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Abstract

In this paper we consider a passivation procedure for linear time-invariant systems. This

procedure is based on the spectral properties of related Hamiltonian matrices. We also present

a structure-preserving algorithm for computing the imaginary eigenvalues and the correspon-

ding eigenvectors of Hamiltonian matrices. Numerical examples are given.

1 Introduction

Consider a linear time-invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

where E, A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n, D ∈ Rp,m, x(t) ∈ Rn is a state vector, u(t) ∈ Rm is
an input and y(t) ∈ Rp is an output. We will assume that system (1) is asymptotically stable, i.e.,
all eigenvalues of A lie in the open left half-plane. A transfer function of (1) is given by

H(s) = C(sI − A)−1B + D.

It describes the input-output relation of system (1) in the frequency domain. For simplicity, we
will denote system (1) also by H = [ A, B, C, D ].

Passivity is a crucial concept in system design, because the interconnection of passive multiport
systems is guaranteed to be stable [18]. The asymptotically stable system (1) is passive if its
transfer function H(s) is positive real, i.e., H(jω)∗ + H(jω) is positive semidefinite for all ω ∈ R.
In the case of the scattering representation, e.g., [16], system (1) is passive if its transfer function
H(s) is bounded real, i.e., I − H(jω)∗H(jω) is positive definite for all w ∈ R. In the following
we will consider only this type of passivity that is also known as contractivity [1]. Note that the
bounded realness can also be written as

σmax(H(jω)) ≤ 1 for all ω ∈ R.

More general, an asymptotically stable system (1) is said to be γ∗-passive, if all singular values of
H(jω) are not greater than γ∗. For γ∗ = 1, this is the original definition.

In this paper, we discuss the following two problems:

• Check whether system (1) is γ∗-passive. In particular, determine the frequencies, where the
passivity condition σmax(H(jω)) ≤ γ∗ is violated.

• For a non-passive system, find another one that is ’close by’ and passive.
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In Section 2 we introduce some notation and used results. Section 3 deals with the passivity
check, while in Section 4 the passivation scheme is discussed. The described algorithms have been
implemented. Numerical results are presented in Section 5. We want to note that, apart from
Section 3.1, most of the theory is along the lines of [10, 11].

Notations. We will denote by Rn,m and Cn,m the space of n×m real and complex matrices,
respectively. The real and imaginary parts of s ∈ C are denoted by ℜe(s) and ℑm(s), respectively,
and j =

√
−1. The matrices AT and Ā denote, respectively, the transpose and the complex

conjugate of A, A∗ = ĀT and A−T = (A−1)T . An identity matrix of order n is denoted by In or
simply by I, and ei denotes the i-th column of I. A positive scalar σ is said to be a singular value
of a matrix A ∈ C

n,m if σ2 is an eigenvalue of A∗A. The largest singular value of A is denoted by
σmax(A). We use ‖ · ‖2 to denote the Euclidean vector norm and the spectral matrix norm.

2 Preliminaries

For matrices A ∈ Cn,m and B ∈ Ck,l, the Kronecker product A⊗B ∈ Cnk,ml is defined via

A⊗B =




a11B · · · a1mB
...

...
an1B · · · anmB


 .

Using the Kronecker product, the matrix relation Y = BXAT can be rewritten in an equivalent
form vec(Y ) = (A⊗ B)vec(X), where vec(·) denotes the vectorization operator, i.e., stacking the
columns of a matrix upon each other to get a single vector [14]. The Frobenius norm of a matrix
is defined as ‖A‖F = ‖vec(A)‖2.

We will need the following spectral perturbation result, see [19]. Let λ be a simple eigenvalue
of a matrix A ∈ Rn,n and let Aǫ = A + ǫA′ be a perturbed matrix with A′ ∈ Rn,n and ǫ ∈ R.
Then for sufficiently small ǫ, an eigenvalue λǫ of Aǫ can be written as

λǫ = λ + ǫ κ +O(ǫ2), (2)

where the coefficient κ is given by

κ =
dλǫ

dǫ

∣∣∣∣
ǫ=0

=
w∗A′v

w∗v
.

Here, w and v are the left and right eigenvectors of A corresponding to the eigenvalue λ.
A matrix M ∈ R2n,2n is called Hamiltonian if it is symmetric in the J–inner product, i.e.,

JM = (JM)T with J :=

[
0 In

−In 0

]
. (3)

Any Hamiltonian matrix M can be represented as

M =

[
F G

Q −FT

]
,

where F , G, Q ∈ Rn,n and G = GT , Q = QT . Let v be a right eigenvector of M corresponding to
an eigenvalue λ. It follows from (3) that

λJv = JMv = (JM)T v = MT JT v = −MT Jv.

Since M is real, we have
(Jv)∗M = −λ(Jv)∗.

One can see that together with λ also −λ is an eigenvalue of M with a left eigenvector Jv. In
particular, if λ = jω is an imaginary eigenvalue of M with a right eigenvector v, then Jv is a left
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eigenvector of M corresponding to the eigenvalue −λ = jω. Thus, the left eigenvectors corre-
sponding to purely imaginary eigenvalues of a Hamiltonian matrix can be immediately obtained
from the right eigenvectors without additional computations.

If jω is a simple imaginary eigenvalue of a Hamiltonian matrix M , then the perturbation
result (2) for a perturbed matrix M + ǫM ′ with M ′ ∈ R2n,2n takes the form

λǫ = jω + ǫ
v∗JM ′v

v∗Jv
+O(ǫ2),

where v is a right eigenvector of M corresponding to the eigenvalue jω and λǫ is an eigenvalue
of M + ǫM ′. If the perturbation matrix M ′ is also Hamiltonian, then JM ′ is real symmetric
and, hence, v∗JM ′v is real. Since J is real skew-symmetric, the term v∗Jv is purely imaginary.
In this case λǫ stays imaginary, at least to the first order perturbation. It can be shown that
a simple imaginary eigenvalue of a real Hamiltonian matrix cannot leave the imaginary axis under
Hamiltonian perturbations, as long as it stays simple. Thus, we have λǫ = jωǫ with

ωǫ = ω + ǫ
v∗JM ′v

jv∗Jv
+O(ǫ2). (4)

3 Passivity check

In this section, a method to check the γ∗-passivity of the LTI system (1) is discussed. For γ∗ = 1,
we get the classic notion of passivity. The value γ∗ < 1 can be used in order to decide whether
the singular values of H(jω) are far away from 1. Since H(jω) approaches D as ω →∞, we will
assume that σmax(D) < γ∗.

0 0.5 1 1.5 2 2.5 3
0.9996

0.9998

1

1.0002

Frequency

σ(
H

(jw
))

Figure 1: The singular values of H(jω).

For some example system, we plotted in Figure 1 the singular values of H(jω) for the frequency
range ω ∈ [0, 3]. One can see that this system has passivity violation in the regions ca. [0, 0.3],
[0.4, 0.94], [0.95, 1.5] and [2, 2.7]. These regions are exactly the kind of information we seek. To
determine them more precisely, we can use the following theorem.

Theorem 1 Consider an LTI system (1), where A has no purely imaginary eigenvalues. Let

γ > 0 be a scalar such that γ is not a singular value of D. Then γ is a singular value of H(jω) if

and only if jω is an eigenvalue of the Hamiltonian matrix

Mγ =

[
A−BR−1

γ DT C −γBR−1
γ BT

γCT S−1
γ C −AT + CT DR−1

γ BT

]
, (5)

where Rγ = DT D − γ2I and Sγ = DDT − γ2I.

Proof: See, e.g., [7]. �

Thus, by calculating the imaginary eigenvalues of Mγ∗
we find the frequencies, where the

singular value curves of H(jω) cross the level γ∗. The imaginary eigenvalues of M1 for the above
example are given by

0.2912j, 0.4010j, 0.9386j, 0.9487j, 1.5247j, 2.0144j, 2.1652j, 2.6029j, 2.7120j.
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They coincide with the frequencies, where the singular value curves cross the level γ∗ = 1, see
Figure 1. But this is not enough to determine the regions of passivity violation. The next result
provides the missing information.

Theorem 2 Consider an LTI system (1). Let 0 < γ∗ ≤ 1 be a scalar such that σmax(D) < γ∗.

Further, let v be a right eigenvector of Mγ∗
corresponding to a simple imaginary eigenvalue jωγ∗

and let σ(ω) be a singular value curve of H(jω) that crosses the level γ∗ at ωγ∗
, i.e., σ(ωγ∗

) = γ∗.

Then the slope of σ(ω) is positive (negative) at ωγ∗
if jv∗Jv > 0 (jv∗Jv < 0).

Proof: We want to motivate the technique of the proof by the following idea. To decide whether
the curve increases or decreases at the point ωγ∗

, we could compute the point ωγ∗
+ δ, where the

curve crosses the level γ∗ + ǫ with ǫ > 0 and then check whether δ is positive or negative. Thus,
the actual proof starts by analyzing the eigenvalues of the perturbed matrix

Mγ∗+ǫ = Mγ∗
+ ǫM ′

γ∗

+O(ǫ2),

where

M ′
γ∗

=
dMγ

dγ

∣∣∣∣
γ=γ∗

=

[
−2γ∗BR−2

γ∗

DT C −B(2γ∗R
−2
γ∗

+ R−1
γ∗

)BT

CT (2γ∗S
−2
γ∗

+ S−1
γ∗

)C 2γ∗C
T DR−2

γ∗

BT

]
.

Note that the matrix M ′
γ∗

is Hamiltonian. Let jωγ∗
be an eigenvalue of Mγ∗

and let jωγ∗+ǫ be
the corresponding perturbed eigenvalue of Mγ∗+ǫ. Then, using (4) we have

ωγ∗+ǫ = ωγ∗
+ ǫ κ +O(ǫ2),

where

κ =
dωγ

dγ

∣∣∣∣
γ=γ∗

=
v∗JM ′

γ∗

v

jv∗Jv
.

Since σ and γ are interchangeable, it follows that the slope of the singular value curve crossing
the level γ∗ at ω∗ can be written as

ξ :=
dσ

dω

∣∣∣∣
ω=ωγ∗

=
1

dω
dγ

∣∣∣
γ=γ∗

=
1

κ
=

jv∗Jv

v∗JM ′
γ∗

v
.

We only need to know the sign of ξ to decide whether the singular value curve increases or decreases.
The computation can be simplified by noting that JM ′

γ∗

is positive semidefinite. Indeed, we have

JM ′
γ∗

=

[
CT 0
0 B

] [
S−1

γ∗

0
0 R−1

γ∗

]
M̃

[
S−1

γ∗

0
0 R−1

γ∗

]T [
CT 0
0 B

]T

,

where

M̃ =

[
D γ∗I

γ∗I DT

] [
D γ∗I

γ∗I DT

]T

+

[
2γ∗(1− γ∗)I 0

0 2γ∗(1− γ∗)I

]

is positive semidefinite. Thus, sign(ξ) = sign(jv∗Jv). �

The frequencies, where the singular value curves cross the level γ∗, together with the informa-
tion whether the curves are increasing or decreasing admit to decide for γ∗-passivity.

Corollary 3 (Passivity check) Assume that an LTI system (1) is asymptotically stable. Let

0 < γ∗ ≤ 1 be a scalar such that σmax(D) < γ∗. Let the matrix Mγ∗
as in (5) have the simple

imaginary eigenvalues ±jω1, . . . ,±jωk with the corresponding right eigenvectors v1, ..., vk. Then

1. system (1) is γ∗-passive if k = 0, i.e., if Mγ∗
does not have purely imaginary eigenvalues;

2. system (1) is γ∗-passive at frequency ω if
∑

i : ωi≥ω

sign(jv∗i Jvi) = 0.
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Proof: See, [10]. �

This result has been applied to above example. In Figure 2 the down aiming and up aiming
arrowheads mark the location of the imaginary eigenvalues whose corresponding eigenvectors v

fulfill jv∗Jv < 0 and jv∗Jv > 0, respectively. The marks coincide with the locations, where the
singular value curves cross the level γ∗ = 1. The slopes are also predicted correctly. By just
looking at the marks, it is possible to decide whether the system is passive at a given frequency ω

(the numbers of arrow heads to the right of ω pointing upwards and downwards must be equal).
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Figure 2: The singular values of H(jω) with the crossing points.

Note that a rigorous treatment of the theory would involve the consideration of multiple imagi-
nary eigenvalues of Mγ∗

. Such eigenvalues correspond to the singular value curves that are touching
the level γ∗, but do not cross it, or to several singular value curves crossing the level γ∗ at the
same frequency. However, multiple eigenvalues never occurred during our tests. Nevertheless, this
will be a topic of further research.

3.1 Computing eigenvalues and eigenvectors of Hamiltonian matrices

As described above, in order to check the passivity of system (1), one has to compute eigenvalues
and eigenvectors of a Hamiltonian matrix. Of course, one could use the standard solver tool for the
non-symmetric eigenvalue problem based on the computation of the Schur form [9]. But because
of rounding errors all computed eigenvalues will be slightly perturbed. This raises the difficulty to
decide whether a computed eigenvalue is purely imaginary or not. On the other hand, Hamiltonian
matrices provide a lot of structure that can be used to compute the eigenvalues and eigenvectors
more precisely [6, 15].

An alternative approach is provided by the symplectic URV decomposition [5, 6]. A matrix
S ∈ R2n,2n is called symplectic if it is orthogonal in the J–inner product, i.e.,

ST JS = J.

A matrix U ∈ R
2n,2n is called orthogonal symplectic, if it is orthogonal and symplectic, i.e.,

UT U = I and UT JU = J . Any orthogonal symplectic matrix U can be written as

U =

[
U1 U2

−U2 U1

]
, U1, U2 ∈ R

n,n.

For every matrix M ∈ R2n,2n, there exists a symplectic URV decomposition

M = U

[
R1 R3

0 RT
2

]
V T , (6)

where U, V ∈ R
2n,2n are orthogonal symplectic, R1 ∈ R

n,n is upper triangular and R2 ∈ R
n,n is

quasi upper triangular with 1× 1 and 2× 2 blocks on the diagonal. If M is Hamiltonian, then we
also have

M = V

[
−R2 RT

3

0 −RT
1

]
UT . (7)
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It follows from (6) and (7) that

M2 = U

[
−R1R2 R1R

T
3 −RT

3 R1

0 (−R1R2)
T

]
UT .

Since R1 is upper triangular and R2 is quasi-upper triangular, also the product R1R2 is quasi-
upper triangular. Thus, all eigenvalues of M2 can be read off the diagonal blocks of −R1R2. Since
the eigenvalues of Hamiltonian matrices appear in pairs (λ,−λ), the eigenvalues of M are given as
the square root of the eigenvalues of M2, i.e., λ2 is an eigenvalue of M2 if and only if ±λ are the
eigenvalues of M . In particular, if −R1R2 has a 1×1 diagonal block containing a negative number
−ω2, then ±jω are imaginary eigenvalues of M . Thus, the computation of the URV decomposition
of the Hamiltonian matrix will provide the eigenvalues on the imaginary axis but not close by as
when using an unstructured eigenvalue solver. The computation of the URV decomposition of
Hamiltonian matrices was implemented in the HAPACK Library [2, 3].

Now we will discuss the computation of eigenvectors of a Hamiltonian matrix M corresponding
to the imaginary eigenvalues. Let z be a right eigenvector of −R1R2 corresponding to an eigenvalue
λ2, i.e., −R1R2z = λ2z. Then

q = U

[
z

0

]

is an eigenvector of M2 corresponding to the eigenvalue λ2, because

M2q = U

[
−R1R2 R1R

T
3 −RT

3 R1

0 (−R1R2)
T

] [
z

0

]
= λ2U

[
z

0

]
= λ2q.

Therefore, M [ Mq, q ] = [ Mq, q ]Λ, where the matrix

Λ =

[
0 1
λ2 0

]

has the eigenvectors [ 1, ±λ ]T corresponding to the eigenvalues ±λ. Thus, v± = Mq ± λq are the
eigenvectors of M corresponding to the eigenvalues ±λ. Indeed, we have

Mv± = M [ Mq, q ]

[
1
±λ

]
= [Mq, q ]

[
0 1
λ2 0

] [
1
±λ

]
= ±λ [ Mq, q ]

[
1
±λ

]
= ±λv±.

Note that Mq can be written as

Mq = V

[
−R2 RT

3

0 −RT
1

]
UT U

[
z

0

]
= −V

[
R2z

0

]

which is faster to compute than by the usual matrix vector multiplication.
We finish this section with an algorithm for computing the eigenvectors of a real Hamiltonian

matrix corresponding to the purely imaginary eigenvalues with positive imaginary part. We use
above formalism, but do everything blockwise.

Algorithm 1
Input: a Hamiltonian matrix M ∈ R2n,2n that has simple purely imaginary eigenvalues.
Output: a matrix X ∈ R2n,k whose columns are the eigenvectors of M corresponding to the
imaginary eigenvalues with a positive imaginary part.

1. Compute the URV decomposition M =

[
U1 U2

−U2 U1

] [
R1 R3

0 RT
2

] [
V1 V2

−V2 V1

]T

.

2. Set R̂ = −R1R2.
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3. Compute the real Schur form [W1, W2]
T R̂[W1, W2] =

[
R̂1 R̂3

0 R̂2

]
, where [W1, W2] ∈ Rn,n is

orthogonal, R̂1 ∈ Rk,k is upper triangular with negative numbers on the diagonal and R̂2

does not have real negative eigenvalues.

4. Compute a nonsingular matrix Q ∈ Rk,k such that R̂1Q = Q diag(−ω2
1 , ...,−ω2

k).

5. Compute X =

[
−V1

V2

]
R2W1Q +

[
U1

−U2

]
W1Q diag(jω1, . . . , jωk).

Remark 4 Balancing is a way to increase the accuracy of the computations, see [15]. Instead
of computing eigenvalues and eigenvectors of the Hamiltonian matrix M , these are computed for
M̃ = S−1MS, where S is a symplectic matrix that can be written as a permuted diagonal matrix.
Since S is symplectic, M̃ is Hamiltonian and, hence, the techniques of this section can be applied.
Further, M and M̃ have the same eigenvalues and if ṽ is an eigenvector of M̃ then v = Sṽ is
an eigenvector of M .

4 Passivation

Assume that the passivity check discussed in the last section has been applied to a given sys-
tem H = [ A, B, C, D ] declaring it to be non-passive. Often the matrices A, B, C and D are
determined from a real world system by some sort of approximation scheme like vector fitting,
modal or balanced truncation [1, 12, 17]. However, the underlying physical problem is known to
be passive, i.e., the non-passivity of H = [ A, B, C, D ] is an approximation error. This motivates

the desire for a passivation method, i.e., a method to find a passive system H̃ = [ Ã, B̃, C̃, D̃ ]

such that ‖H̃ −H‖ is small in some system norm. Such a passivation method will be discussed
in this section. We will keep the matrix A in order to preserve the poles of the transfer matrix.
Hence, stability is not at risk. Further, the feedthrough matrix D is preserved in order to keep
the behavior of the system at large frequencies. That leaves B and C. For convenience, we choose
to perturb C only. Further, we assume that the system is nearly passive, i.e., one can find a small
perturbation ∆ such that the perturbed system H̃ = [ A, B, C + ∆, D ] is γ∗-passive.

We start by analyzing the effect of the perturbation of C on the imaginary eigenvalues jωi

of Mγ∗
given in (5). Let M̃γ∗

be a perturbed Hamiltonian matrix as in (5) with C replaced by

C + ∆. Then M̃γ∗
= Mγ∗

+ M̂γ∗
+O(‖∆‖2) with

M̂γ∗
=

[
−BR−1

γ∗

DT ∆ 0
γ∗C

T S−1
γ∗

∆ + γ∗∆
T S−1

γ∗

C ∆T DR−1
γ∗

BT

]
.

Let vi be a right eigenvector of Mγ∗
corresponding to an eigenvalue jωi. Then by (4) the imaginary

eigenvalues jω̃i of M̃γ∗
and those of Mγ∗

are related up to first order perturbation via

ω̃i − ωi =
v∗i JM̂γ∗

vi

jv∗i Jvi
. (8)

The numerator of the right-hand side in (8) can be expressed as

v∗i JM̂γ∗
vi = 2ℜe(z∗i ∆vi1), (9)

where vi = [ vT
i1, vT

i2 ]T with vi1, vi2 ∈ Cn and zi = DR−1
γ∗

BT vi2 + γ∗S
−1
γ∗

Cvi1. Applying the
vectorization operator to (9) we obtain

v∗i JM ′
γ∗

vi = 2ℜe(vT
i1 ⊗ z∗i ) vec(∆).

Inserting this into (8) gives

2

jv∗i Jvi
ℜe(vT

i1 ⊗ z∗i ) vec(∆) = ω̃i − ωi. (10)
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This is a linear relation between vec(∆) and ω̃i−ωi. Collecting these relations for every imaginary
eigenvalue we obtain the linear system

Z vec(∆) = w̃ − w, (11)

where w̃ = [ ω̃1, . . . , ω̃k ]T , w = [ ω1, . . . , ωk ]T and the i-th row of Z ∈ R
k,np has the form

eT
i Z =

2

jv∗i Jvi
ℜe(vT

i1 ⊗ z∗i ).

Here n is the state space dimension, p is the number of outputs and k is the number of the
imaginary eigenvalues of Mγ∗

. So, given a perturbation ∆, the new (first order approximate)
location of the imaginary eigenvalues can be computed. We are going to use this relation the
other way round: after choosing ’better’ values for the imaginary eigenvalues, we use relation (11)
to get a perturbation that achieves these ’better’ eigenvalues. Since k < np (usually k ≪ np),
the linear system (11) is underdetermined. In this case among the possible solutions we want to

choose the one that minimizes the error ‖H̃ −H‖ in some system norm.
There are three questions left: how to choose the new imaginary eigenvalues, which system

norm should be used, and how to compute the minimal solution?

• The choice of ω̃i

Let the frequencies ωi, where the singular value curves cross the level γ∗, be ordered in
increasing order, i.e., 0 ≤ ω1 < ω2 < . . . < ωk. Assume that a single singular value curve
has positive and negative slopes at ωi and ωi+1, respectively. For γ∗ = 1, this situation is
sketched in the following figure by the solid line.
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It is reasonable to assume that the level of non-passivity will decrease when the crossing
points are moved to each other, i.e., ωi is moved to the left and ωi+1 is moved to the right.
Choosing the displacement proportionally to the distance between ωi+1 and ωi, we obtain
the following equations

ω̃i =





ωi + α(ωi+1 − ωi) if jv∗i Jvi > 0,

ωi − α(ωi − ωi−1) if jv∗i Jvi < 0, i 6= 1,

(1− 2α)ω1 if jv∗i Jvi < 0, i = 1.

(12)

Here, α ∈ (0, 0.5] is a tuning parameter. The dashed and the dotted lines in above figure
correspond to the values α = 0.15 and α = 0.5, respectively. It is tempting to use α = 0.5
since then the system is passive. But this corresponds to a rather large perturbation. This
is dangerous, because it might take us out of the region, where the first order perturbation
theory holds. Therefore, we suggest to use a value around α = 0.25 and to apply the whole
method iteratively, until the system is passive. Other choices of ω̃i are also possible, see [10]
for details.
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• The choice of system norm

As proposed in [10], we compute the perturbation ∆ that minimizes the H2-norm of the

error E(s) = H̃(s)−H(s) = ∆(sI −A)−1B given by

‖E‖H2
=

(∫ ∞

−∞

‖E(jω)‖2F dω

)1/2

.

Consider a controllability Gramian P of the system E = [ A, B, ∆, 0 ] that is defined as the
unique symmetric positive semidefinite solution of the Lyapunov equation

AP + PAT = −BBT . (13)

Note that P is also the controllability Gramian of the system H = [ A, B, C, D ]. Since P
can be represented as

P =

∫ ∞

−∞

(iωI −A)−1BBT (−iωI −AT )−1 dω,

we have ‖E‖H2
= ‖∆LT ‖F , where L is a Cholesky factor of the controllability Gramian

P = LT L.

• The computation of the perturbation ∆

To compute the perturbation ∆ that satisfies (11) and minimizes ‖E‖H2
we have to solve

the following minimization problem

min
∆
‖∆LT ‖F subject to Z vec(∆) = w̃ − w.

If the system H = [ A, B, C, D ] is controllable, then the Gramian P is positive definite,
and, hence, its Cholesky factor L is nonsingular. Changing the basis ∆L = ∆LT we obtain
the problem

min
∆L

‖∆L‖F subject to ZL vec(∆L) = w̃ − w, (14)

where ZL = Z(L−1 ⊗ I). Note that there is no need to build the matrix L−1 ⊗ I explicitly,
since the i-th row of ZL can be computed as

eT
i ZL = eT

i Z(L−1 ⊗ I) =
2

jv∗i Jvi
ℜe(vT

i1L
−1 ⊗ z∗i ). (15)

In this case the minimization problem (14) reduces to the standard least squares problem

min
∆L

‖ vec(∆L)‖2 subject to ZL vec(∆L) = w̃ − w.

The solution of this problem is given by

vec(∆L) = Z+
L (w̃ − w),

where Z+
L denotes the Moore-Penrose inverse of ZL. The computation of Z+

L involves a sin-
gular value decomposition of the k × np matrix ZL that costs O(npk2) operations. The
required perturbation is then computed as

∆ = ∆LL−T . (16)

Note that the upper triangular Cholesky factor L of the controllability Gramian P can be
determined directly from the Lyapunov equation (13) without forming the product BBT and
computing P explicitly. This can be done using the Hammarling method [13] implemented
in the SLICOT routine SB03OD [4] that is used in the MATLAB function lyapchol.m.
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Now we are ready to state the passivation algorithm.

Algorithm 2. Passivation
Input: an asymptotically stable system H = [ A, B, C, D ] such that σmax(D)<γ∗≤1, 0<α≤0.5.
Output: a γ∗-passive system.

1. Compute the Cholesky factor L of the controllability Gramian P = LT L by solving the
Lyapunov equation (13).

2. Compute the imaginary eigenvalues and the corresponding eigenvectors of Mγ∗
as in (5)

using Algorithm 1.

3. While Mγ∗
has imaginary eigenvalues do

(a) choose new eigenvalues as in (12);

(b) solve min∆L
‖ vec(∆L)‖2 subject to ZL vec(∆L) = w̃ − w with ZL as in (15);

(c) update C ← C + ∆LL−T ;

(d) update Mγ∗
;

(e) compute the imaginary eigenvalues and the corresponding eigenvectors of Mγ∗
;

End

5 Numerical results

Algorithms 1 and 2 have been implemented and applied to several systems obtained from dis-
crete S-parameters using the vector fitting followed by modal and balanced truncation, see [8]
for details. The S-parameters were provided by CST GmbH Darmstadt. All systems are slightly
non-passive. The following table gives an overview. Here, ‖H‖H∞

= sup
ω∈R

‖H(jω)‖2 is given as a

level of non-passivity.

Problem n m = p ‖H‖H∞

coax1 320 2 1.002
coax2 35 2 1.002

twolines 49 4 1.485
branch 100 4 1.133
rj45 160 8 1.176

The problem ’coax’ appears twice. The larger version ’coax1’ is the result of vector fitting applied
to the discrete S-parameters. Applying modal and balanced truncation yields the small version
’coax2’. We chose a value of γ∗ = 1 in all tests.

All computations have been performed on a PC equipped with a Pentium 4 CPU running
at 3.2GHz and 1GB memory. The algorithms were tested in MATLAB 7.1 (R14) under Suse
Linux 9.3. The symplectic URV decomposition used in Algorithm 1 was computed by the pre-
compiled version of HAPACK [2].

5.1 URV vs Schur, reliability, accuracy, speed

Here we compare Algorithm 1 with an unstructured solver to compute the eigenvectors correspond-
ing to the imaginary eigenvalues of a Hamiltonian matrix M . Recall, that Algorithm 1 will return
eigenvalues that are exactly imaginary. This is not the case for unstructured algorithms since due
to rounding errors the eigenvalues may leave the imaginary axis. This results in the problem of
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deciding whether a computed eigenvalue λ is imaginary or not. In our tests, we declared λ to be
imaginary if

|ℜe(λ)| < 10−8. (17)

The whole unstructured eigenvalue solver is given in the following algorithm.

Algorithm 3
Input: a Hamiltonian matrix M ∈ R2n,2n that has simple purely imaginary eigenvalues.
Output: a matrix X ∈ C2n,k whose columns are the eigenvectors of M corresponding to the
imaginary eigenvalues with a positive imaginary part.

1. Compute the real Schur form M = URUT using the MATLAB function schur.m.

2. Reorder the real Schur form [W1, W2]
T R[W1, W2] =

[
R̃1 R̃3

0 R̃2

]
, where [W1, W2] ∈ R2n,2n is

orthogonal, R̃1 ∈ R2k,2k is quasi-upper triangular with only eigenvalues satisfying (17) and

R̃2 does not have eigenvalues satisfying (17).

3. Compute a nonsingular matrix Q = [Q1, Q2] with Q1, Q2 ∈ R2k,k such that

R̃1Q = Q diag(λ1, . . . , λk, λ1, . . . , λk).

4. Compute X = UW1Q1.

In the following table the numerical results are presented. Next to the problem name and size
we list the number of computed imaginary eigenvalues, the eigenvector accuracy defined as

max
i
‖Mvi − jωivi‖2,

the computation time and the resulting speedup. The first values correspond to the structured
Algorithm 1 and the values in parenthesis correspond to the unstructured Algorithm 3.

Problem n im. ev found vector accuracy time speedup
coax1 320 21 (20) 2e-10 (1e- 8) 5 (9) 1.9
coax2 35 21 (21) 7e-14 (6e-12) 0.02 (0.03) 1.6

twolines 49 25 (25) 3e-11 (1e-12) 0.03 (0.06) 1.8
branch 100 54 (54) 2e-12 (8e-13) 0.2 (0.3) 1.4
rj45 160 11 (11) 1e-13 (7e-12) 0.7 (1.0) 1.6

It can be concluded that compared to Algorithm 3, the structured Algorithm 1 is

• more reliable
(For the problem ’coax1’, Algorithm 3 missed an eigenvalue),

• as accurate as
(the computed eigenvector residuals are of about the same order for both algorithms. It
should be mentioned that in theory, Algorithm 1 has problems with eigenvectors to eigen-
values that are small in magnitude),

• faster
(both algorithms share a complexity of O(n3) flops, but Algorithm 1 is between 30% and
50% faster than Algorithm 3.

Thus, the use of a structured eigenvalue solver is strongly advisable.
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5.2 Passivation algorithm

In this subsection, we discuss the performance of the passivation scheme presented in Section 4.
A first test addresses the choice of the tuning parameter α used in (12) for the ’coax2’ problem.
The following table and figure give the number of iterations, computation time and norms of the
resulting perturbation ‖E‖H2

= ‖∆LT ‖F for various values of α.

α # iter. time ‖∆LT ‖F
0.01 901 31.1 0.00077
0.05 148 5.26 0.0014
0.1 70 2.43 0.0021
0.15 40 1.37 0.0023
0.2 32 1.11 0.0023
0.25 8 0.35 0.0023
0.3 6 0.3 0.0027
0.35 5 0.25 0.0032
0.4 4 0.25 0.0036
0.45 3 0.19 0.004
0.5 3 0.19 0.0043
0.55 4 0.22 0.0056

One can see that higher values of α result in fewer iterations, and hence, less computation
time, but also in larger perturbations. For the following tests, we used a value α = 0.25 providing
a good compromise between speed and small perturbation.

The passivation scheme was then applied to all the test problems. The results are listed in the
following table.

Problem n p
‖∆LT ‖F

‖CLT ‖F
# iter. time (sec)

coax1 320 2 2.3e-3 21 115
coax2 35 2 2.3e-3 8 0.35

twolines 49 4 3.8e-2 18 0.9
branch 100 4 7.5e-2 29 6.3
rj45 160 8 5.5e-2 35 28

It should be noted that the algorithm converged for every problem. Further, the perturbations
are in the order of the approximation errors.
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