Problem 1

1. Consider a static charge density \(\rho(x, y, z) = 6\delta(z) + \rho_s\delta(z-10) \) C/m\(^3\) in a given region, where the displacement field is \(\mathbf{D} = \hat{\mathbf{e}}z \delta(z) + \hat{\mathbf{e}}2 \) C/m\(^2\) for \(0 < z < 10 \) m and \(D_z = 2 \) C/m\(^2\) for \(z > 10 \) m. Furthermore, field \(\mathbf{D} \) is uniform in each of regions \(z < 0, 0 < z < 10 \) m, and \(z > 10 \) m.

 a) Determine \(\rho_s \),

 b) Determine \(\mathbf{D} \) for the region \(z > 10 \) m

 c) Determine \(\mathbf{D} \) for the region \(z < 0 \).

Problem 2

2. Write a program that simulates the response (voltage at near and far ends) of a lossless transmission line terminated with linear resistive loads. Test your program using the example shown below. Use \(Z_0 = 75 \) \(\Omega \), \(\tau = 2.37 \) ns, \(Z_1 = 50 \) \(\Omega \), \(Z_2 = 1 \) K\(\Omega \). Optimize your code to minimize run time. Show plots of the pulse response at the near and far ends of the line. Give a listing of your program.

\[\begin{array}{c}
Z_1 \quad Z_0 \quad \tau \\
V_g \\
\downarrow \\
\downarrow
\end{array} \]

The pulse characteristics for \(V_g(t) \) are as shown in the figure below, with

- time delay: \(t_d = 1 \) ns
- rise time: \(t_r = 1 \) ns
- fall time: \(t_f = 1 \) ns
- pulse width: \(t_w = 20 \) ns
- pulse amplitude: \(V_{\text{max}} = 4 \) volts
Amplitude

\[V_{\text{max}} \]

\[t_d \quad t_r \quad t_w \quad t_f' \]

time