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Abstract—We present an optimal experiment design method-
ology and a superior and fully automated model generation
procedure for identifying a class of broad-band multiharmonic
behavioral models in the frequency domain. The approach re-
duces the number of nonlinear measurements needed, minimizes
the time to generate the data from simulations, reduces the time
to extract the model functions from data, and when used for
simulation-based models, takes maximum advantage of special-
ized simulation algorithms. The models have been subject to
extensive validation in applications to real microwave integrated
circuits. The derived model is valid for both small and large am-
plitude drive signals, correctly predicts even and odd harmonics
through cascaded chains of functional blocks, simulates accu-
rately load–pull behavior away from 50 
, and predicts adjacent
channel power ratio and constellation diagrams in remarkably
close agreement to the circuit model from which the behavioral
model was derived. The model and excitation design templates
for generating them from simulations are implemented in Agilent
Technologies’ Advanced Design System.

Index Terms—Design automation, frequency-domain analysis,
microwave measurements, modeling, nonlinear circuits, nonlinear
systems, small-signal mixer (SM) analysis.

I. INTRODUCTION

THE DESIGN of broad-band microwave systems and mod-
ules for modern instrumentation applications presents a

significant challenge. A typical microwave system will contain
several active integrated-circuit (IC) components, as well as pas-
sive elements, each of which may be distributed in nature. Such
a system is often too complex to permit complete simulation
of the nonlinear behavior at the transistor level of description.
A complete system simulation can become practical, however,
provided the design is done at a higher level of abstraction, using
behavioral models of the nonlinear blocks or ICs. The behav-
ioral models must describe both the frequency-dependent non-
linear behavior of the ICs and properly describe the propaga-
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tion of harmonic and intermodulation distortions through the
system to enable the designer to meet rigid specifications, while
being simple enough to allow rapid simulation. The resulting
behavioral model must provide complete intellectual property
(IP) protection; it must be fundamentally impossible to reverse
engineer the underlying circuit or circuit-level model from the
behavioral model. This promotes IP sharing and reuse.

Behavioral models can be formulated in the time, frequency,
or mixed domains [1], [2, Ch. 3 and 5]. Time-domain behav-
ioral models are usually formulated by the specification of a
nonlinear ordinary differential equation. They are naturally best
suited, therefore, to systems that can be approximated efficiently
by lumped nonlinearities. Time-domain models have an advan-
tage in that they can execute properly in all modes of simulation,
including transient analysis (TA), harmonic balance (HB), and
circuit envelope (CE) analysis. However, in the latter two cases,
the solution algorithms must transform back and forth between
the time and the respective simulation domains, at each itera-
tion, using, for instance, the fast Fourier transform (FFT). This
can increase the simulation time.

A model formulated in the mathematical language native
to the simulation algorithm used to most efficiently solve the
problem has the potential to be more efficient. In particular, it
is natural, if less familiar, to formulate a model of a microwave
circuit in the frequency domain for accurate and efficient HB
simulation. Another major advantage of a frequency-domain
model is that it is better suited to model dispersive distributed
components over a wide bandwidth, as are common in RF, mi-
crowave, and millimeter-wave systems. Moreover, the structure
of the model considered here is amenable to direct identifica-
tion, in the frequency domain, from simple frequency-domain
excitations using a vector nonlinear network analyzer (VNNA).
In contrast, the approach of [3] requires conversion of the
frequency-domain excitations and system responses to the time
domain for the purpose of model identification and implemen-
tation.

The infrastructure and process of behavioral modeling in-
volves at least three interrelated components. The first is the
model (or model class) itself. This means, for example, the spec-
ification of the order and structure of the differential equation in
the time domain, or the number of harmonics and the structure of
the input-to-output spectral mapping in the frequency domain.
The second component of behavioral modeling is the excitation
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design. This refers to the set of experiments (stimuli) required
to elicit the system response sufficiently to identify the model
parameters. The third is the model generation procedure. This
is the algorithm used to determine the model parameters from
the data obtained from the experiments.

Requirements for a robust behavioral modeling process in-
clude the ability to characterize, quickly, the component or cir-
cuit-level model, and construct the behavioral model in a repeat-
able, procedural, and automated way. The excitations should be
as few in number as possible for the particular model class. Ide-
ally, each experiment can be used to identify a particular model
parameter uniquely and independently. In an optimal design,
each additional experiment provides totally new, or “orthog-
onal” information [4].

In [5], a black-box frequency-domain behavioral model,
generalized from the work of [6], was identified from real
automated measurements on a wide-band microwave IC am-
plifier using a VNNA [7]. This measurement-based behavioral
model was experimentally demonstrated to be valid for small
and large amplitude drive signals, correctly predict even and
odd harmonics, and simulate accurately even into impedances
different from the 50- environment in which the data was
measured. One limitation of the usefulness of the model is the
limited dynamic range of the VNNA instrument, which can
be estimated from the data in [5]. Nevertheless, the results of
[5] demonstrate that the behavioral model, together with the
automated VNNA measurements to identify it, provide a gen-
eral, practical, and useful tool. Moreover, recent large-signal
hardware developments [8] significantly demonstrate improved
dynamic range that will only increase the general utility of the
approach. Another limitation of [5] is the suboptimal nature of
the experiment design and model identification algorithm. That
is the subject of this study.

In this paper, we present a superior experiment design ap-
proach and an improved algorithm for identifying, from this
different set of data, the behavioral model discussed in [5]. In
fact, the approach is both orthogonal and optimal in the sense
it uses the minimum number of independent measurements.
We apply the new approaches to generate accurate behavioral
models from detailed circuit-level models of real microwave
ICs using the nonlinear simulator as a virtual instrument. New
results, including the prediction of ACPR and I–Q constellation
diagrams by the behavioral model are presented and validated.
In combination with [5], this study completes the “closing of
the loop” to include both simulation- and measurement-based
approaches to generating the same frequency-domain nonlinear
behavioral model.

In Section II, we briefly review the poly-harmonic distortion
(PHD) behavioral model. In Section III, we describe the new
experiment design and model generation algorithms. In Sec-
tion IV, we compare the approach to other work in the literature.
In Section V, we present new results validating the PHD model
against the circuit model from which it was derived.

II. PHD MODEL FORMULATION

The target behavioral model for this study was presented in
[5], which generalized the work first presented in [6] and sum-

marized in [2, Ch. 5]. It is a “black-box” behavioral model re-
quiring no a priori knowledge of the device physics or circuit
configuration of the nonlinear component. The model theory
derives from a multiharmonic linearization around a periodic
steady state determined by a large-amplitude single input tone.
For this reason, we refer to the model as the PHD model. The
assumption is that the system to be modeled can depend in a
strongly nonlinear way on its large-signal drive, but neverthe-
less responds linearly to additional signal components at the har-
monic frequencies considered as “small” perturbations around
the time-varying system state. This is referred to as the “har-
monic superposition” principle [6]. The harmonic superposition
principle has been shown in [2, Ch. 5], [5], and [6] to be an ap-
proximation well satisfied by power amplifiers of several dif-
ferent classes and for applications where the functional block
is inserted into impedance environments mismatched somewhat
from 50 at both the fundamental and harmonics. In real ap-
plications, for example, these harmonic terms can result from
nonlinearities created from previous amplification stages or re-
flections from nonlinear devices at the next input stage of a
multistage amplifier. The broad-band nature of the model is
essential for modeling the frequency dependences of the non-
linear responses of such microwave ICs as multiple-octave trav-
eling-wave amplifiers and other components useful in instru-
ment applications.

The model is defined by (1) and (2) in the frequency domain
relating complex transmitted and scattered waves at each port

and harmonic index to a linear combination of terms in the
incident waves and their complex conjugates independently at
each port at each harmonic. The fact that the complex conjugate
terms appear is a necessary consequence of the nonanalyticity
of the Jacobian, which represents the linearization around the
time-varying operating point established by the single large-am-
plitude tone in the absence of perturbation. An alternative expla-
nation follows from the mixer analysis of Section III. The sums
in (1) are over all port indexes , and harmonic indices (DC is
excluded in the cases presented here so the sum over starts at
the fundamental. In general, this method can easily be extended
to include the dc term, in which case, the sum starts from index
0.)

(1)

(2)

In (1), is a pure phase that, along with
the magnitude-only dependence on of the and func-
tions, is a necessary consequence of the assumed time invari-
ance of the underlying system. A redundancy, introduced by
summing over the fundamental components in addi-
tion to the harmonics in (1), requires the imposition of the addi-
tional constraints given by (2). For all but one of the applications
demonstrated in Section VI, we consider a two-port amplifier
model with five harmonics. The final result was obtained con-
sidering only three harmonics.
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III. EXCITATION DESIGN

In [5], the excitation design for the PHD model was based on
perturbing the nonlinear component under a large-signal drive
by applying several small tones one at a time at each port and at
each harmonic of the fundamental. This was done for each har-
monic up to the maximum number needed for the model (or, for
the measurement-based case, the limitation of the instrument’s
bandwidth). The structure of model (1) and (2) is such that, in
principle, the and coefficients at each harmonic can be ex-
tracted directly from three measurements. These measurements
are: 1) the responses at each port and at each harmonic frequency
to the large tone without perturbation; 2) the responses to the si-
multaneous excitation of the large tone and a small-signal per-
turbation tone; and 3) the responses to a simultaneous excita-
tion of the large tone and a small-signal perturbation tone at a
the same frequency, but different phase compared to the small
tone of 2). The component of the -wave at each port and at
each harmonic has contributions from both and ; the two
relative phases per frequency per port for the small tones were
proposed in order to provide two independent data for from
which to determine the two model coefficients ( and ) for a
given harmonic frequency component of the response.

The improved experiment design is based on considering
model (1) and (2) as the limiting case of a more general
time-varying nonlinear system perturbed by an arbitrary small
tone. Here the restriction that the frequency of the perturbation
tone is exactly at a harmonic of the fundamental is relaxed.
Such a system can be analyzed as a mixer. Moreover, if the per-
turbing tone is sufficiently small, the analysis can be considered
to be that of a “small-signal mixer” (SM).

The derivation is outlined for a single port. The extension
to multiple ports is obvious. We start in the time domain by
representing the output wave as a nonlinear function of the
input wave according to (3) as follows:

(3)

These are real signals and, in (3), the nonlinearity is algebraic
(this restriction is not necessary, but facilitates a simpler way to
the result). We now consider the input signal class to be the sum
of a single large tone at frequency and a small-signal

at frequency as follows:

(4)

We assume the perturbation is small, and expand (4) in a
Taylor series and keep terms only up through first order as fol-
lows:

(5)

Identifying , the linear response is given by
(6) as follows:

(6)

Since is periodic, we can expand the first term on the
right-hand side of the equal sign of (6), the conductance nonlin-
earity, in a Fourier series in as follows:

(7)

The perturbation tone is represented in the frequency domain
as follows:

(8)

Here, and is a small (in magnitude) complex
number.

Note that we are dealing with two periodic signals with un-
related fundamental periods (7) corresponding to the system re-
sponse to a large tone at , and (8), the small tone at . Mul-
tiplying out the factors in (6) using (7) and (8) results in the
following expression for :

(9)

For future reference, we designate the third through sixth
terms of (9) as (a)–(d), respectively.

We now consider the special case where the frequency of the
small tone is nearly a harmonic (integer multiple) of the funda-
mental of the large tone, i.e., . Here, is a positive
infinitesimal. The frequency offset will allow us to refer to the
stimulus at frequency as the upper sideband stimulus at fre-
quency .

The objective is to pick out the complex spectral components
of the response in the frequency domain at the harmonic
frequencies for nonnegative integers . We
can break up the contributions into terms proportional to and

separately. For simplicity, we assume there are no dc compo-
nents in the following. Looking at terms (a) and (b) in (9), we
find that the contributions that are proportional to are
for or for . From terms (c) and
(d) in (9), we obtain the terms proportional to . The results are

for and for .
Thus, we can write the linearized response at the th

harmonic in response to the perturbation at the th harmonic
as

(10)

with the coefficients given in terms of the harmonic series for
the conductance as described above. This allows the behavior
of the and coefficient functions to be related to the Volterra
representation of the original nonlinearity.

If we compare (10) (note we omitted the port indexes here)
to (1), we can see that the coefficients of the PHD model can be
explicitly calculated in terms of the Fourier series of the system
conductance nonlinearity of (7) in the limit as goes to zero.



ROOT et al.: BROAD-BAND PHD BEHAVIORAL MODELS 3659

TABLE I
OUTPUT OF SM SIMULATION F = 3 GHz,M = 2, AND ORDER = 8

Keeping track of the term, we can also see that the coef-
ficients are the responses at the upper sideband and that the
coefficients, with the same indices, are the lower sideband re-
sponses. This is the direct way to identify the PHD model from
this SM analysis.

From basic mixer theory, if a signal consisting of the sum of
two tones at (angular) frequencies and , respectively, are
put through a nonlinear device, the discrete frequencies of the
response fall at frequencies satisfying

(11)

for and provided (to keep from double
counting). The integers and correspond to the order
of the mixing terms. If we further assume that one tone is
always small compared to the other, we can simplify (11) by
assuming all terms beyond the first order of the small tone can
be neglected. This is equivalent to restricting .

We now set . For , we get the degen-
erate case of the harmonically related experiment of the design
approach of [5]. This corresponds to a small tone at the th har-
monic of the fundamental. Considering as a positive infinites-
imal allows us to keep separate track of the two different terms
that contribute to the same frequencies in the output spectrum
due to different origins.

We consider the example for which GHz,
(small tone at 6 GHz), and order . Here “order” is the order
of the HB analysis part of the SM analysis used. The spec-
tral response, linear in the perturbation signal, can, therefore,
be represented as in Table I. This represents the difference be-
tween the full output spectrum of the system with one large

and one small tone, and the output of the system with only the
single large tone (no small tone added). The second column is
the order of the large tone contributing to the frequency com-
ponent specified in that row. A negative sign means the nega-
tive frequency component. The third column indicates the order
of the small tone (recall only terms for are consid-
ered). The fourth column indicates whether the contribution to
this frequency is at the lower or upper sideband (by keeping
track of ). We could also distinguish the sidebands simply by
checking the value of . There is only one contribution at fre-
quency ; this is an upper sideband. There are two contri-
butions to the next group of frequencies, from 3 to 18 GHz, in
the same alternating order of lower and upper sidebands. This
follows from the two different contributions of orders of the
large and small tones that can combine to give terms at each of
these frequencies. For example, at 9 GHz, the fifth-order con-
tribution from the large tone at 3 GHz combines with the neg-
ative frequency component of the small tone at 6 GHz to give
a tone at GHz GHz GHz. The upper
sideband comes from a combination of a first-order term in the
large tone with the positive term from the small tone because

GHz GHz GHz. There are no other combi-
nations possible to end up at 9 GHz. Eventually, at 21 GHz, there
are only upper sidebands. This is because for a lower sideband
to exist, it must correspond to the solution of (12) as follows:

GHz GHz GHz (12)

The solution to (12) is , which is beyond the order
value, and thus it is not calculated. This condition persists for the
rest of the frequencies. There is a table like this for each value
of .

In a simulation, using SM analysis, to be described, we can
set . In a real measurement, however, must be kept small,
but nonzero, typically approximately 1 kHz. In this case, there
are always both upper and lower sidebands at each frequency
provided their magnitude is large enough to measure and if the
frequency offset is not too small to resolve the two sidebands.
Therefore, in a real measurement, there would be second rows
in the table just below 21, 24, 27, and 30 GHz (for this example)
corresponding to the lower sidebands.

Through these calculations we determine the coefficients
from the upper sideband responses and the coefficients from
the lower sideband responses. This demonstrates that we only
need a single upper sideband (small) signal excitation at each
port at each harmonic from which to extract both and co-
efficients corresponding to upper and lower sidebands, respec-
tively. We do not need (at least) two small tones of different
relative phases as required by the method of [5].

For the simulation-based approach, the Agilent Advanced
Design System (ADS) SM analysis is used as the excitation.
A key advantage of this excitation is that the simulation is
much faster than a two-tone HB analysis since the only HB
analysis done in the former is that for the single large tone.
The linearization of the system is done automatically using
the Jacobian information already computed by the simulator
for the one-tone HB analysis. Another advantage is that the
SM analysis results in exactly (to numerical precision) the
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linearized response of the system under a large-signal drive to
the perturbations at the harmonics. A two-tone HB analysis,
even for one of the tones being small, would produce additional
mixing terms, which increases the size of the dataset and
requires a more complicated regression analysis to identify the
model.

The simulation is specified by stepping the small-signal offset
frequency from zero to some upper multiple of the fundamental
large tone at each port separately. For each of these conditions,
an SM analysis is performed for each power level and funda-
mental frequency over which the model is to be used. The re-
sult of the analysis is precisely (for each fundamental) the set of
data shown in Table I. A nonzero offset, corresponding to in
the range 1 Hz–1 kHz, is used to get the ordering as shown in
Table I. The results for any values of in this range are usually
identical to five significant digits. For , the order of the
rows of Table I may differ.

The model identification (generation) algorithm directly ex-
tracts the and coefficients at each power level for each fun-
damental frequency. The values of and at each power and
frequency, for all combinations of indices, are written to the final
model Citifile.

IV. MODEL IMPLEMENTATION

The PHD model is implemented in the Agilent ADS simu-
lator as a sub-circuit using the frequency-domain device (FDD)
built-in component. The measured and identified and model
functions are stored in a two-dimensional Citifile format. The
dimensions correspond to the amplitude and fundamental fre-
quency of the large-signal input tone, respectively. Equations
(1) and (2) appear in a text file read by the model. A data-access
component (DAC) links the tabulated data to the model and per-
forms multidimensional interpolation during the simulation.

V. DISCUSSION

The work of [5] resulted in very accurate measurement-based
behavioral models with a well-defined and procedural experi-
ment design and model identification procedure. However, that
experiment design required many more measurements than nec-
essary. That method requires, in practice, injecting small tones
at several different phases relative to the large input tone (at each
port and at each harmonic). The need for several phases arises
from two independent reasons. Fundamentally, starting from
(1), injecting small tones at precisely harmonics of the funda-
mental requires tones at a minimum of two phases since the con-
tributions from the separate mechanisms described by the new
approach overlap in frequency (the upper and lower sidebands
coincide) and cannot be separated. Beyond this, since the hard-
ware cannot specify the phase of the small tones (it can mea-
sure them, but not specify them), a number of measurements (at
random phases) are needed to ensure a well-conditioned solu-
tion to the regression equations. This last requirement multiplies
the number of needed measurements by an additional factor typ-
ically from 2 to 6.

In contrast, the new mixer-based offset tone method pre-
sented in this paper enables experiments in which small tones
of only a single—but arbitrary—phase for frequencies near

the harmonics are sufficient to identify the model coefficients.
This is because with actual frequency offsets relative to the
harmonics, the responses of the system occur at different
nonoverlapping frequencies (the sidebands are distinct) and
measurable independently. It is important to emphasize that
both the amplitude and phase of each of the two -offset
sidebands must be measured in order to identify the model
of (1). This cannot be done with most available measurement
systems, hence, the requirement of an advanced system with
the capabilities of a VNNA. The -offset measurements can be
done using the narrow-band modulation mode of the VNNA.

The new experiment design presented here dramatically re-
duces the number of required measurements for both measure-
ment- and simulation-based applications. It, therefore, reduces
the data acquisition time and reduces both the size and com-
plexity of the data file. In the case of the simulation-based ap-
plication, the new experiment design, based on the SM anal-
ysis, results in the exact linearization of the system around the
large-tone already calculated by the simulator as part of the HB
solution corresponding to one-tone excitation. The linear re-
sponse is produced by a direct evaluation using the Jacobian in-
formation from the single-tone HB analysis. The SM analysis is
much more efficient than using a two-tone (one large tone and
one small tone) HB simulation. The SM analysis ensures the
virtual data is uncorrupted by harmonics of the smaller tones
that would result from a direct application of the experiment
design of [5]. The new experiment design also significantly re-
duces the computer memory requirements and complexity of
the resulting data. The new identification procedure results in a
dramatic simplification of the model generation process. The
and functions are extracted directly and independently from
a single SM experiment design. Each independent experiment
yields a different set of and functions, therefore, resulting
in the optimal procedure for this model class, demonstrating the
“orthogonality” principle.

Beyond this, the new methods of excitation design and model
identification correspond to a more general representation of
nonlinear systems than the amplifier-specific form (1) of the
PHD nonlinear behavioral model. The general approach em-
bodies a scalable representation of multiport broad-band linear
time-varying systems. The PHD model emerges as a special
case for a system stimulated by signals of the class considered
here. The general case obviously includes linear mixers. The ex-
tension to mixers with distortion will be presented elsewhere.

References [2, Ch. 3] and [9] present experiment designs
somewhat similar to this study in that they are based on ap-
plying a small tone offset from a large tone to obtain responses
at three different frequencies (per offset) from which a behav-
ioral model can be identified. However, neither of these studies
explicitly take into account the harmonics generated by the
nonlinear device. Moreover, the models identified in [2, Ch. 3],
[9], and [10] are not identical to model (1) used in this study.
Therefore, the model identification algorithm is different as
well.

Reference [11] presents an experiment design similar to that
of [2, Ch. 3] and [9]. However, [11] deals with a simplified
version of the model of (1), neglecting all harmonics and the
frequency dependence of the large tone. Moreover, [11] does
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not discuss the use of the specialized SM simulation algorithm,
which applies without the need for a nonzero offset frequency,
in order to most efficiently generate data from simulations of
detailed circuit models.

Reference [12] presents an extraction of the conversion ma-
trix of a nonlinear two-port from VNNA measurements using a
methodology very similar to the experiment design presented in
this study. However, [12] does not relate the experiment design
to a nonlinear model, such as (1), implemented in the simulator
that can be used for broad-band designs over a continuous range
of signals. Moreover, the three aspects (model, experiment de-
sign, and model identification) presented in this study are for-
mulated directly in terms of incident, transmitted, and reflected
(pseudo) waves. This represents a more direct link with the mea-
surements, as well as -parameter theory, without the need for
transformations to and from the admittance representation. Fur-
ther connection between this study and conversion matrices can
be found in [13].

VI. RESULTS

The experiment design and model generation procedure de-
scribed here were applied to a detailed circuit-level model of a
wide-band microwave IC amplifier, the Agilent Technologies’
HMMC-5200 [14], the same component that was used for the
experimental work in [5]. This is a dc–20-GHz 10-dB gain am-
plifier with internal feedback designed for use as a cascadable
gain block in a variety of microwave circuit applications. It con-
tains eight GaAs HBTs of two different sizes, configured as a
compound modified Darlington feedback pair, operating in class
A.

The circuit model is placed in a simulation template in ADS.
The template applies a single-tone excitation in HB analysis to
the input of the amplifier model terminated with 50 . The am-
plitude and frequency of the tone are swept over the anticipated
useful range of the resulting behavioral model. The template
also allows variation of other circuit parameters such as biases
on dc pins that may be distinct from the RF ports. At each of
these conditions, the template invokes ADS SM analysis to pro-
vide the derivative information with respect to the large-signal
HB solution. The simulated results are exported from the ADS
dataset to a processing script. The new identification algorithm
is used to directly solve for the and coefficients of the PHD
model as functions of power, frequency, and the parametric vari-
ables such as supply voltage. The PHD model functions are tab-
ulated and stored in a multidimensional Citifile. The FDD imple-
mentation of the PHD model reads the Citifile and dynamically
interpolates during simulation.

The first six figures show the comparison of the PHD behav-
ioral model, generated using the current approach, compared to
the underlying circuit model from which it was derived. Fig. 1
shows the comparison for amplifier gain (in decibels) as a func-
tion of incident power (in dBm) over a decade range of fre-
quency (from 600 MHz to 6 GHz) from highly linear opera-
tion to over 2.5 dB compressed. Fig. 2 compares the AM–PM
characteristics of the circuit-level model and the derived PHD
behavioral model over the same range of operating conditions.
Figs. 3 and 4 show the comparison for the reflection amplitude

Fig. 1. Simulation-based PHD model (solid lines) compared to underlying
circuit-level model (dashed lines) from which it was derived. Gain in decibels
versus input power in dBm at different fundamental frequencies. The frequency
range is from 0.6 to 6 GHz.

Fig. 2. Simulation-based PHD model (solid lines), compared to underlying
circuit-level model (dashed lines) from which it was derived. AM–PM in
degrees versus input power in dBm at different frequencies.

and phase. In all cases, over the full range of compression and
full range of frequencies, the PHD behavioral model is an ex-
cellent representation of the circuit model’s behavior.

Fig. 5 compares the circuit-level and PHD behavioral models
in spectral regrowth envelope simulations using an RF carrier
modulated by a North American Digital Cellular (NADC) signal
as stimulus. The agreement is quantified in Table II in terms of
upper and lower channel ACPR and main channel power. The
agreement is excellent. Fig. 6 shows the corresponding con-
stellation diagrams from the circuit-level model and the PHD
model. The agreement is excellent. It should be remarked that
the real IC may exhibit certain nonlinear effects (e.g., subhar-
monic generation) that might not be described by the circuit
model and are, therefore, not included in the subsequently de-
rived PHD behavioral model. The ultimate test of the utility



3662 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 11, NOVEMBER 2005

Fig. 3. Simulation-based PHD model (solid lines), compared to underlying
circuit-level model (dashed lines) from which it was derived. Reflection match
in decibels versus input power in dBm at different frequencies.

Fig. 4. Simulation-based PHD model (solid lines), compared to underlying
circuit-level model (dashed lines) from which it was derived. Reflection phase
in degrees versus input power in dBm.

Fig. 5. Simulation-based PHD model (gray) compared to underlying
circuit-level model (black) from which it was derived. Transmitted spectrum
versus frequency offset. The agreement is so good it is difficult to distinguish
the black under the gray.

of the PHD model for amplifiers under complex modulated sig-
nals requires experimental characterization of the IC under these
conditions, which has yet to be done.

TABLE II
MAIN AND ADJACENT CHANNEL POWER

Fig. 6. Simulated trajectory diagrams. (a) Circuit-level model (black).
(b) Simulation-based PHD model (gray) derived from the circuit model.

Fig. 7, reproduced from [5], shows the experimental setup
using the VNNA with two sources and a switch to implement the
introduction of the small tones to each port. In contrast with the
original experiment design of [5], the narrow-band modulation
mode of the VNNA is required to make the measurements with
the narrowly offset tones characteristic of the improved method
described in this study.

Figs. 8 and 9 show results comparing circuit-level and PHD
behavioral models in cascade. The cascade includes ideal atten-
uators between each amplifier to ensure that the amplifiers are
not overdriven, and yet the actual input and output impedances
are presented to the preceding and successive stages in the cas-
cade. In this validation exercise, the PHD model includes three
harmonics. Fig. 8 shows the amplitude of the second harmonic
at the output of the second amplifier (in decibels) as a function
of incident power over a decade of bandwidth. Fig. 9 shows the
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Fig. 7. Schematic connection of the VNNA for the large- and small-signal
perturbations to the device-under-test (DUT). The hardware configuration is
identical to that of [5]. Unlike the method of [5], the current approach can be
implemented with small tones (source 2) injected at frequencies slightly offset
in frequency from harmonics of the fundamental tone (source 1). The results are
measured in the narrow-band modulation mode of the VNNA.

Fig. 8. Two amplifier models in cascade, circuit-level models (dashed lines),
and derived PHD behavioral model (solid lines). Second harmonic power (in
dBm) at the output of the second amplifier as a function of the incident power
(in dBm). Frequencies range from 0.6 to 6 GHz.

Fig. 9. Two amplifier models in cascade, circuit-level models (dashed lines),
and derived PHD behavioral model (solid lines). Third harmonic phase (in
degrees) at the output of the second amplifier as a function of the incident
power (in dBm). Frequencies range from 0.6 to 6 GHz.

phase of the third harmonic at the output of the second amplifier.
In both cases, the agreement is excellent. Moreover, we have
validated the comparison for a string of ten cascaded amplifiers
(not shown) with similar results. This validates the claim that
the PHD model can predict well the propagation of vector dis-
tortion through chains of nonlinear components.

VII. CONCLUSIONS

We have presented an improved experiment design and im-
proved model generation procedure for the broad-band PHD
nonlinear behavioral model in the frequency domain. The model

has been validated for a wide-band microwave amplifier IC.
The model, implemented in Agilent ADS, is very accurate for a
wide variety of nonlinear figures-of-merit, including AM–AM,
AM–PM, harmonics, load–pull, and time-domain waveforms,
even when used beyond the 50- environment in which the
measurements for model identification were made. The PHD
behavioral model faithfully represents driven nonlinear systems
with mismatches at both the fundamental and harmonics. This
enables the accurate simulation of distortion through cascaded
chains of nonlinear components, thus providing key new design
verification capabilities for RF and microwave modules and sub-
systems.

The new experiment design and model generation algorithms
have been applied in the simulation environment starting from a
circuit-level model of the IC. The improved experiment design
and model identification procedure can also be applied to auto-
mated large-signal measurements using a VNNA.

The current experiment design dramatically reduces the
number of measurements required to identify the model and re-
duces the size and complexity of the data. The methods result in
a determination of the separate and independent contributions
to the and model coefficients from specific orders of the
mixing products, providing the optimal orthogonal excitation
design and model generation processes. In the simulation-based
application, the new excitation design rigorously insures that
only the ideal linearized response to the large-signal tone is
produced by the simulator, thus enabling a direct closed-form
formula for the model identification of the - and -parame-
ters. The simulation necessary to virtually excite the detailed
circuit-level model for generating the behavioral model is
based on the efficient SM analysis method. This method uses
quantities already computed by the HB analysis of the system
driven by a large input tone in order to evaluate the rigorously
linear response of the system around this tone. It is much faster
than a two-tone HB analysis.

This study, taken together with the companion experimental
study in [5], has demonstrated a unified framework for automat-
ically generating PHD amplifier behavioral models from both
real VNNA measurements of a physical component and from
a detailed circuit-level model of the component using the sim-
ulator. The PHD behavioral model faithfully represents driven
nonlinear systems with mismatches at both the fundamental and
harmonics. This enables robust, accurate, and useful simulation
of distortion through cascaded chains of nonlinear components,
thus providing key new design verification capabilities for RF
and microwave modules and subsystems.
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