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Transmission Lines 
1 Single transmission-line equations 

Consider the basic telegrapher's equations for a single ideal (lossless, dispersionless) 

transmission line as a function of the time t and the position x along the line (see Figure 

1). 

−
∂V
∂x

= L
∂I
∂t

 (1a) 

−
∂I
∂x

= C
∂V
∂t

 (1b) 

where V and I are the voltage and current, respectively, and L and C are the inductance 

and capacitance per unit length.  Solutions must be sought for the voltage and current 

which  

 
Figure 1. (a) Basic electrical model for lossless transmission line.  (b) Representation of a single 

ideal lossless microstrip line with linear resistive terminations. 
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satisfy the boundary conditions at x=0 and at x=l, where l is the length of the line.  First, 

Equations (1) are combined to yield the second-order differential equations 

∂2V
∂x2 = LC

∂2V
∂t 2  (2a) 

∂2I
∂x2 = CL

∂2I
∂t 2  (2b) 

For matters of convenience, we need to find a frequency-domain solution for a time-

harmonic excitation of frequency f = ω/2π where ω is the angular frequency.  This 

implies that V and I have ejωt time dependence; therefore, Equations (2) can be written as 

∂2V
∂x2 = −ω 2LCV  (3a) 

∂2I
∂x2 = −ω

2CLI  (3b) 

The general solutions for the voltage and the current are given by 

V(x) = Ae-jωx/vo  +  Be+jωx/vo (4a) 

I(x) = 
A
Zo

  e-jωx/vo  -  
B
Zo

  e+jωx/vo (4b) 

where the characteristic impedance Zo is given by 

Zo = 
L
C

 (5) 

and the propagation velocity vo is given by 

vo= 
1
LC  . (6) 
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Equations (4) are superpositions of forward and backward wave solutions to 

Equations (3) and the coefficients A and B are obtained by matching the boundary 

conditions at x=0 and x=l (see Figure 1(b)), namely, 

V1(ω) = V(0) + Z1 I(0) (7a) 

0 = V(l) -Z2I(l) . (7b) 

V1(ω) is the source voltage provided at x=0.  By substituting the above conditions in 

Equations (4), we get the values for the coefficients A and B. 

A = 
T V1(ω) 

1-Γ1Γ2e-2jωl/vo
  (8a) 

B = Γ2e-2jωl/voA (8b) 

where T1 is the transmission coefficient; Γ1 and Γ2 are the source and load reflection 

coefficients respectively; they are given by 

T = 
Zo

Z1+Zo
  (9) 

Γ1 = 
Z1-Zo
Z1+Zo

  (10) 

Γ2 = 
Z2-Zo
Z2+Zo

  . (11) 

A and B can be substituted into Equations (4) in order to get the complete solutions.  It is 

of interest to observe that the magnitudes of Γ1 and Γ2 are less than 1; therefore, the 

denominator of Equation (8a) can be expanded into a geometric series which yields 

A = TV1(ω ) Γ1
kΓ2

ke−2 jω kl /vo

k=0

∞

∑  (12a) 
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B = TV1(ω ) Γ1
kΓ2

k+1e−2 jω k+1( )l /vo

k=0

∞

∑  (12b) 

Therefore, the frequency-domain solutions are described by forward and backward wave 

solutions given respectively by 

Vf (x) = Γ1
kΓ2

ke−2 jω kl /vo e− jω x /voTV1(ω )
k=0

∞

∑  (13a) 

Vb (x) = Γ1
kΓ2

k+1e−2 jω k+1( )l /vo e+ jω x /voTV1(ω )
k=0

∞

∑  (13b) 

and the total voltage is given by 

V(x) = Vf(x) + Vb(x) . (14) 

Several important features need to be stressed regarding Equations (13).  First, we 

notice that for moderate reflection coefficients, only a few terms of the infinite series 

need to be retained in order to obtain an accurate approximation.  Second, by recognizing 

that V1(ω) can be regarded as the Fourier transform of some arbitrary time-domain 

voltage, V1(t), and by recalling that e-jωτ is the Fourier transform of the delayed impulse 

function δ(t-τ), inversion of Equation (13) can easily be performed into the time domain: 

Vf (x,t) = T Γ1
kΓ2

kV1 t −
x + 2kl

vo

⎛

⎝⎜
⎞

⎠⎟k=0

∞

∑  (15a) 

Vf (x,t) = T Γ1
kΓ2

k+1V1 t −
x − 2 k +1( )l

vo

⎛
⎝⎜

⎞
⎠⎟k=0

∞

∑  (15b) 

V(x,t) = Vf(x,t) + Vb(x,t) . (16) 
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Equations (15) and (16) represent the general time-domain solution for an arbitrary 

excitation, V1(t).  As can be seen, they are made of a superposition of delayed and 

attenuated components of the original signal V1(t).  


