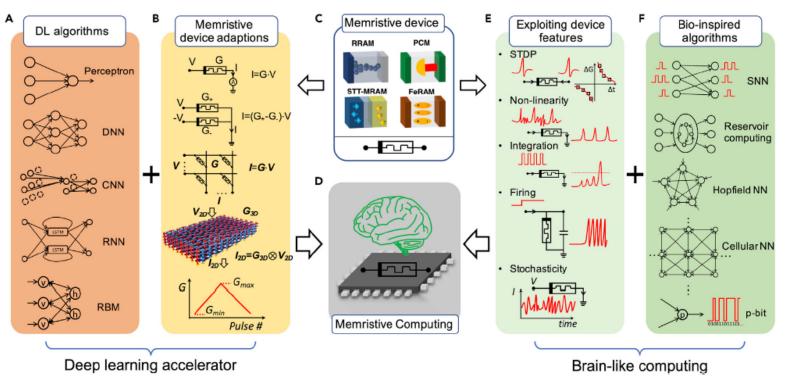
ECE 546 Lecture -29 Packaging Technologies

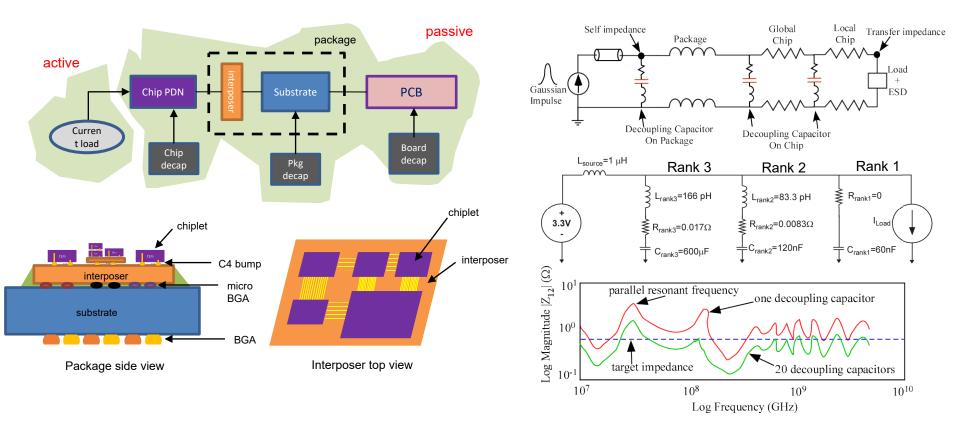
Spring 2024

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

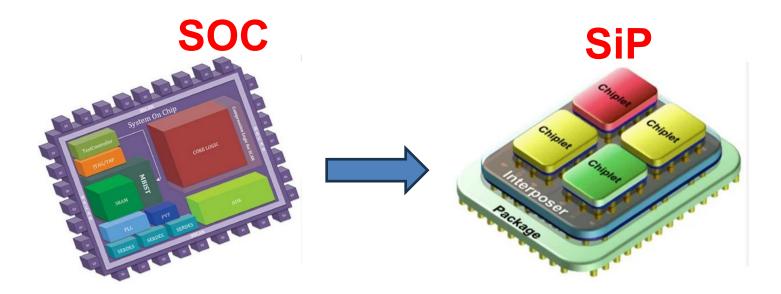
AI Requirements


Training a large language model like GPT-3, for example, is estimated to use just under **1,300 megawatt hours (MWh)** of electricity; about as much power as consumed annually by 130 US homes. To put that in context, streaming an hour of Netflix requires around 0.8 kWh (0.0008 MWh) of electricity. That means you'd have to watch 1,625,000 hours to consume the same amount of power it takes to train GPT-3.

Source: James Vincent, How much electricity does AI consume? The Verge - 2/16/2024 https://www.theverge.com/24066646/ai-electricity-energy-watts-generative-consumption

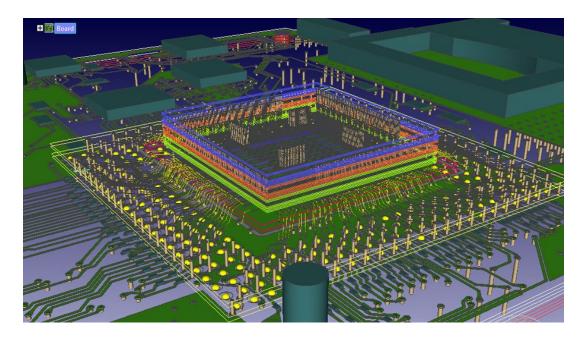

Brain-Inspired Computing

SOURCE: Wei Wang, Wenhao Song, Peng Yao, Yang Li, Joseph Van Nostrand, Qinru Qiu, Daniele lelmini and J. Joshua Yang, "Integration and Co-design of Memristive Devices and Algorithms for Artificial Intelligence", *iScience 23, 101809*, December 18, 2020


Chiplet PDN

The Problem of Disagreggation

Architecting an IC as a chiplet-based SiP rather than a SoC is referred to as disaggregation of function. Today, it is performed *ad hoc*; there is no established methodology to optimize the disaggregation, i.e., to determine how many separate chiplets should be used in order to meet specifications. Once chiplet design is democratized, there will be more choices from different vendors which could make the process more chaotic.



University of Illinois at Urbana-Champaig

Heterogeneous Integration

- Focus on minimizing energy and delay
- Identify and address conflicting requirements,
- Take advantage of novel interconnect technologies
- Leverage from AI methodologies
- Address design and computational complexity

System-Level Integration (Microelectronic Packaging)

Semiconductor

* Unprecedented Innovations in CMOS, Si-Ge,Copper Wiring

* Fundamental technical Limits

Electronic Systems

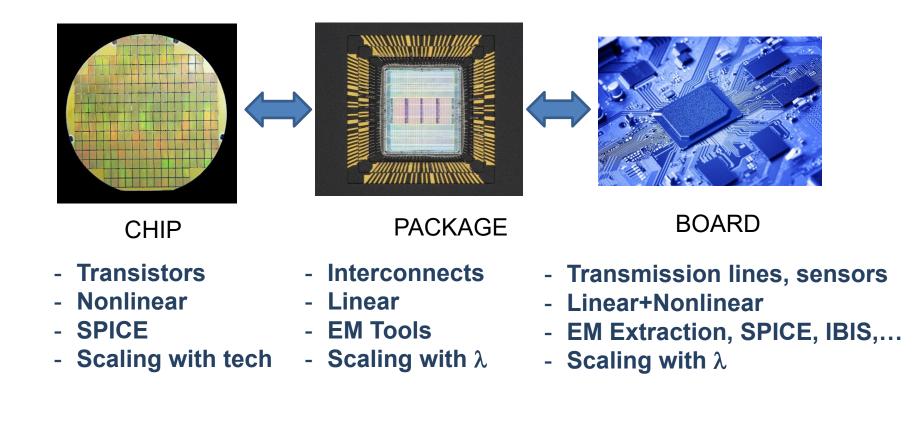
* Computers, telecom & Consumer Products Merge

- * Portable, Wireless, & Internet Accessible
- * Very Low Cost & Very High Performance

Microelectronic Packaging

* High Cost, Low Performance, Low Reliability

* Lack of Skilled Human Resources



Packaging Challenges

- Package is bottleneck to system performance
- Package cost is increasing percentage of system cost
- Package limits IC technology
- On-chip system can outperform package capability

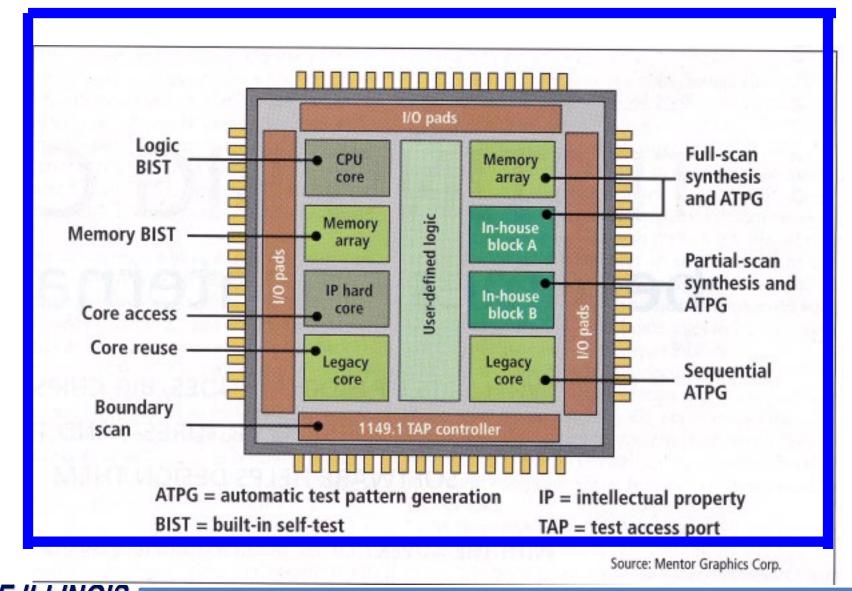
Levels of Integration

Advantages of SOC

- * Fewer Levels of Interconnections
- * Reduced Size and Weight
- * Merging of Voice, Video, Data,...

Arguments against SOC

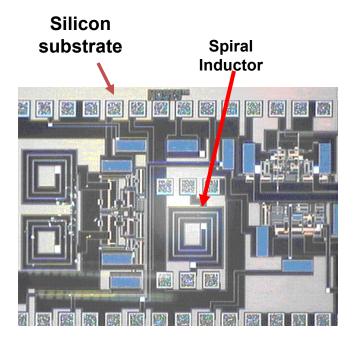
- * Challenges too Big
- * Legal issues

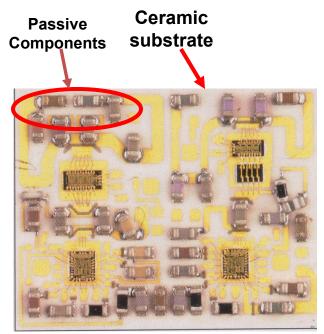


Challenges for SOC

- * Different Types of Devices
- * Single CMOS Process for RF and Digital
- * Design Methodology not available
- * EDA Tools cannot handle level of complexity
- * Intellectual Property
- * Signal Integrity
- * High-Power Requirements of PA

System on a Chip (SOC)



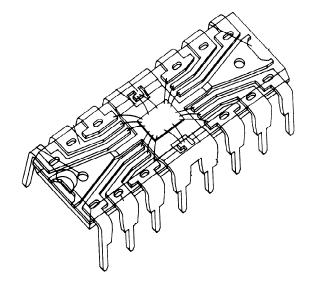

SOC vs SOP

System on Chip

System on Package

Voltage Controlled Oscillator (UIUC-CAD group – 1999)

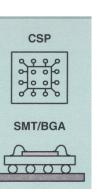
Triple-band GSM/EDGE Power Amp Module (RF Design Magazine – 4/02)



SOP vs SOC

	SOP	SOC
Low cost consumer products (<\$200)	YES	YES
Portable products (\$200-\$2000)	YES	NO
Single processor products (\$1-\$5K)	YES	NO
High Performance Products (>5K)	YES	NO
Automotive and Space Applications	YES	NO

Dual-in-Line (DIP) Package



- Mounted on PWB in pin-through-hole (PTH) configuration
- Chip occupies less than 20% of total space
- Lead frame with large inductance

Package Types

Image: Difference of the second connectionDifference of the second connectionDifference of the second connectionPlane View showing package to board connectionPTH Image: SMT Image: SMT <th></th> <th>DIP</th> <th>QFP</th>		DIP	QFP
Plane View Image: State of the state	-	DIP	QFP
Chip Perimeter (mm) 20 64		PTH	SMT
Chip Pad Pitch (μ m)312128Package Size (in × in) 3.3×1.0 2.0×2.0 Lead Pitch (mils)10016Chip Area (mm²)25256Feature Size (μ m)2.00.5Gates/Chip30K300KMax Frequency (MHz)580Power Dissipation (W)0.57.5Chip Pow Dens (W/cm²)2.94.8Pack Pow Dens (W/cm²)0.0240.3Supply Voltage (V)53.3Supply Current (A)0.12.3	Chip Perimeter (mm) Number of I/Os Chip Pad Pitch (μm) Package Size (in × in) Lead Pitch (mils) Chip Area (mm ²) Feature Size (μm) Gates/Chip Max Frequency (MHz) Power Dissipation (W) Chip Pow Dens (W/cm ²) Pack Pow Dens (W/cm ²) Supply Voltage (V)	20 64 312 3.3 × 1.0 100 25 2.0 30K 5 0.5 2.9) 0.024 5	64 500 128 2.0 × 2.0 16 256 0.5 300K 80 7.5 4.8 0.3 3.3

1.0 × 1.0

25 625 0.25 2M 320 30 9.3 4.8 2.2 13.6

CSP

0	0	0	c
0	0	0	C
	0		
0	0	0	0
	D	CA	

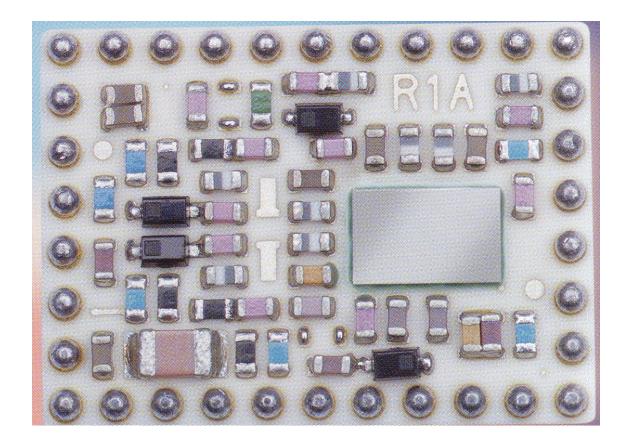
Flip Chip

36 × 36
144
3600
600
1.4 × 1.4
24
1296
0.125
10M
1280
120
2.0
9.8
1.5
80

Electrical and Computer Engineering University of Illinois at Urbana-Champaign

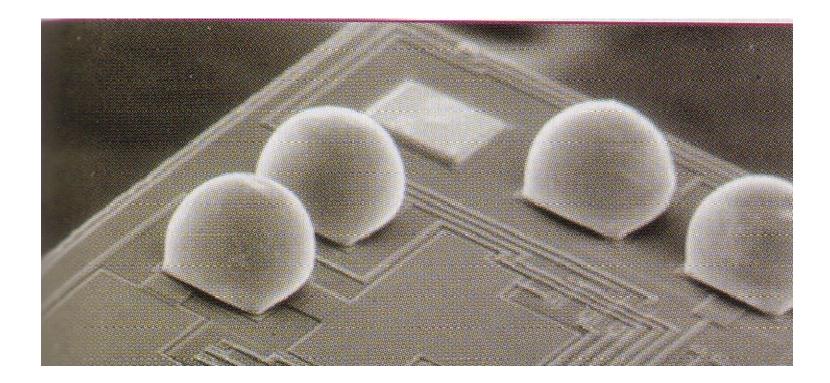
Material	Surface roughne ss (μm)	10⁴ tanδ at 10 GHz	ε _r	Thermal conductivity K (W/cm²/ºC)	Dielectric strength (kV/cm)
Air (dry)	N/A	~0	1	0.00024	30
Alumina: 99.5% 96% 85%	0.05-0.25 5-20 30-50	1-2 6 15	10.1 9.6 15	0.37 0.28 0.2	4×10 ³ 4×10 ³ 4×10 ³
Sapphire	0.005- 0.025	0.4-0.7	9.4,11. 6	0.4	4×10 ³
Glass, typical	0.025	20	5	0.01	-
Polyimide	-	50	3.2	0.002	4.3

Material	Surface roughne ss (μm)	10⁴ tanδ at 10 GHz	ε _r	Thermal conductivity K (W/cm²/ºC)	Dielectric strength (kV/cm)
Irradiated polyolefin	1		2.3	0.001	~300
Quartz (fused) i.e. SiO2	0.006- 0.025	1	3.8	0.01	10×10 ³
Beryllia	0.05-1.25	1	6.6	2.5	-
Rutile	0.25-2.5	4	100		-
Ferrite/garnet	0.25	2	13-16	0.03	4×10 ³

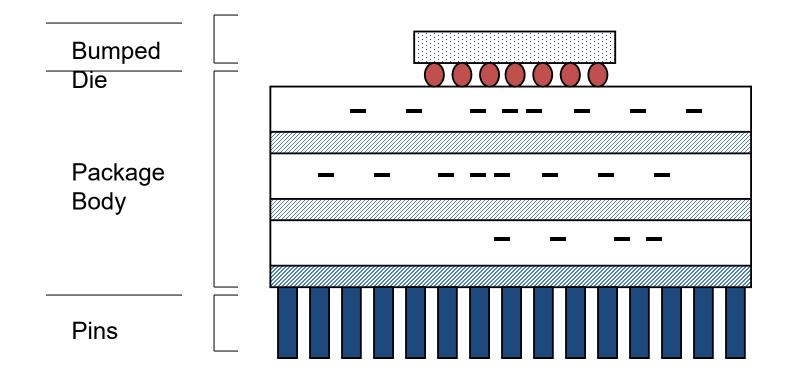

Material	Surface roughne ss (μm)	10⁴ tanδ at 10 GHz	ε _r	Thermal conductivity K (W/cm²/ºC)	Dielectric strength (kV/cm)
FR4 circuit board	~6	100	4.3-4.5	0.005	-
RT-duroid 5880	0.75-1 4.25-8.75	5-15	2.16- 2.24	0.0026	-
RT-duroid 6010	0.75-1 4.25-8.75	10-60	10.2- 10.7	0.0041	-
AT-1000	-	20	10.0- 13.0	0.0037	-
Cu-flon	-	4.5	2.1	-	-

Material	Surface roughne ss (µm)	10⁴ tanδ at 10 GHz	ε _r	Thermal conductivity K (W/cm²/ºC)	Dielectric strength (kV/cm)
Si (high resistivity)	0.025	10-100	11.9	0.9	300
GaAs	0.025	6	12.85	0.3	350
InP	0.025	10	12.4	0.4	350
SiO2 (on chip)	-	-	4.0-4.2	-	-
LTCC (typical green tape 951)	0.22	15	7.8	3	400

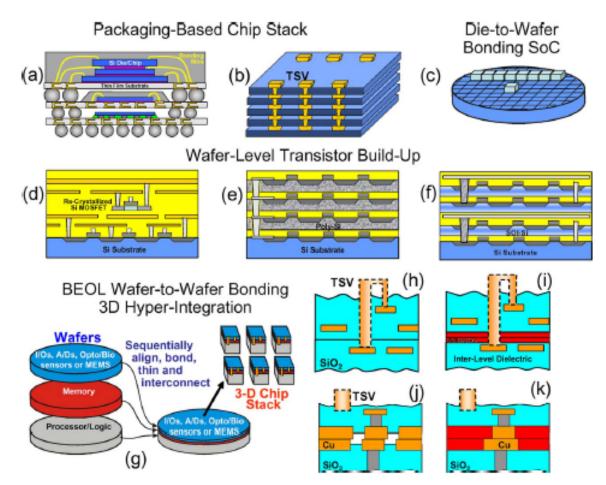
Ceramic Substrate



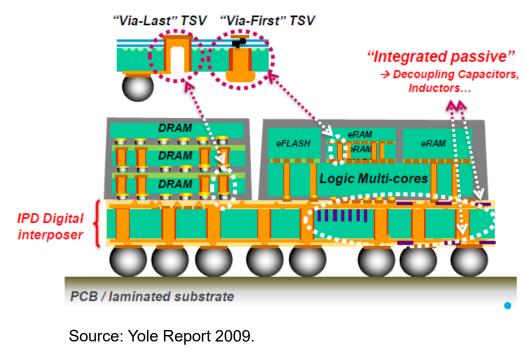
Stacked Wire Bonds



Ball Bonding for Flip Chip



Flip Chip Pin Grid Array (FC-PGA)


3D Packaging

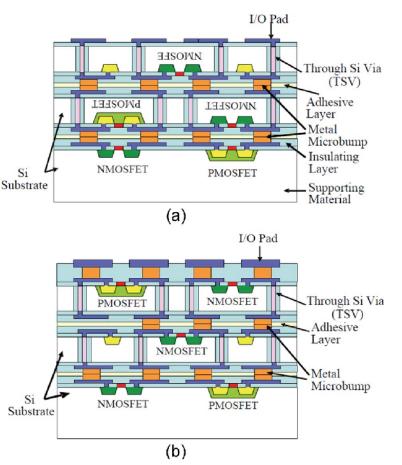
Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, pp 18-30, Vol. 97, No. 1, January 2009.

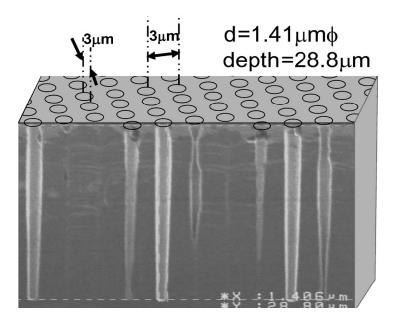
3D Packaging

Key concepts

Wires

- > shorter
- lots of it
- Heterogeneous integration
 - Analog and digital
 - Technologies (GaAs and Si?)




3D Industry

- Samsung
 - > 16Gb NAND flash (2Gx8 chips) Wide Bus DRAM
- Micron
 - Wide Bus DRAM
- Intel
 - > CPU + Memory
- OKI
 - CMOS Sensor
- Xilinx
 - 4 die 65 nm interposer
- Raytheon/Ziptronix
 - > PIN Detector Device
- IBM
 - F Silicon Circuit Board / TSV Logic & Analog
- Toshiba
 - > 3D NAND

Through-Silicon Vias

From: M. Motoshi, "Through-Silicon Via, Proc. of IEEE Vol. 97, No. 1, January 2009.

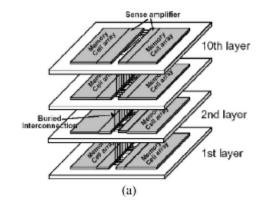
Mitsumasa Koyanagi," High-Density Through Silicon Vias for 3-D LSIs" Proceedings of the IEEE, Vol. 97, No. 1, January 2009

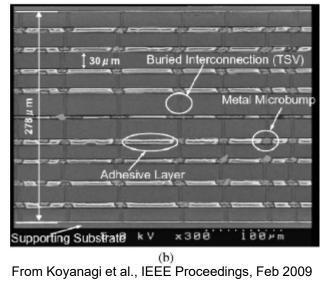
TSV Density: 10/cm² - 10⁸/cm²

Through-Silicon Vias (TSV)

Advantages

- Make use of third dimension
- several orders of magnitude (10/cm² to 10⁸/cm²)
- Minimize interconnection length
- More design flexibility

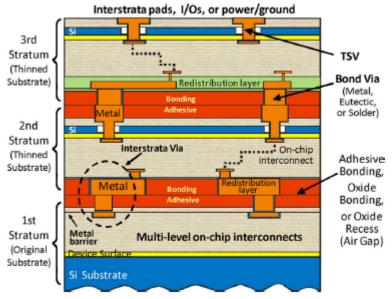

Issues



≽ EMI

Electrical and Computer Engineering University of Illinois at Urbana-Champaig

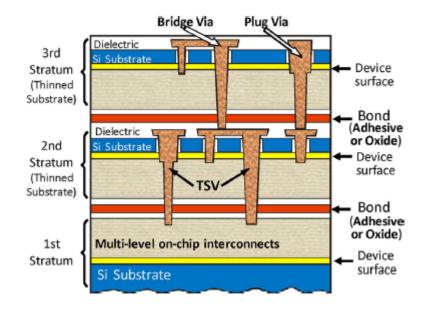
Thermal management and reliability



TSV Pitch

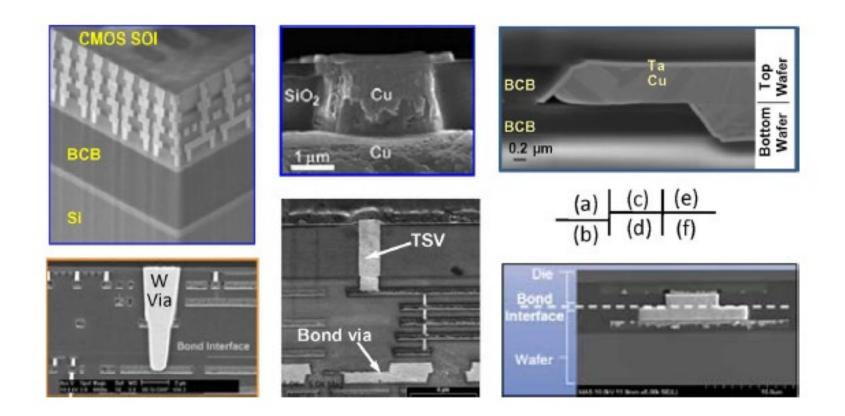
TSV Pitch ≠ Area / Number of **TSVs**

- TSV pitch example
 - 1024 bit busses require a lot of space with larger TSVs
 - They connect to the heart and most dense area of processing elements
 - The 45nm bus pitch is ~100 nm; TSV pitch is > 100x greater

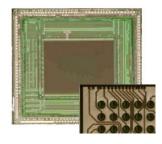


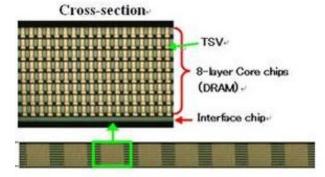
Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, pp 18-30, Vol. 97, No. 1, January 2009.

Through-Silicon Vias (TSV)


- Via First
- Via Last
- Via at Front End (FEOL)
- Via at Mid line
- Via at Back end (BEOL)

Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, pp 18-30, Vol. 97, No. 1, January 2009.


Through-Silicon Vias (TSV)


Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, pp 18-30, Vol. 97, No. 1, January 2009.

TSV-Based Products

Elpida's 3D TSV stacked DRAM memory

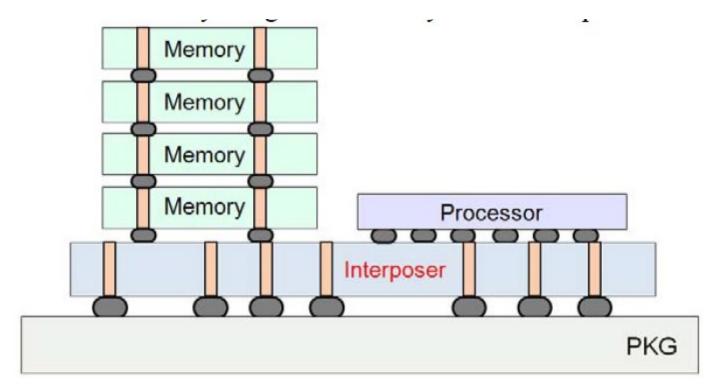
STMicro CMOS image sensor in WLP/TSV package Sony Video / DSC camera with BSI CMOS image sensors

There are currently about 15 different 3D-IC pilot lines worldwide

3D-IC and TSV

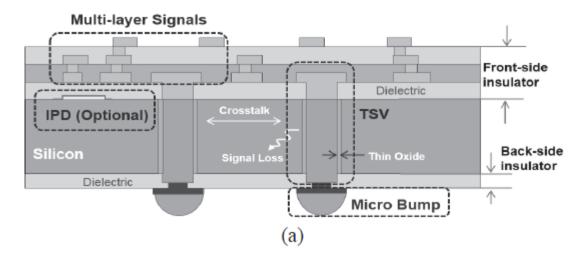
- Stacking of chips makes heat transfer through the z-direction difficult.
- Lossy silicon substrate makes coupling between adjacent TSVs strong.
- TSV noise can be easily coupled to the adjacent TSV through conductive silicon substrate
- 3D IC yields are much lower than 2D-IC
- Difficult to detect TSV and MOS failures

Solution: Use 2.5D integration

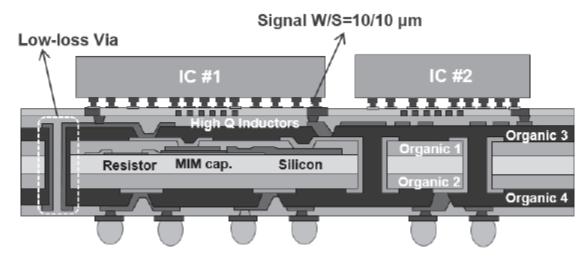


2.5D Integration

- 2.5D-IC emerges as a temporary solution
- In 2.5D-IC, several chips are stacked on interposer only homogeneous chip stacking is used.
- fine-pitch metal routing is necessary because it increase I/O counts
- For this purpose, an interposer is used where small width and small space metal routing is possible.
- Silicon substrate is usually used for an interposer because on-silicon metallization process is mature and fine-pitch metal routing is possible


Silicon Interposers

Source: J. Kim et al – DesignCon 2013.


Silicon Interposers

Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim, "Double-sided Si-Interposer with Embedded Thin Film Devices", 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), pp 757-760.

Silicon Interposers

Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim, "Double-sided Si-Interposer with Embedded Thin Film Devices", 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), pp 757-760.

simultaneous bonding of dielectric and metal bond pads in one bonding step

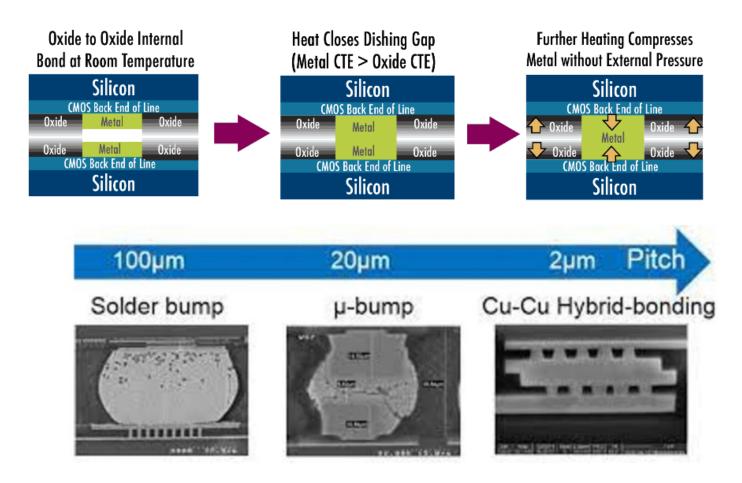
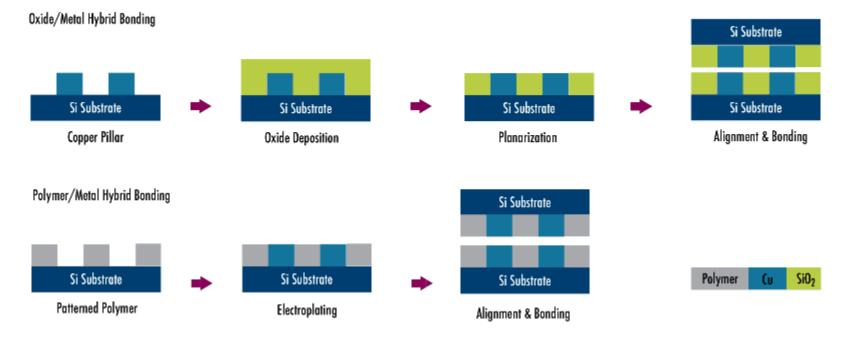
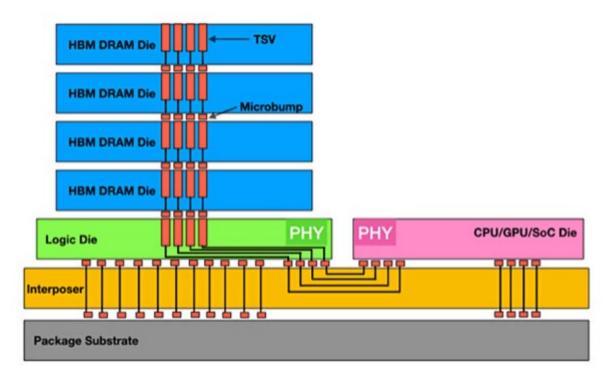


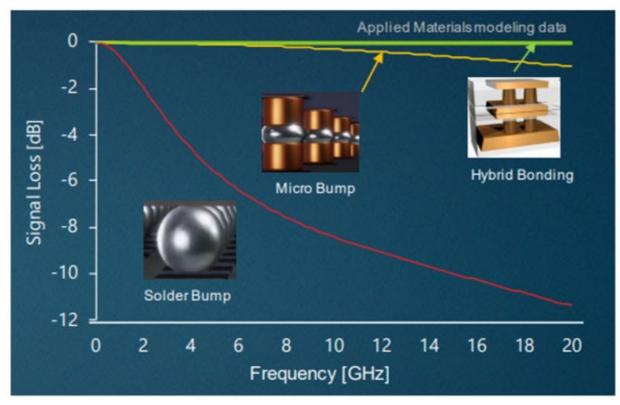
Image Credit: Imed Jani. Test and characterization of 3D high-density interconnects. Micro and Nanotechnolo- gies/Microelectronics. Université Grenoble Alpes, 2019. English. NNT : 2019GREAT094. tel-02634259


Advantages

- Allows advanced 3D device stacking
- Highest I/O
- Enables sub-10-µm bonding pitch
- Higher memory density
- Expanded bandwidth
- Increased power
- Improved speed efficiency
- Eliminates the need for bumps, improving performance with no power or signal penalties


Processing Steps

Simplified process to show how permanent bonding adhesive can be used in hybrid bonding

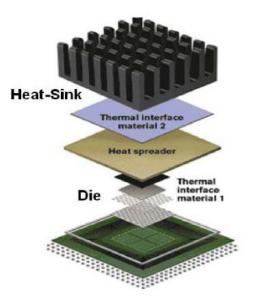

Applications

HBM stack for maximum data throughput. Source: Rambus

Comparison

Hybrid bonding virtually eliminates signal loss. Source: Applied Materials

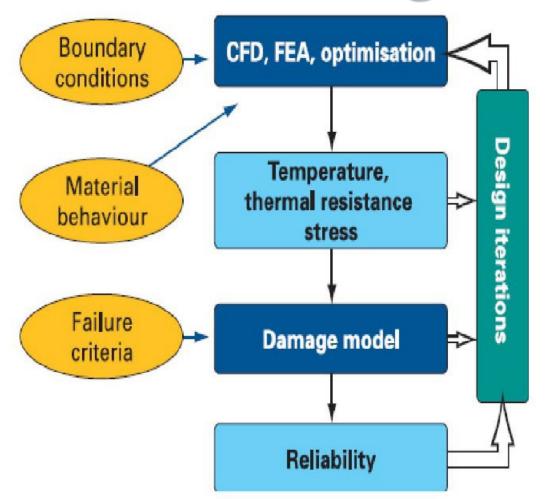
Thermal Management


Manage heat within a system to ensure efficient and safe operation.

Thermal Management Techniques

- Air Cooling, Liquid Cooling, and Two Phase Cooling
- Conduction Cooling

Passive Cooling Technology


- Thermal Interface Materials
- Heat Spreaders
- Heat Sinks

Source: C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.

Thermal Management

*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.

Thermal Management

Passive Technology Materials*

Material	Thermal conductivity	CTE 10 ⁻⁶ /K	Price/
CVD diamond	>1300	2.0	High
Aluminium Nitride	260	4.0	Medium
Cubic boron nitride	200-250	1	High
Silicon Carbide	200	2.8	Medium
Alumina	30	5	Low
Copper	400	16	Low
Aluminium	200	23	Low
Molybdenum	138	5.1	Low
Copper Molybdenum	165-215	6,8-9,5	Medium
Copper Tungsten	175-235	6.5-9	Medium

*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.

Electrical-Thermal AC Analysis

Electrical Analysis:

Thermal Analysis:

$$\nabla \times \left(\frac{1}{\mu_r} \nabla \times \mathbf{E}\right) - k_0^2 \epsilon_r \mathbf{E} = -jk_0 Z_0 \mathbf{J}$$

$$\nabla \cdot k \nabla T = -P$$

- Waveguide port boundary condition
- Absorbing boundary condition

$$T = T_c \qquad \text{on } \Gamma_{\text{tc}}$$
$$k \frac{\partial T}{\partial n} = -h(T - T_a) \quad \text{on } \Gamma_{\text{conv}}$$

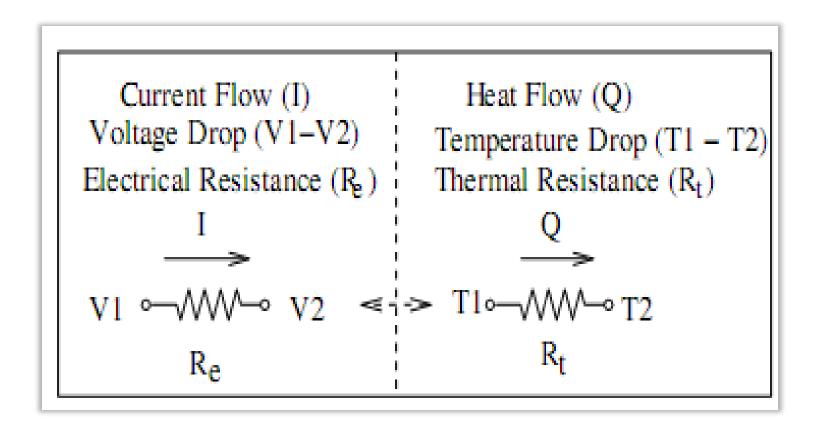
Electrical-Thermal DC Analysis

Electrical Analysis:

 $\nabla \cdot$

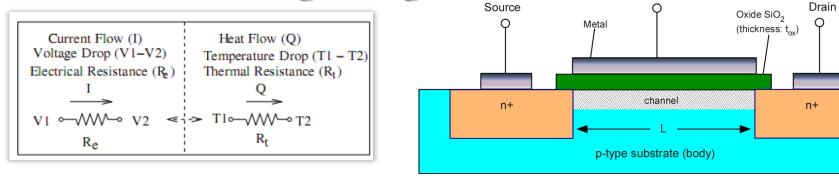
Thermal Analysis:

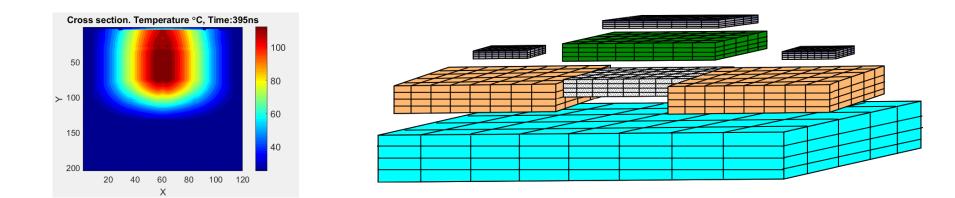
$$\sigma
abla \phi = 0$$


$$\nabla \cdot k \nabla T = -P$$

$$\phi = \phi_c \quad \text{on } \Gamma_{\text{vc}}$$
$$\sigma \frac{\partial \phi}{\partial n} = \frac{\phi}{RS} \quad \text{on } \Gamma_{\text{load}}$$

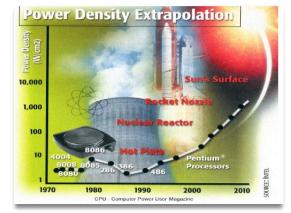
$$T = T_c \qquad \text{on } \Gamma_{\text{tc}}$$
$$k \frac{\partial T}{\partial n} = -h(T - T_a) \quad \text{on } \Gamma_{\text{conv}}$$

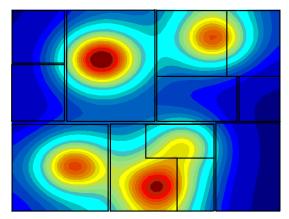

Electrical-Thermal Isomorphism



Thermal/Electrical Co-Simulation

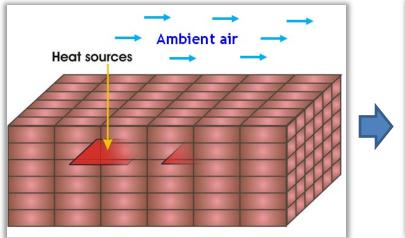
Thermal Modeling Using Circuit Simulator*

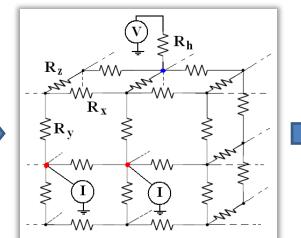

* Klokotov, D., Schutt-Aine, J.E., "Latency Insertion Method (LIM) for Electro-Thermal Analysis of 3-D Integrated Systems at Pre-Layout Design Stages", IEEE Trans. Compon., Packag. Manuf. Technol., vol: 3, no. 7, pp. 1138-1147, July 2013

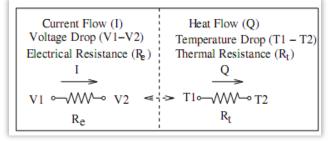


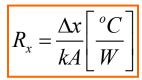
Electro-Thermal Analysis. Motivation

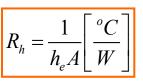
- 3D integration technologies
 - 3D stacked IC designs
 - Increased power density
 - Heat removal difficulties
- Design challenges due to thermal issues
 - Electrical reliability (electro-migration)
 - Power delivery (IR drop)
 - Signal propagation (RC delay)
 - Memory retention time (Leakage)
- Lack of suitable CAD tools
 - Thermal-aware design at the earliest stages
 - Using the floor plan and early power distribution analysis (know the current distribution want to use that information)





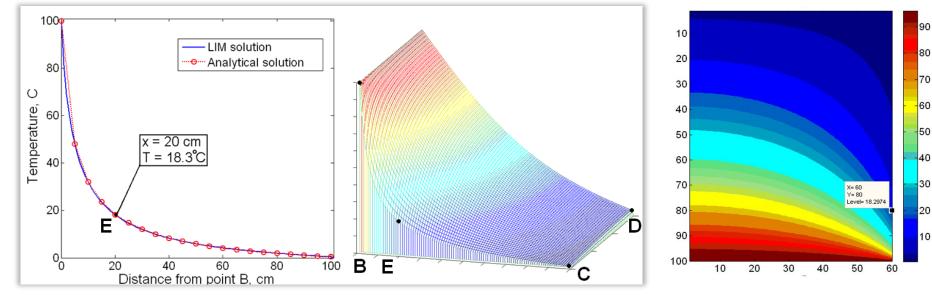

Temperature distribution in IC structure


Modeling methodology


- Use thermal electrical analogy
- Thermal problem ightarrow electrical circuit
- Bulk of the material \rightarrow 3D Resistive network
- − Heat sources \rightarrow Constant current sources
- Convective boundaries \rightarrow Effective resistances
- − Ambient temperature → Constant voltage sources



- Solve the resulting network for node voltages
 - A major issue the SIZE of the model



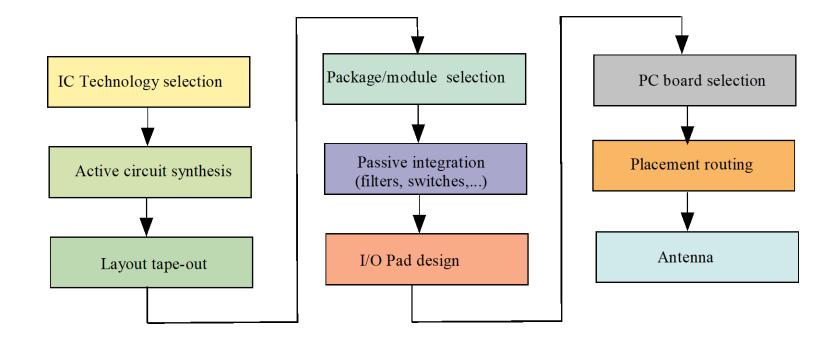
University of Illinois at Urbana-Champaig

Benchmark Thermal Problem

- 2D benchmark problem (NAFEMS)
 - Simple geometry
 - Has all typical components
 - There is analytical solution
 - Target temperature at E is 18.3 °C

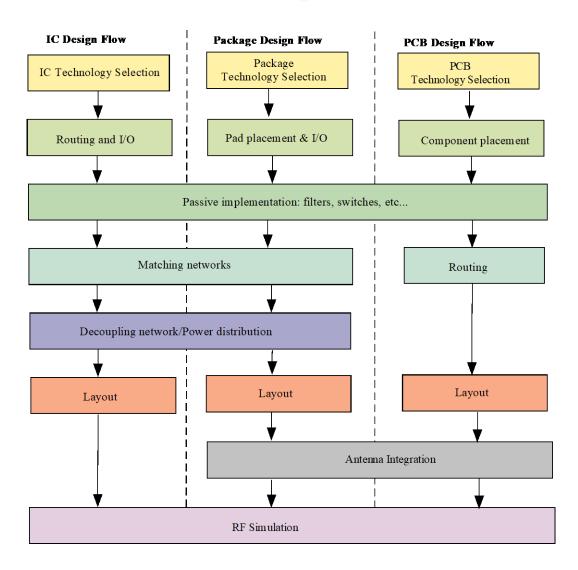
[10] Davies, G.A.O. and Fenner, R. T. and Lewis, R. W., Background to benchmarks, NAFEMS, 1993

What is Co-Design?

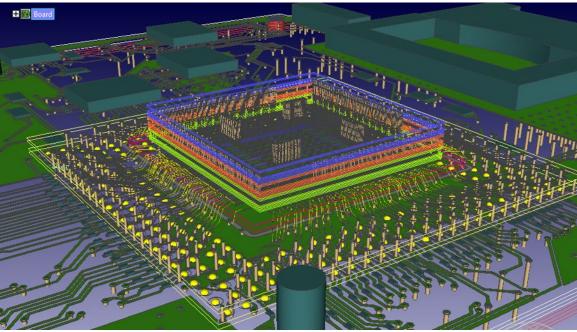

- Level Co-design
 - ≻Chip
 - Package
 - **Board**

- Function-based Co-design
 - Thermal aware
 - Signal integrity aware
 - Testability
 - Security aware
- Physics-based Co-design
 - ≻Thermal
 - Electrical
 - Mechanical
 - Optical

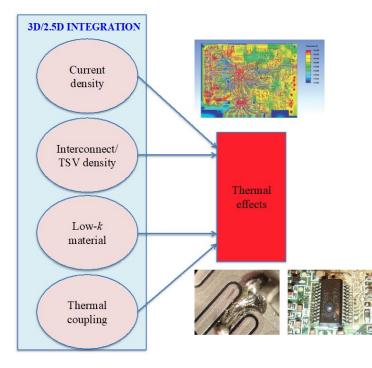
Domain-based Co-design
 Hardware
 Software
 Architecture

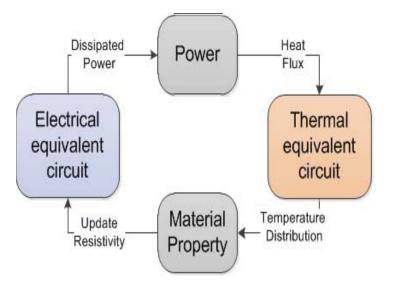


Traditional Design Flow


Co-Design Flow

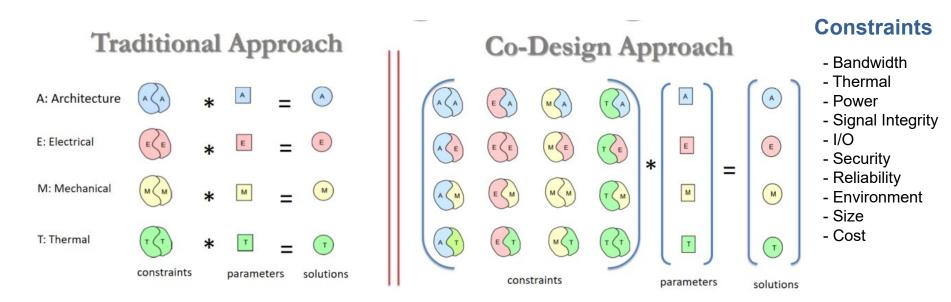
Co-Design Requirements


- Tradeoffs in advance
- Translation and domains
- Propagate information
- Manage connectivity
- Database formats

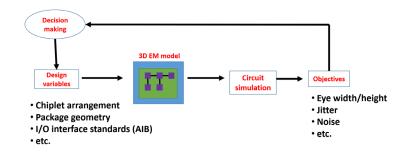


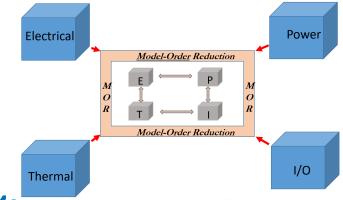
Courtesy of Zuken

Thermal-Aware Co-Design



Difficulty in Co-Design


Current co-design methods are simply a cascade or combination of independent solutions. Real co-design requires concurrent solution from a formulation that accounts for all multi-physics interactions while embodying conflicting requirements



Computational Research Needs

- Methodical abstractization
 - Compact models
 - Reduced-order models
 - Behavioral models
- Faster verification platforms (>10X)
 - Multi-physics solvers (EM , thermal management, materials)
 - Transistor-level circuit simulation
- AI/ML assisted solutions
 - Optimization, mitigation of uncertainty

