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Training a large language model like 
GPT-3, for example, is estimated to 
use just under 1,300 megawatt 
hours (MWh) of electricity; about as 
much power as consumed annually 
by 130 US homes. To put that in 
context, streaming an hour of Netflix 
requires around 0.8 kWh (0.0008 
MWh) of electricity. That means you’d 
have to watch 1,625,000 hours to 
consume the same amount of power it 
takes to train GPT-3.

Source: James Vincent, How much electricity does AI consume? The Verge - 2/16/2024
https://www.theverge.com/24066646/ai-electricity-energy-watts-generative-consumption

Need for Heterogeneous Integration - 1
AI Requirements
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SOURCE: Wei Wang, Wenhao Song, Peng Yao, Yang Li, Joseph Van Nostrand, Qinru Qiu, Daniele Ielmini and 
J. Joshua Yang, "Integration and Co-design of Memristive Devices and Algorithms for Artificial Intelligence", 
iScience 23, 101809, December 18, 2020

Need for Heterogeneous Integration - 2
Brain-Inspired Computing
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Need for Heterogeneous Integration - 3

Chiplet PDN
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The Problem of  Disagreggation

Architecting an IC as a chiplet-based SiP rather than a SoC is referred to as 
disaggregation of function. Today, it is performed ad hoc; there is no established 
methodology to optimize the disaggregation, i.e., to determine how many separate 
chiplets should be used in order to meet specifications. Once chiplet design is 
democratized, there will be more choices from different vendors which could make 
the process more chaotic.

SiPSOC

Need for Heterogeneous Integration - 4
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Heterogeneous Integration
- Focus on minimizing energy and delay
- Identify and address conflicting requirements, 
- Take advantage of novel interconnect technologies
- Leverage from AI methodologies
- Address design and computational complexity
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Semiconductor
         * Unprecedented Innovations in CMOS, Si-Ge,Copper Wiring
         * Fundamental technical Limits

Electronic Systems
         * Computers, telecom & Consumer Products Merge
         * Portable, Wireless, & Internet Accessible
         * Very Low Cost & Very High Performance

Microelectronic Packaging
         * High Cost, Low Performance, Low Reliability
         * Lack of Skilled Human Resources

System-Level Integration 
(Microelectronic Packaging)
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- Package is bottleneck to system performance

- Package cost is increasing percentage of  system cost

- Package limits IC technology

- On-chip system can outperform package capability

Packaging Challenges
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- Transistors
- Nonlinear
- SPICE
- Scaling with tech

- Interconnects
- Linear
- EM Tools
- Scaling with λ

- Transmission lines, sensors
- Linear+Nonlinear
- EM Extraction, SPICE, IBIS,…
- Scaling with λ

CHIP PACKAGE BOARD

Levels of  Integration
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Advantages of SOC

* Fewer Levels of Interconnections

* Reduced Size and Weight

* Merging of Voice, Video, Data,...

Arguments against SOC
* Challenges too Big

* Legal issues
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Challenges for SOC
* Different Types of  Devices

* Single CMOS Process for RF and Digital

* Design Methodology not available 

* EDA Tools cannot handle level of  complexity

* Intellectual Property 

* Signal Integrity

* High-Power Requirements of  PA 
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System on a Chip  (SOC)
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Triple-band GSM/EDGE Power Amp Module
(RF Design Magazine – 4/02)

Ceramic
substrate

Passive
Components

Voltage Controlled Oscillator
(UIUC-CAD group – 1999)

Silicon
substrate Spiral

Inductor

System on Chip System on Package

SOC vs SOP
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SOP vs SOC

Low cost consumer products (<$200)

SOP SOC

Portable  products ($200-$2000)

Single processor   products ($1-$5K)

High Performance Products (>5K)

Automotive and Space Applications

YES

NO

NO

NO

NO

YES

YES

YES

YES

YES
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- Mounted on PWB in pin-through-hole (PTH) configuration
- Chip occupies less than 20% of  total space
- Lead frame with large inductance

Dual-in-Line (DIP) Package
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Chip Size (mm × mm)     5 ×5  16 × 16  25 ×25  36 × 36 
Chip Perimeter (mm)        20  64  100  144
Number of I/Os       64  500  1600  3600
Chip Pad Pitch (µm)       312  128  625  600
Package Size (in × in)     3.3 × 1.0  2.0 × 2.0  1.0 × 1.0  1.4 × 1.4
Lead Pitch (mils)      100  16  25  24
Chip Area (mm2)     25  256  625  1296 
Feature Size (µm)     2.0  0.5  0.25  0.125
Gates/Chip                      30K  300K  2M  10M
Max Frequency (MHz)      5  80  320  1280
Power Dissipation (W)    0.5  7.5  30  120
Chip Pow Dens (W/cm2)  2.9  4.8  9.3  2.0
Pack Pow Dens (W/cm2)  0.024  0.3  4.8  9.8
Supply Voltage (V)      5  3.3  2.2  1.5
Supply Current (A)     0.1  2.3  13.6  80

Top View
(showing chip topackage connection)

Plane View
showing package to board connection)

DIP QFP CSP Flip Chip

Package Types
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Material Surface 
roughne
ss (µm)

104 tanδ 
at 10 
GHz

εr Thermal 
conductivity K
(W/cm2/oC)

Dielectric 
strength
(kV/cm)

Air (dry) N/A ~0 1 0.00024 30

Alumina:
99.5%
96%
85%

0.05-0.25
5-20
30-50

1-2
6
15

10.1
9.6
15

0.37
0.28
0.2

4×103

4×103

4×103

Sapphire 0.005-
0.025

0.4-0.7 9.4,11.
6

0.4 4×103

Glass, typical 0.025 20 5 0.01 -

Polyimide - 50 3.2 0.002 4.3

Substrate Materials
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Material Surface 
roughne
ss (µm)

104 tanδ 
at 10 
GHz

εr Thermal 
conductivity K
(W/cm2/oC)

Dielectric 
strength
(kV/cm)

Irradiated polyolefin 1 2.3 0.001 ~300

Quartz
(fused) i.e. SiO2

0.006-
0.025

1 3.8 0.01 10×103

Beryllia 0.05-1.25 1 6.6 2.5 -

Rutile 0.25-2.5 4 100 -

Ferrite/garnet 0.25 2 13-16 0.03 4×103

Substrate Materials
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Material Surface 
roughne
ss (µm)

104 tanδ 
at 10 
GHz

εr Thermal 
conductivity K
(W/cm2/oC)

Dielectric 
strength
(kV/cm)

FR4 circuit board ~6 100 4.3-4.5 0.005 -

RT-duroid 5880 0.75-1
4.25-8.75

5-15 2.16-
2.24

0.0026 -

RT-duroid 6010 0.75-1
4.25-8.75

10-60 10.2-
10.7

0.0041 -

AT-1000 - 20 10.0-
13.0

0.0037 -

Cu-flon - 4.5 2.1 - -

Substrate Materials
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Material Surface 
roughne
ss (µm)

104 tanδ 
at 10 
GHz

εr Thermal 
conductivity K
(W/cm2/oC)

Dielectric 
strength
(kV/cm)

Si (high resistivity) 0.025 10-100 11.9 0.9 300

GaAs 0.025 6 12.85 0.3 350

InP 0.025 10 12.4 0.4 350

SiO2 (on chip) - - 4.0-4.2 - -

LTCC (typical green 
tape 951)

0.22 15 7.8 3 400

Substrate Materials
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Ceramic Substrate
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Stacked Wire Bonds
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Ball Bonding for Flip Chip
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Flip Chip Pin Grid Array
(FC-PGA)

Pins

Package 
Body

Bumped 
Die
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Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, 
pp 18-30, Vol. 97, No. 1, January 2009.

3D Packaging
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Source: Yole Report 2009.

3D Packaging

Key concepts
• Wires

 shorter
  lots of  it

• Heterogeneous integration
 Analog and digital
  Technologies  (GaAs and Si?)
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• Samsung
 16Gb NAND flash (2Gx8 chips) Wide Bus DRAM

•  Micron
 Wide Bus DRAM

• Intel
 CPU + Memory

• OKI
 CMOS Sensor

• Xilinx
 4 die 65 nm interposer

• Raytheon/Ziptronix
 PIN Detector Device

• IBM
 RF Silicon Circuit Board/ TSV Logic & Analog

• Toshiba
 3D NAND

3D Industry
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From: M. Motoshi, "Through-Silicon Via, 
Proc. of IEEE Vol. 97, No. 1, January 2009.

Mitsumasa Koyanagi," High-Density Through Silicon Vias for 3-D LSIs"
Proceedings of the IEEE, Vol. 97, No. 1, January 2009

TSV Density: 10/cm2 - 108/cm2 

Through-Silicon Vias
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Through-Silicon Vias (TSV)

 Make use of third dimension
 several orders of magnitude (10/cm2 to 108/cm2)
 Minimize interconnection length
 More design flexibility

 3D Infrastructure & supply chain
 I/O Standardization
 EMI 
 Thermal management and reliability

Advantages

Issues

From Koyanagi et al., IEEE Proceedings, Feb 2009
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Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, 
pp 18-30, Vol. 97, No. 1, January 2009.

TSV Pitch ≠ Area / Number of  TSVs
• TSV pitch example

 1024 bit busses require a lot of  
space with larger TSVs

  They connect to the heart and 
most dense area of  processing 
elements

 The 45nm bus pitch is ~100 
nm; TSV pitch is > 100x greater

TSV Pitch
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Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, 
pp 18-30, Vol. 97, No. 1, January 2009.

• Via First
• Via Last
• Via at Front End (FEOL)
• Via at Mid line 
• Via at Back end (BEOL)

Through-Silicon Vias (TSV)
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Source: Jian-Qiang Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proceedings of the IEEE, 
pp 18-30, Vol. 97, No. 1, January 2009.

Through-Silicon Vias (TSV)
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STMicro CMOS 
image sensor in 
WLP/TSV package

Sony Video / DSC 
camera with BSI 
CMOS image 
sensors

Elpida’s 3D TSV stacked DRAM memory

TSV-Based Products

There are currently about 15 different 3D-IC pilot lines worldwide
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• Stacking of  chips makes heat transfer through 
the z-direction difficult.

• Lossy silicon substrate makes coupling between 
adjacent TSVs strong.

• TSV noise can be easily coupled to the adjacent 
TSV through conductive silicon substrate

• 3D IC yields are much lower than 2D-IC
• Difficult to detect TSV and MOS failures

Solution: Use 2.5D integration

3D-IC and TSV
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• 2.5D-IC emerges as a temporary solution
• In 2.5D-IC, several chips are stacked on interposer 

only homogeneous chip stacking is used.
• fine-pitch metal routing is necessary because it 

increase I/O counts
• For this purpose, an interposer is used where small 

width and small space metal routing is possible. 
• Silicon substrate is usually used for an interposer 

because on-silicon metallization process is mature 
and fine-pitch metal routing is possible

2.5D Integration
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Source: J. Kim et al – DesignCon 2013.

Silicon Interposers
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Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim, 
"Double-sided Si-Interposer with Embedded Thin Film Devices", 
2013 IEEE 15th Electronics Packaging Technology Conference 
(EPTC 2013), pp 757-760.

Silicon Interposers



ECE 546 – Jose Schutt-Aine 38ECE 546 – Jose Schutt-Aine 38

Source: Jong-Min Yook, Dong-Su Kim, and Jun-Chul Kim, 
"Double-sided Si-Interposer with Embedded Thin Film Devices", 
2013 IEEE 15th Electronics Packaging Technology Conference 
(EPTC 2013), pp 757-760.

Silicon Interposers
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Hybrid Bonding
simultaneous bonding of dielectric and metal bond pads in one bonding step
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Hybrid Bonding

• Allows advanced 3D device stacking
• Highest I/O
• Enables sub-10-µm bonding pitch
• Higher memory density
• Expanded bandwidth
• Increased power
• Improved speed efficiency
• Eliminates the need for bumps, improving 

performance with no power or signal penalties

Advantages
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Hybrid Bonding
Processing Steps
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Hybrid Bonding
Applications
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Hybrid Bonding
Comparison
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Thermal Management
Manage  heat within a system to ensure efficient and safe operation. 

Passive Cooling Technology
- Thermal Interface Materials
- Heat Spreaders
- Heat Sinks

Thermal Management Techniques
- Air Cooling, Liquid Cooling, and Two Phase Cooling
- Conduction Cooling

Source: C.Bailey, "Thermal Management Technologies for 
Electronic Packaging: Current Capabilities and Future 
Challenges for Modelling Tools", 2008 10th Electronics 
Packaging Technology Conference, 2008.
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*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future 
Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.

Thermal Management
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Thermal Management
Passive Technology Materials*

*C.Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future 
Challenges for Modelling Tools", 2008 10th Electronics Packaging Technology Conference, 2008.
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Electrical-Thermal AC Analysis
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Electrical-Thermal DC Analysis
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Electrical-Thermal Isomorphism
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Thermal Modeling Using Circuit Simulator*

Thermal/Electrical Co-Simulation

* Klokotov, D., Schutt-Aine, J.E., "Latency Insertion Method (LIM) for Electro-Thermal Analysis of 3-D Integrated 
Systems at Pre-Layout Design Stages", IEEE Trans. Compon., Packag. Manuf. Technol., vol: 3 , no. 7, pp. 1138-1147, 
July 2013
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Electro-Thermal Analysis. Motivation

• 3D integration technologies
– 3D stacked IC designs
– Increased power density
– Heat removal difficulties

• Design challenges due to thermal issues
– Electrical reliability (electro-migration)
– Power delivery (IR drop)
– Signal propagation (RC delay)
– Memory retention time (Leakage)

• Lack of suitable CAD tools
– Thermal-aware design at the earliest stages
– Using the floor plan and early power distribution analysis (know the 

current distribution – want to use that information) 



ECE 546 – Jose Schutt-Aine 52

Temperature distribution in IC structure

• Modeling methodology
– Use thermal – electrical analogy
– Thermal problem  electrical circuit
– Bulk of the material  3D Resistive network 
– Heat sources  Constant current sources
– Convective boundaries  Effective resistances
– Ambient temperature  Constant voltage sources

• Solve the resulting network for node voltages
– A major issue – the SIZE of the model 

Apply 
circuit 
solver
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Benchmark Thermal Problem
• 2D benchmark problem (NAFEMS)

– Simple geometry
– Has all typical components
– There is analytical solution
– Target temperature at E is 18.3 °C

[10] Davies, G.A.O. and Fenner, R. T. and Lewis, R. W., Background to benchmarks, NAFEMS, 1993
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What is Co-Design?

• Level Co-design
Chip
Package
Board

• Function-based Co-design
Thermal aware
Signal integrity aware
Testability
Security aware

• Physics-based Co-design
Thermal 
Electrical
Mechanical
Optical

• Domain-based Co-design
Hardware
Software
Architecture
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Traditional Design Flow
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Co-Design Flow
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- Tradeoffs in advance

- Translation and domains

- Propagate information

- Manage connectivity

- Database formats

Courtesy of Zuken

Co-Design Requirements
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Thermal-Aware Co-Design
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Difficulty in Co-Design

- Bandwidth
- Thermal
- Power
- Signal Integrity
- I/O
- Security
- Reliability
- Environment
- Size
- Cost

Constraints

Current co-design methods are simply a cascade or combination of 
independent solutions. Real co-design requires concurrent solution from 
a formulation that accounts for all multi-physics interactions while 
embodying conflicting requirements
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• Methodical abstractization
Compact models
Reduced-order models
Behavioral models

• Faster verification platforms (>10X)
Multi-physics solvers (EM , thermal 

management, materials)
Transistor-level circuit simulation

• AI/ML assisted solutions
Optimization, mitigation of 

uncertainty

Computational Research Needs
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