ECE 546
Lecture - 23
Jitter Basics

Spring 2018

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu
Probe Further

• Kyung Suk (Dan) Oh and Xingchao (Chuck) Yuan, High-Speed Signaling: Jitter Modeling, Analysis, and Budgeting, Prentice Hall, 2012
• Mike Peng Li, Jitter, Noise and Signal Integrity at High-Speed, Prentice Hall, 2008
Jitter Definition

Jitter is difference *in time* between when an event was ideally to occur and when it actually did occur.

- Timing uncertainties in digital transmission systems
- Utmost importance because timing uncertainties cause bit errors
- There are different types of jitter
Jitter Characteristics

- Jitter is a signal timing deviation referenced to a recovered clock from the recovered bit stream.

- Measured in Unit Intervals and captured visually with eye diagrams.

- Two types of jitter:
 - Deterministic (non Gaussian)
 - Random

- The total jitter (TJ) is the sum of the random (RJ) and deterministic jitter (DJ).
Types of Jitter

• **Deterministic Jitter (DDJ)**
 - Data-Dependent Jitter (DDJ)
 - Periodic Jitter (PJ)
 - Bounded Uncorrelated Jitter (BUJ)

• **Random Jitter (RJ)**
 - Gaussian Jitter
 - $f^{-\alpha}$ Higher-Order Jitter
Jitter Effects

Bandwidth Limitations

- Cause intersymbol interference (ISI)
- ISI occurs if time required by signal to completely charge is longer than bit interval
- Amount of ISI is function of channel and data content of signal

Oscillator Phase Noise

- Present in reference clocks or high-speed clocks
- In PLL based clocks, phase noise can be amplified
Phase Noise & Phase Jitter

- Phase noise in clock oscillators
 - Phase offset term that continually changes timing of signal

\[S(t) = P(t + \phi(t)) \]

Example:

\[P(t) = \sin\left(10 \times 10^9 \times 2\pi t\right) \]
\[\phi(t) = \frac{1}{4} \sin\left(2 \times 10^9 \times 2\pi t\right) \]
\[S(t) = \sin\left(10 \times 10^9 \times 2\pi t + 0.25 \sin(2 \times 10^9 \times 2\pi t)\right) \]
Phase Noise

- Clean signal
- Noisy signal

2 GHz phase noise
Phase Jitter

- Clean signal
- Noisy signal
Phase Jitter

• Phase jitter in digital systems
 ➢ Variability in timing of transition in digital systems is called phase jitter
 ➢ Phase jitter is digital equivalent of phase noise
 ➢ Always defined relative to the ideal position of the transitions

For a jittered digital signal

\[t_n = T_n - \phi_n \]

- \(t_n \) is the actual time of the \(nth \) transition
- \(T_n \) is the ideal timing value of the \(nth \) transition
- \(\phi_n \) is the time offset of the transition ➜ phase jitter term

Example: 10 Gbits/s ➜ \(T_n \) has bit intervals of 100 ps.
Transitions take place at 0, 100, 200 ps
Cycle-to-Cycle Jitter

- Phase jitter causes bit periods to contract and expand
- Actual bit periods are given by the time difference between 2 consecutive transitions

\[P_n = t_{n+1} - t_n = (T_{n+1} - \phi_{n+1}) - (T_n - \phi_n) \]

Ideal bit period:

\[TB_n = T_{n+1} - T_n \]

Period jitter:

\[PerJ_n = TB_n - P_n \]

\[PerJ_n = (T_{n+1} - T_n) - (T_{n+1} - T_n + \phi_n - \phi_{n+1}) = \phi_{n+1} - \phi_n \]
Cycle-to-Cycle Jitter

Cycle-to-cycle jitter:

\[CCJit_n = P_{n+1} - P_n \]

\[CCJit_n = PerJ_{n+1} - PerJ_n \]
Total Jitter Time Waveform

The total jitter waveform is the sum of individual components:

$$TJ(t) = PJ(t) + RJ(t)$$
Jitter Statistics

- Most common way to look at jitter is in statistical domain
- Because one can observe jitter histograms directly on oscilloscopes
- No instruments to measure jitter time waveform or frequency spectrum directly

Jitter Histograms and Probability Density Functions

- Built directly from time waveforms
- Frequency information is lost
- Peak-to-peak value depends on observation time

Note: A jitter histogram does not contain all the information about the jitter
Probability Density Function

\[z = x + y \quad \Rightarrow \quad \text{pdf}_z = \text{pdf}_y \ast \text{pdf}_z \]

The PDF of the sum of 2 independent random variables is the convolution of the PDFs of those 2 variables.
Jitter Statistics

\[TJ(x) = PJ(x) \ast RJ(x) \]

The total jitter PDF is the convolution of individual components.
Jitter Mechanisms

• **Transfer of Level Noise into the Time Domain**
 - Noise on digital data signals causes jitter because it offsets the threshold crossing point in time

• **Bandwidth Limitations**
 - Primarily caused by intersymbol interference

• **Oscillator Phase Noise**
 - Phase noise present in reference clocks especially in systems based on PLL
Jitter Mechanisms

- Transfer of noise into time domain
- Bandwidth limitation in channels
- Oscillator phase noise

\[NJ_{pk-pk} = t_t \frac{V_{Noise}}{V_H - V_L} \]

- \(t_t \) rise time
- \(V_{Noise} \) pk-pk noise amplitude
- \(V_H \) Hi signal level
- \(V_L \) Lo signal level
Jitter Mechanisms

Linear model

\[N J_{pk-pk} = t_t \frac{V_{Noise}}{V_H - V_L} \]

Jitter ~ 2ps
Jitter ~ 6ps

Random noise caused by thermal effects
Jitter Mechanisms

First order model

\[
NJ_{pk-pk} = -\tau \left(\ln \left(0.5 - V_{Noise} \right) + \ln \left(0.5 + V_{Noise} \right) \right)
\]

Periodic noise: switching power, crosstalk, etc…
Jitter Mechanisms

Multiple threshold crossing of a signal with high-frequency level noise
Bandwidth Limitations

00011111 data pattern
Bandwidth Limitations

0101111 data pattern
Jitter Classification

- Total Jitter (TJ)
 - Random Jitter (RJ)
 - Deterministic Jitter (DJ)
 - Periodic Jitter (PJ)
 - Data-Dependent Jitter (DDJ)
 - Intersymbol Interference (ISI)
 - Duty Cycle Distortion (DCD)
Gaussian Random Jitter

- Random jitter can be described by a Gaussian distribution with the following probability density function

\[
PDF_{RJ}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

\(x\) : independent value
\(\sigma\) : RMS value
\(\mu\) : mean of distribution (zero by definition)

- Note: the PDF of a Gaussian process is unbounded, i.e., its PDF is not zero unless the jitter \(\Delta t\) approaches infinity
Gaussian Jitter PDF

\[P\left(\left| \Delta t - \mu \right| \leq \sigma \right) = 0.6826 \]

\[P\left(\left| \Delta t - \mu \right| \leq 2\sigma \right) = 0.9545 \]

\[P\left(\left| \Delta t - \mu \right| \leq 3\sigma \right) = 0.9973 \]

Can be used to estimate the probability when the deviation of the random jitter variable \(\Delta t \) is within a multiple of its \(\sigma \) value.
Cumulative Density Function

Cumulative density function (CDF) is defined as:

\[CDF(t) = \int_{-\infty}^{t} PDF(x)dx \]

\(CDF(t) \) tells us the probability that the transition occurred earlier than \(t \). For random jitter, we get:

\[CDF_{RJ}(x) = \frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{x}{\sigma \sqrt{2}} \right) \]

\(\text{erf} \) is the error function
PDF and CDF of Random Jitter

PDF

CDF
Causes of Deterministic Jitter

• **Crosstalk**
 – Noisy neighboring signals

• **Interference**

• **Reflections**
 – Imperfect terminations
 – Discontinuities (e.g. multi-drop buses, stubs)

• **Simultaneous switching noise (SSN)**
 – Noisy reference plane or power rail
 – Shift in threshold voltages
Data-Dependent Jitter

- Most commonly encountered DJ type
- Dominant limiting factor for link channels
- Due to *memory* of lossy electrical or optical system
- Bit transition of current bit depends on the transition times of the previous bits
Data-Dependent Jitter

- DDJ depends on the impulse response of the system that generates the pattern
- DDJ depends on the input pattern
- DDJ is a distribution with its sample size equal to the number of transitions of the data pattern

- Duty cycle distortion (DCD) occurs for clock patterns of repeating bits
Data-Dependent Jitter

- Since channel does not have zero-rise time step response or infinite bandwidth, jitter is to be expected
- Settling time gives good indication of jitter
Model for DDJ

The generic form for DDJ PDF is:

\[f_{DDJ}(\Delta t) = \sum_{i=1}^{N} P_i^{DDJ} \delta(\Delta t - D_i^{DDJ}) \]

\[P_i^{DDJ} \] is the probability for the DDJ value of \(D_i^{DDJ} \)

\[P_i^{DDJ} \] satisfies the condition \(\sum_{i=1}^{N} P_i^{DDJ} = 1 \)
Periodic Jitter

Periodic jitter is a *repeating* jitter signal at a certain period or frequency. It is described by:

\[\Delta t = A \cos(\omega t + \phi_o) \]

\(\omega \): angular frequency

\(\phi_o \): initial phase

The PDF for the single PJ is given by

\[f_{PJ}(\Delta t) = \frac{1}{\pi \sqrt{1-(\Delta t / A)^2}}, \quad -A \leq \Delta t \leq A \]

Which can be approximated by

\[f_{PJ}(\Delta t) \approx \frac{1}{2} \left[\delta(\Delta t - A) + \delta(\Delta t + A) \right] \]
Periodic Jitter

PDF for single sinusoidal

\[f_{PJ}(\Delta t) = \frac{1}{\pi \sqrt{1 - (\Delta t / A)^2}}, \quad -A \leq \Delta t \leq A \]
Periodic Jitter

There are 3 common waveforms for the theoretical analysis of periodic jitter

Rectangle Periodic Jitter

\[
PDF_{PJ-rect}(x) = \frac{1}{2} \delta\left(-\frac{m}{2}\right) + \frac{1}{2} \delta\left(\frac{m}{2}\right)
\]

Triangle Periodic Jitter

\[
PDF_{PJ-triang}(x) = \begin{cases}
\frac{1}{m} & \text{for } |x| < \frac{m}{2} \\
0 & \text{otherwise}
\end{cases}
\]
Periodic Jitter

Sinusoidal Periodic Jitter

\[
PDF_{PJ\text{-}line}(x) = \begin{cases}
1 & \text{for } |x| < \frac{m}{2} \\
\pi \sqrt{m/2 - \left(\sqrt{\frac{2}{m}}x\right)^2} & \text{otherwise}
\end{cases}
\]
Rectangular Periodic Jitter

PDF

CDF
Triangular Periodic Jitter

PDF

CDF
Sinusoidal Periodic Jitter

PDF

CDF