ECE 546
Lecture -13
Scattering Parameters

Spring 2018

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu
Transfer Function Representation

Use a two-terminal representation of system for input and output
Y-parameter Representation

\[I_1 = y_{11}V_1 + y_{12}V_2 \]

\[I_2 = y_{21}V_1 + y_{22}V_2 \]
Y Parameter Calculations

To make $V_2 = 0$, place a short at port 2

\[
y_{11} = \left. \frac{I_1}{V_1} \right|_{V_2=0} \quad y_{21} = \left. \frac{I_2}{V_1} \right|_{V_2=0}
\]
Z Parameters

\[V_1 = z_{11}I_1 + z_{12}I_2 \]

\[V_2 = z_{21}I_1 + z_{22}I_2 \]
Z-parameter Calculations

\[Z_{11} = \left. \frac{V_1}{I_1} \right|_{I_2=0} \quad Z_{21} = \left. \frac{V_2}{I_1} \right|_{I_2=0} \]

To make \(I_2 = 0 \), place an open at port 2
$V_1 = h_{11} I_1 + h_{12} V_2$

$I_2 = h_{21} I_1 + h_{22} V_2$
H Parameter Calculations

To make $V_2 = 0$, place a short at port 2

$$h_{11} = \frac{V_1}{I_1} \bigg|_{V_2=0} \quad h_{21} = \frac{I_2}{I_1} \bigg|_{V_2=0}$$
G Parameters

\[I_1 = g_{11}V_1 + g_{12}I_2 \]
\[V_2 = g_{21}V_1 + g_{22}I_2 \]
G-Parameter Calculations

\[g_{11} = \frac{I_1}{V_1} \bigg|_{I_2=0} \quad g_{21} = \frac{V_2}{V_1} \bigg|_{I_2=0} \]

To make \(I_2 = 0 \), place an open at port 2
TWO-PORT NETWORK REPRESENTATION

Z Parameters
\[V_1 = Z_{11}I_1 + Z_{12}I_2 \]
\[V_2 = Z_{21}I_1 + Z_{22}I_2 \]

Y Parameters
\[I_1 = Y_{11}V_1 + Y_{12}V_2 \]
\[I_2 = Y_{21}V_1 + Y_{22}V_2 \]

- At microwave frequencies, it is more difficult to measure total voltages and currents.

- Short and open circuits are difficult to achieve at high frequencies.

- Most active devices are not short- or open-circuit stable.
Wave Approach

Use a travelling wave approach

\[V_1 = E_{i1} + E_{r1} \quad V_2 = E_{i2} + E_{r2} \]

\[I_1 = \frac{E_{i1} - E_{r1}}{Z_o} \quad I_2 = \frac{E_{i2} - E_{r2}}{Z_o} \]

- Total voltage and current are made up of sums of forward and backward traveling waves.

- Traveling waves can be determined from standing-wave ratio.
Wave Approach

\[a_1 = \frac{E_{i1}}{\sqrt{Z_o}} \quad a_2 = \frac{E_{i2}}{\sqrt{Z_o}} \]

\[b_1 = \frac{E_{r1}}{\sqrt{Z_o}} \quad b_2 = \frac{E_{r2}}{\sqrt{Z_o}} \]

\(Z_o \) is the reference impedance of the system

\[b_1 = S_{11} a_1 + S_{12} a_2 \]
\[b_2 = S_{21} a_1 + S_{22} a_2 \]
Wave Approach

\[
S_{11} = \left. \frac{b_1}{a_1} \right|_{a_2=0} \\
S_{12} = \left. \frac{b_1}{a_2} \right|_{a_1=0} \\
S_{21} = \left. \frac{b_2}{a_1} \right|_{a_2=0} \\
S_{22} = \left. \frac{b_2}{a_2} \right|_{a_1=0}
\]

To make \(a_i = 0 \)
1) Provide no excitation at port i
2) Match port i to the characteristic impedance of the reference lines.

CAUTION: \(a_i \) and \(b_i \) are the traveling waves in the reference lines.
S-Parameters of TL

\[S_{11} = S_{22} = \frac{(1 - X^2) \Gamma}{1 - X^2 \Gamma^2} \]

\[S_{12} = S_{21} = \frac{(1 - \Gamma^2) X}{1 - X^2 \Gamma^2} \]

\[\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} \]

\[\Gamma = \frac{Z_c - Z_{\text{ref}}}{Z_c + Z_{\text{ref}}} \]

\[X = e^{-\gamma l} \]

\[Z_c = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \]
S-Parameters of Lossless TL

\[\beta = \omega \sqrt{LC} \]

\[Z_c = \sqrt{\frac{L}{C}} \]

\[S_{11} = S_{22} = \frac{(1 - X^2) \Gamma}{1 - X^2 \Gamma^2} \]

\[S_{12} = S_{21} = \frac{(1 - \Gamma^2) X}{1 - X^2 \Gamma^2} \]

\[\Gamma = \frac{Z_c - Z_{\text{ref}}}{Z_c + Z_{\text{ref}}} \]

\[X = e^{-j\beta l} \]

If \(Z_c = Z_{\text{ref}} \)

\[S_{11} = S_{22} = 0 \]

\[S_{12} = S_{21} = e^{-j\beta l} \]
N-Port S Parameters

\[
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix} = \begin{bmatrix}
 S_{11} & S_{12} & \cdots \\
 S_{21} & S_{22} & \cdots \\
 \vdots & \vdots & \ddots \\
 \vdots & \vdots & \ddots & S_{nn}
\end{bmatrix} \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{bmatrix}
\]

\[b = Sa\]

If \(b_i = 0\), then no reflected wave on port \(i \Rightarrow\) port is matched

\[a_i = \frac{V_i^+}{\sqrt{Z_{oi}}} \quad V_i^+ : \text{incident voltage wave in port } i\]

\[b_i = \frac{V_i^-}{\sqrt{Z_{oi}}} \quad V_i^- : \text{reflected voltage wave in port } i \quad Z_{oi} : \text{impedance in port } i\]
N-Port S Parameters

\[v = \sqrt{Z_o} (a + b) \quad (1) \]
\[i = \frac{1}{\sqrt{Z_o}} (a - b) \quad (2) \]
\[v = Z i \quad (3) \]

Substitute (1) and (2) into (3)

\[\sqrt{Z_o} (a + b) = Z \frac{1}{\sqrt{Z_o}} (a - b) \]

Defining S such that \(b = S a \) and substituting for b

\[Z_o (U + S) a = Z_o (U - S) a \]

\[U : \text{unit matrix} \]

\[S \rightarrow Z \]
\[Z = Z_o (U + S)(U - S)^{-1} \]

\[Z \rightarrow S \]
\[S = (Z + Z_o U)^{-1} (Z - Z_o U) \]
N-Port S Parameters

If the port reference impedances are different, we define k as

$$k = \begin{bmatrix} \sqrt{Z_{o1}} \\ \sqrt{Z_{o2}} \\ \sqrt{Z_{on}} \end{bmatrix}.$$

$$v = k(a + b) \quad \text{and} \quad i = k^{-1}(a - b) \quad \text{and} \quad k(a + b) = Zk^{-1}(a - b)$$

$Z \rightarrow S$

$$S = \left(Zk^{-1} + k \right) \left(Zk^{-1} - k \right)$$

$S \rightarrow Z$

$$Z = k(U + S)(U - S)^{-1}k$$
Normalization

Assume original S parameters as S_1 with system k_1. Then the representation S_2 on system k_2 is given by

$$S_2 = \left[k_1(U + S_1)(U - S_1)^{-1} k_{12} + k_2 \right]^{-1} \left[k_1(U + S_1)(U - S_1)^{-1} k_{12} - k_2 \right]$$

Transformation Equation

If Z is symmetric, S is also symmetric
Dissipated Power

\[P_d = \frac{1}{2} a^T (U - S^T S^*) a^* \]

The dissipation matrix \(D \) is given by:

\[D = U - S^T S^* \]

Passivity insures that the system will always be stable provided that it is connected to another passive network.

For passivity
- (1) the determinant of \(D \) must be \(> 0 \)
- (2) the determinant of the principal minors must be \(\geq 0 \)
Dissipated Power

When the dissipation matrix is 0, we have a lossless network ➔

\[S^T S^* = U \]

The S matrix is unitary.

For a lossless two-port:

\[|S_{11}|^2 + |S_{21}|^2 = 1 \]
\[|S_{22}|^2 + |S_{12}|^2 = 1 \]

If in addition the network is reciprocal, then

\[S_{12} = S_{21} \quad \text{and} \quad |S_{11}| = |S_{22}| = \sqrt{1 - |S_{12}|^2} \]
Lossy and Dispersive Line

\[S_{11} = S_{22} = \frac{(1 - \alpha^2) \rho}{1 - \rho^2 \alpha^2} \]

\[S_{21} = S_{12} = \frac{(1 - \rho^2) \alpha}{1 - \rho^2 \alpha^2} \]

\[\alpha = e^{-\gamma l} \]

\[\rho = \frac{Z_c(\omega) - Z_o}{Z_c(\omega) + Z_o} \]
Frequency-Domain Formulation*

Frequency-Domain

\[
B_1(\omega) = S_{11}(\omega) A_1(\omega) + S_{12}(\omega) A_2(\omega)
\]

\[
B_2(\omega) = S_{21}(\omega) A_1(\omega) + S_{22}(\omega) A_2(\omega)
\]
Time-Domain Formulation
Time-Domain Formulation

\[b_1(t) = s_{11}(t)^*a_1(t) + s_{12}(t)^*a_2(t) \]

\[b_2(t) = s_{21}(t)^*a_1(t) + s_{22}(t)^*a_2(t) \]

\[a_1(t) = \Gamma_1(t)b_1(t) + T_1(t)g_1(t) \]

\[a_2(t) = \Gamma_2(t)b_2(t) + T_2(t)g_2(t) \]

\[T_i(t) = \frac{Z_o}{Z_i(t) + Z_o} \]

\[\Gamma_i(t) = \frac{Z_i(t) - Z_o}{Z_i(t) + Z_o} \]
Time-Domain Solutions

\[a_1(t) = \frac{\left[1 - \Gamma_2(t)s'_{22}(0) \right]\left[T_1(t)g_1(t) + \Gamma_1(t)M_1(t) \right]}{\Delta(t)} \]

\[+ \frac{\left[\Gamma_1(t)s'_{12}(0) \right]\left[T_2(t)g_2(t) + \Gamma_2(t)M_2(t) \right]}{\Delta(t)} \]

\[a_2(t) = \frac{\left[1 - \Gamma_1(t)s'_{11}(0) \right]\left[T_2(t)g_2(t) + \Gamma_2(t)M_2(t) \right]}{\Delta(t)} \]

\[+ \frac{\left[\Gamma_2(t)s'_{21}(0) \right]\left[T_1(t)g_1(t) + \Gamma_1(t)M_1(t) \right]}{\Delta(t)} \]
Time-Domain Solutions

\[b_1(t) = s'_{11}(0)a_1(t) + s'_{12}(0)a_2(t) + M_1(t) \]

\[b_2(t) = s'_{21}(0)a_1(t) + s'_{22}(0)a_2(t) + M_2(t) \]

\[\Delta(t) = \left[1 - \Gamma_1(t)s'_{11}(0) \right] \left[1 - \Gamma_2(t)s'_{22}(0) \right] - \Gamma_1(t)s'_{12}(0)\Gamma_2(t)s'_{21}(0) \]

\[M_1(t) = H_{11}(t) + H_{12}(t) \]

\[M_2(t) = H_{21}(t) + H_{22}(t) \]

\[s'_{ij}(0) = s_{ij}(0)\Delta \tau \]

\[H_{ij}(t) = \sum_{\tau=1}^{t-1} s_{ij}(t-\tau)a_j(\tau)\Delta \tau \]
Special Case – Lossless Line

\[
s_{11}(t) = s_{22}(t) = 0 \quad s_{12}(t) = s_{21}(t) = \delta\left(t - \frac{L}{v}\right)
\]

\[
M_1(t) = a_2 \left(t - \frac{L}{v}\right) \quad M_2(t) = a_1 \left(t - \frac{L}{v}\right)
\]

\[
a_1(t) = T_1(t)g_1(t) + \Gamma_1(t)a_2 \left(t - \frac{L}{v}\right)
\]

\[
a_2(t) = T_2(t)g_2(t) + \Gamma_2(t)a_1 \left(t - \frac{L}{v}\right)
\]

\[
b_1(t) = a_2 \left(t - \frac{L}{v}\right) \quad b_2(t) = a_1 \left(t - \frac{L}{v}\right)
\]

Wave Shifting Solution
Time-Domain Solutions

\[v_1(t) = a_1(t) + b_1(t) \]

\[v_2(t) = a_2(t) + b_2(t) \]

\[i_1(t) = \frac{a_1(t)}{Z_o} - \frac{b_1(t)}{Z_o} \]

\[i_2(t) = \frac{a_2(t)}{Z_o} - \frac{b_2(t)}{Z_o} \]
Simulations

Line length = 1.27m

$Z_o = 73 \, \Omega$

$v = 0.142 \, \text{m/ns}$
Simulations

Near End

Volts

Time (ns)

Far End

Volts

Time (ns)
Simulations

Line length = 25 in \[L = 539 \text{ nH/m} \]

C = 39 pF/m

Pulse magnitude = 4V

\[R_o = 1 \text{ k\Omega (GHz)}^{1/2} \]

Pulse width = 20 ns

Rise and fall times = 1ns
N-Line S-Parameters*

\[
B_1 = S_{11} A_1 + S_{12} A_2 \\
B_2 = S_{21} A_1 + S_{22} A_2
\]

Scattering Parameters for N-Line

\[S_{21} = S_{12} = 2E_0E^{-1} \left[1 - \Gamma \right] \Psi \left[1 - \Gamma \Psi \Gamma \Psi \right]^{-1} T \]

\[S_{11} = S_{22} = T^{-1} \left[\Gamma - \Psi \Gamma \Psi \right] \left[1 - \Gamma \Psi \Gamma \Psi \right]^{-1} T \]

\[\Gamma = \left[1 + EE_0^{-1} Z_0 H_0 H^{-1} Z_m^{-1} \right]^{-1} \left[1 - EE_0^{-1} Z_0 H_0 H^{-1} Z_m^{-1} \right] \]

\[T = \left[1 + EE_0^{-1} Z_0 H_0 H^{-1} Z_m^{-1} \right]^{-1} EE_0^{-1} \]

\[\Psi = W(-l) \]
Scattering Parameter Matrices

\(\mathbf{E}_0 \) : Reference system voltage eigenvector matrix

\(\mathbf{E} \) : Test system voltage eigenvector matrix

\(\mathbf{H}_0 \) : Reference system current eigenvector matrix

\(\mathbf{H} \) : Test system current eigenvector matrix

\(\mathbf{Z}_0 \) : Reference system modal impedance matrix

\(\mathbf{Z}_m \) : Test system modal impedance matrix
Eigen Analysis

* Diagonalize ZY and YZ and find eigenvalues.
* Eigenvalues are complex: $\lambda_i = \alpha_i + j\beta_i$

$$W(u) = \begin{bmatrix} e^{\alpha_1 u + j\beta_1 u} \\ \cdot \\ e^{\alpha_n u + j\beta_n u} \end{bmatrix}$$
Solution

\[V_m = EV \]

\[I_m = HI \]

\[V_m(x) = \left[W(-x)A + W(x)B \right] \]

\[I_m(x) = Z_m^{-1} \left[W(-x)A + W(x)B \right] \]

\[Z_m = \Lambda_m^{-1}EZH^{-1} \]

\[Z_c = E^{-1}Z_mH = E^{-1}\Lambda_m^{-1}EZ \]
Solutions

\[a_1(t) = \Delta_1^{-1} \left[1 - \Gamma_1(t)s'_{11}(0) \right]^{-1} \left[T_1(t)g_1(t) + \Gamma_1(t)M_1(t) \right] \]
\[- \Delta_1^{-1} \left[1 - \Gamma_1(t)s'_{11}(0) \right]^{-1} \left[1 - \Gamma_2(t)s'_{22}(0) \right]^{-1} \times \]
\[\left[\Gamma_1(t)s'_{21}(0) \right] \left[T_2(t)g_2(t) + \Gamma_2(t)M_2(t) \right] \]

\[a_2(t) = \Delta_2^{-1} \left[1 - \Gamma_2(t)s'_{22}(0) \right]^{-1} \left[T_2(t)g_2(t) + \Gamma_2(t)M_2(t) \right] \]
\[- \Delta_2^{-1} \left[1 - \Gamma_2(t)s'_{22}(0) \right]^{-1} \left[1 - \Gamma_1(t)s'_{11}(0) \right]^{-1} \times \]
\[\left[\Gamma_1(t)s'_{12}(0) \right] \left[T_1(t)g_1(t) + \Gamma_1(t)M_1(t) \right] \]
Solutions

\[\Delta_1(t) = 1 - \left[1 - \Gamma_1(t)s'_{11}(0) \right]^{-1} \left[1 - \Gamma_2(t)s'_{22}(0) \right]^{-1} \Gamma_1(t)s'_{21}(0) \Gamma_2(t)s'_{12}(0) \]

\[\Delta_2(t) = 1 - \left[1 - \Gamma_2(t)s'_{22}(0) \right]^{-1} \left[1 - \Gamma_1(t)s'_{11}(0) \right]^{-1} \Gamma_2(t)s'_{12}(0) \Gamma_1(t)s'_{21}(0) \]

\[b_1(t) = s'_{11}(0)a_1(t) + s'_{12}(0)a_2(t) + M_1(t) \]

\[b_2(t) = s'_{21}(0)a_1(t) + s'_{22}(0)a_2(t) + M_2(t) \]
Solutions

\[v_{m1}(t) = a_1(t) + b_1(t) \Rightarrow v_1(t) = E_o^{-1}[a_1(t) + b_1(t)] \]

\[v_{m2}(t) = a_2(t) + b_2(t) \Rightarrow v_2(t) = E_o^{-1}[a_2(t) + b_2(t)] \]
Lossless Case – Wave Shifting

\[s_{21}(t) = s_{12}(t) = \delta(t - \tau_m) \]

\[M_1(t) = a_2(t - \tau_m) \]

\[M_2(t) = a_1(t - \tau_m) \]

\[a_1(t) = T_1(t)g_1(t) + \Gamma_1(t)a_2(t - \tau_m) \]

\[a_2(t) = T_2(t)g_3(t) + \Gamma_3(t)a_1(t - \tau_m) \]

\[b_1(t) = a_2(t - \tau_m) \]

\[b_2(t) = a_2(t - \tau_m) \]
Solution for Lossless Lines

\[
\delta(t - \tau_m) = \begin{cases}
\delta(t - \tau_{m1}) & \\
\delta(t - \tau_{m2}) & \\
\vdots & \\
\delta(t - \tau_{mn}) &
\end{cases}
\]

\[
a_i(t - \tau_{m}) = \begin{bmatrix}
a_1(t - \tau_{m1}) \\
a_2(t - \tau_{m2}) \\
\vdots \\
a_n(t - \tau_{mn})
\end{bmatrix}
\]
Why Use S Parameters?

Y-Parameter

\[Y_{11} = \frac{1 + e^{-2\gamma l}}{Z_c (1 - e^{-2\gamma l})} \]

- \(Z_c \): microstrip characteristic impedance
- \(\gamma \): complex propagation constant
- \(l \): length of microstrip

\(Y_{11} \) can be unstable

S-Parameter

\[S_{11} = \frac{(1 - e^{-2\gamma l})\Gamma}{1 - \Gamma^2 e^{-2\gamma l}} \]

\[\Gamma = \frac{Z_c - Z_o}{Z_c + Z_o} \]

\(S_{11} \) is always stable
Choice of Reference

\[\Gamma = \frac{Z_c - Z_{\text{ref}}}{Z_c + Z_{\text{ref}}} \]

\[Z_c = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \]

\[Z_{\text{ref}} \text{ is arbitrary} \]

What is the best choice for \(Z_{\text{ref}} \)?

At high frequencies

\[Z_c \to \sqrt{\frac{L}{C}} \]

Thus, if we choose

\[Z_{\text{ref}} = \sqrt{\frac{L}{C}} \]

\[S_{12} \to e^{-j\omega \sqrt{LC}d} = X_o \]

\[S_{11} \to 0 \]
Choice of Reference

S-Parameter measurements (or simulations) are made using a 50-ohm system. For a 4-port, the reference impedance is given by:

\[
Z_0 = \begin{bmatrix}
50.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 50.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 50.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 50.0 \\
\end{bmatrix}
\]

- \(Z \): Impedance matrix (of blackbox)
- \(S \): S-parameter matrix
- \(Z_0 \): Reference impedance
- \(I \): Unit matrix

\[
S = \left[ZZ_0^{-1} + I \right]^{-1} \left[ZZ_0^{-1} - I \right]
\]

\[
Z = \left[I + S \right] \left[I - S \right]^{-1} Z_0
\]
Reference Transformation

Method: Change reference impedance from uncoupled to coupled system to get new S-parameter representation

\[
Z_o = \begin{bmatrix}
50.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 50.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 50.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 50.0 \\
\end{bmatrix}
\quad \text{Uncoupled system}
\]

\[
Z_o = \begin{bmatrix}
328.0 & 69.6 & 328.9 & 69.6 \\
69.6 & 328.8 & 69.6 & 328.9 \\
328.9 & 69.6 & 328.8 & 69.6 \\
69.6 & 328.9 & 69.6 & 328.8 \\
\end{bmatrix}
\quad \text{Coupled system}
\]

as an example...
Choice of Reference

\[Z_0 = \]

\begin{align*}
&50.0 & 0.0 & 0.0 & 0.0 \\
&0.0 & 50.0 & 0.0 & 0.0 \\
&0.0 & 0.0 & 50.0 & 0.0 \\
&0.0 & 0.0 & 0.0 & 50.0 \\
\end{align*}

as reference…

\[Z_0 = \]

\begin{align*}
&328.0 & 69.6 & 328.9 & 69.6 \\
&69.6 & 328.8 & 69.6 & 328.9 \\
&328.9 & 69.6 & 328.8 & 69.6 \\
&69.6 & 328.9 & 69.6 & 328.8 \\
\end{align*}

as reference…

Harder to approximate

Easier to approximate (up to 6 GHz)
Choice of Reference

Using:

$$Z_0 = \begin{bmatrix} 50.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 50.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 50.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 50.0 \end{bmatrix}$$

as reference...

Using:

$$Z_0 = \begin{bmatrix} 328.0 & 69.6 & 328.9 & 69.6 \\ 69.6 & 328.8 & 69.6 & 328.9 \\ 328.9 & 69.6 & 328.8 & 69.6 \\ 69.6 & 328.9 & 69.6 & 328.8 \end{bmatrix}$$

as reference...

Harder to approximate

Easier to approximate (up to 6 GHz)
Choice of Reference

\[Z_0 = \]

using

\[
\begin{array}{cccc}
50.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 50.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 50.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 50.0 \\
\end{array}
\]
as reference...

Easier to approximate (up to 6 GHz)

\[Z_0 = \]

using

\[
\begin{array}{cccc}
328.0 & 69.6 & 328.9 & 69.6 \\
69.6 & 328.8 & 69.6 & 328.9 \\
328.9 & 69.6 & 328.8 & 69.6 \\
69.6 & 328.9 & 69.6 & 328.8 \\
\end{array}
\]
as reference...

Harder to approximate
Choice of Reference

\[Z_0 = \begin{bmatrix}
328.0 & 69.6 & 328.9 & 69.6 \\
69.6 & 328.8 & 69.6 & 328.9 \\
328.9 & 69.6 & 328.8 & 69.6 \\
69.6 & 328.9 & 69.6 & 328.8
\end{bmatrix} \]

as reference...

\[Z_0 = \begin{bmatrix}
50.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 50.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 50.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 50.0
\end{bmatrix} \]

as reference...

Easier to approximate

Harder to approximate
Choice of Reference

S11 Magnitude

- Red: \(Z_{\text{ref}} = Z_0 \)
- Blue: \(Z_{\text{ref}} = 80 \) ohms
- Black: \(Z_{\text{ref}} = 100 \) ohms

Frequency (GHz)

\(S11 \)

\(Z_{\text{ref}} = Z_0 \)
Choice of Reference

S21 Magnitude

- **Zref=Zo**
- **Zref=80 ohms**
- **Zref=100 ohms**

Frequency (GHz)

- 0.7
- 0.75
- 0.8
- 0.85
Modeling of Discontinuities

1. Tapered Lines

2. Capacitive Discontinuities
Tapered Microstrip

General topology of tapered microstrip with d_w: width at wide end, d_n: width at narrow end, l_w: length of wide section, l_n: length of narrow section, l_t: length of tapered section.
Tapered Line Analysis Using S Parameters*

\[u_j(t) = s_{21}^{(j)}(t) * u_{j-1}(t) + s_{22}^{(j)}(t) * w_j(t) \]

\[w_j(t) = s_{11}^{(j+1)}(t) * u_j(t) + s_{12}^{(j+1)}(t) * w_{j+1}(t) \]

Tapered Transmission Line

Small End
- Excitation at small end

Wide End
- Excitation at small end

Small End
- Excitation at wide end

Wide End
- Excitation at wide end
Tapered Transmission Line

Varying tapering rate

Near End

Far End
Capacitive Load

\[Z_0 \]

\[Z_0 \quad C \]

Near End -- \(C = 4 \text{ pF} \)

Far end -- \(C = 4 \text{ pF} \)
Capacitive Load
Multidrop Buses

- Stubs of TL with nonlinear loads
- Reduce speed and bandwidth
- Limit driving capabilities
Transmission Lines with Capacitive Discontinuities
Capacitive Discontinuity

\[V_i + V_r = V_t \]

\[\frac{V_i - V_r}{Z_o} + \frac{E}{R} - \frac{V_i - V_r}{R} = \frac{V_t}{Z_o} \]

\[V_r = T_c E + \Gamma_c V_i \]
Scattering Parameter Analysis

\[u_j(t) = s_{21}^{(j)}(t) * u_{j-1}'(t) + s_{22}^{(j)}(t) * w_j(t) \]

\[u_j'(t) = u_j(t) + u_j''(t) \]

\[w_j(t) = w_j'(t) + u_j''(t) \]
Capacitive Loading
Computer-simulated near end responses for capacitively loaded transmission line with $l = 3.6$ in, $w = 8$ mils, $h = 5$ mils. Pulse parameters are $V_{\text{max}} = 4$ V, $tr = tf = 0.5$ ns, $tw = 4$ ns. Left: Varying P with $C = 2$ pF. Right: Varying C with $P = 300$ mils.