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Abstract 
SEM photographs of a typical copper conductors prepared 

by the PCB industry exhibit a 3-D “snowball” structure of 
copper surface distortions [1].  We have developed an 
analytical basis for the electromagnetic scattering by the 
copper “snowballs” to predict additional power losses to those 
presented by the propagating medium [2] that compare well 
with the observed measurements for a set of rough microstrip 
lines.   In this paper we describe the fundamental concepts 
involved with the 3-D scattering theory of our analysis. 

 

I. INTRODUCTION 
If an electromagnetic pulse is caused by a voltage   

on one end of a copper microstrip trace as shown in figure 1, 
the electric field intensity below the trace will propagate down 
the transmission line (in the z-direction) at a phase velocity 
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Fig. 1  Electric and Magnetic field intensities as they 
propagate down the geometric center of a micro-strip 
waveguide. 
 
On the bottom side of the trace there will be a surface charge 
density, , and a complementary negative charge 
density on the ground plane. As the charge density moves at 
speed c

2,, 2 xe S Eσ ε=

2 down the trace it creates a magnetic field intensity, 

2, 2, 2 2 22 , 2
ˆ ˆ ˆ

e S y y yxH Ec aEa c a xσ ε= = = η , in the propagating 

medium.   
 
An SEM photograph of the underside of the micro-strip trace 
is shown in figure 2 and the corresponding “snowball” model 
of the distribution of spheres are shown in figure 3. 
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Fig 2  SEM Photograph of surface distortions for a rough 
copper surface.  Copper skin depths for three frequencies are 
shown for relative scale.  
 
 
 
 
 
 
 
 
Fig. 3  Model cross-section of  a distribution of spheres for 
analyzing power losses due to surface irregularities. 
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A periodic field intensity will behave in a similar manner as 
shown in figure 4, where we have added a single exaggerated 
copper sphere (a “snowball”) of radius ai in the path of a 
propagating electromagnetic wave. 
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Fig. 4 Cross-section of periodic electromagnetic waves as 
they impinge upon an isolated “snowball” below a copper 
trace. 
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We show an exaggerated view of the charge density 
required to support the periodic fields in figure 5. 

Fig. 5 Transverse displacement of conduction electrons 
relative to copper ion cores as they produce a surface charge 
density to support the propagating electric field intensity near 
the  medium interface.  Magnetic field intensity lines have 
been omitted in this view for clarity. 
 
    In figure 5 we have also indicated the large difference 
between the velocity of conduction electrons at the Fermi 
surface, vF, to the speed of the propagating wave in the 
medium, c2, to show that the charge density must be a 
transverse charge wave that propagates on the metal surface.   
The displacement of the conduction electron cloud needed to 
create the requisite charge density for a fcc copper cubic 
lattice is less than a nuclear dimension. 
 
    In figure 6 we show how the electric and magnetic field 
intensity impinges upon an isolated copper “snowball” to 
induce an electric dipole moment, , and a magnetic dipole 

moment, , to produce scattering of the incident 
electromagnetic field outside the sphere.   
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Fig. 6  Electric and magnetic dipole moment induced by an 
electromagnetic wave as it propagates past a copper 
“snowball.”   

 

II. PERFECT ELECTRIC CONDUCTORS 
 
We show in figure 7 the electric dipole moment induced in a 
copper sphere by the incident electric field intensity.  The 
charge density on the surface is similar to that of a PEC due to 
the fact that the normal component of the electric field does 
not penetrate the surface (as we show below for a good plane 
conductor).   The periodic oscillation of the dipole moment 
causes radiation to be scattered as we previously showed in 
figure 4 and we can describe the scattered power in terms of a 
scattering cross-section, σsc.    
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Fig. 7  Rear view of the electric field intensity as it induces an 
electric dipole moment, 0

3 ˆ4i i xp a aEπε=

a

, in a good 
conducting sphere. 
 
The incident magnetic field intensity also induces a magnetic 
dipole moment in a perfectly conducting sphere as shown in 
figure 8. 
 

 
Fig. 8  Rear view of the magnetic field intensity as it induces 
a magnetic dipole moment, , in a perfect 

conducting sphere. 
0
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The scattered field in the far field region, r>>ai, and the 
differential scattering cross section can be expressed [3] as 

 
 
 
(1) 
 
 

 
If all of the scattered radiation from a PEC is lost from the 

incident wave then power lost, ΔPi is: 

 
  
  
  (2) 

 
 

 

III. GOOD CONDUCTORS 
 
In a flat good conductor, such as a perfectly flat trace, the 
magnetic field intensity penetrates the surface according to a 
skin depth formulation as shown in figure 9. 
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Fig. 9  Tangential Component of the magnetic field intensity 
as a function of depth, /ξ δ , inside a good conductor. 
 
In figure 9, the periodic magnetic field intensity on the surface 
is attenuated by conduction losses as it moves slowly into the 
conductor as indicated by an exponential envelope (blue 
dotted lines).  The magnetic field intensity inside the 
conductor propagates in the positive ξ  direction at phase 
velocity 
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where the quantity inside the square root is a figure of merit of 
the conductivity of a good conductor.  For copper  
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The magnetic field intensity inside the conductor is oscillating 
in time with the external (incident) field so that by the time it 
reaches / 2ξ δ π= the field was that caused by the surface 
(external) field when it had zero magnitude.  For greater 
depths the field was caused by a surface field that had the 
opposite sign so it has a negative value due to the “retarded” 
field at the surface [4]. 

2

0 0

234

4

2

sin

415

8 3

sc
sc

i
sc

inc

i

d
d d

d

aP

P c

π π σ
σ θ

πω
σ

π

=
Ω

Δ
= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∫ ∫ θ φ

 
For a copper “snowball” we must find the solution to the 
Helmholtz equation  
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for the geometry shown in figure 10. 
 

a

xâ
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Fig. 10  Helmholtz regions for the magnetic field intensity 
inside ( r a≤ ) and outside ( ) a good conducting sphere. r a≥
 
The solutions inside the sphere are given by  
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Because of the spherical symmetry, the radial functions that 
satisfy the Helmholtz equation with a purely imaginary k2 as 
given in equation 5 are modified spherical Bessel functions 
with a complex argument.  Those functions have a real and 
an imaginary part called the ber and the bei functions.  In 
equation 6 we have retained only the l=1 coefficients that 
correspond to dipole boundary conditions as these are the 
largest terms for this value of in the long wavelength limit 
( ) and higher scattering coefficients become small 
very rapidly as l increases [3].  

1ka

 
With the value of ( , mcH r )θ inside the conductor, we can 
use Ampere’s Law and the quasi-static approximation to 
find the current distribution inside the isolated “snowball” 
as: 
 
 
 
 
 
 
 
A plot of the current density and the magnetic field intensity 
interior to the snowball is shown in figure 11.  There is 
azimuthal symmetry in this plot (no dependence on âφ ). 

 

 
Fig. 11  Current density and magnetic field intensity as a 
function of radius and angle interior to a sphere of radius a. 
 
We have indicated a turn-around in the interior current density 
due to the fact of retarded field at ( ) / 2ξ δ π=  but this 
assumes the sphere has a radius of more than 1.57 δ.  The 
field penetration will not turn-around if the sphere has a 
smaller radius and the net penetration is a function of the 
radius of the sphere compared to the skin depth as shown in 
figure 12. 

 Fig. 12.  Envelope of the magnetic field intensity (equation 6) 
as a function of radius inside a sphere for several size spheres. 
 

IV. CONCLUSIONS 
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From these fundamental solutions for an isolated “snowball”, 
we have been able to calculate the effective magnetic dipole 
moment of an arbitrarily large good conducting sphere and its 
phase relative to a PEC sphere.  In addition, we have 
calculated the power lost when an incident wave induces these 
dipoles.  We have also calculated the additional loss on the 
nearby flat conducting trace due to the dipole and its image 
and we have evaluated the reduction in field at a “snowball” 
due to its first few neighbors.  Finally, a distribution of the 
snowballs in figure 3 have been chosen to match the observed 
SEM pictures in figure 2 and we have found these to match 
the losses measured for a rough surface to frequencies up to 
50 GHz. 
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