ECE 546
Lecture - 27
Equalization

Spring 2018

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jesa@illinois.edu
Signal Integrity Impairments In High-Speed Buses

- SI issues limit system performance to well below channel Shannon capacity
- Inter-Symbol Interference (ISI) is an issue for long backplane buses

- For short, low-cost parallel links, dominant noise source is crosstalk
 - Far-end crosstalk (FEXT) induces timing jitter (CIJ), impacts timing budget

- Other SI impairments:
 - Simultaneous-switching (SSO) noise
 - Thermal noise
 - Jitter from PLL/DLL

Insertion loss of a single DDR channel

FEXT increases with routing density
Channel Impairments

- Modern computer systems require Tb/s aggregate off-chip signaling throughput
 - Interconnect resources are limited
 - Parallel buses with fast edge rates must be used
 - Stringent power and BER requirements to be met
 - High-performance signaling requires high-cost channels
 - Difficult to design and costly to manufacture
 - One of main limiting factors: crosstalk-induced jitter

Available number and required speed of I/Os (ITRS roadmap)

A typical controller-memory interface
Channel Equalization

![Diagram showing analog channel response, compensating filter, and equalized response over frequency and magnitude.](image-url)
Equalization

Off-chip bandwidth scales at a much lower rate than on-chip bandwidth. Primary objective is to have low bit error rate (BER). Typical BER is 10^{-12}.

Frequency shaping filters that flatten the channel response up to a certain frequency. Objective is to improve BER and increase eye opening.
Pre-Emphasis and Equalization

• Pre-emphasis boosts the high-frequency contents of the signal at the transmitter before the signal is sent through the channel.

• A two-tap finite impulse response (FIR) filter is an example of pre-emphasis implementation.

• Pre-emphasis has high power requirements, aggravates crosstalk and increase EMI.

• Pre-emphasis cannot improve SNR

• Data converters are required to implement pre-emphasis
Receiver Equalization

• The loss in the channel is suppressed by boosting the high-frequency content of the signal.
• Often results in larger noise margins.
• Receivers can be implemented in discrete-time or continuous time.
• Implementations include digital FIR equalizer, analog FIR equalizer, continuous time equalizer.
Equalization Techniques

![Graph showing equalization techniques with different frequency response curves.](image)
Continuous Time Passive Equalizer

\[\omega_z = \frac{1}{R_1 C_1} \]

\[\omega_p = \frac{1}{\frac{R_1 R_2}{R_1 + R_2} (C_1 + C_2)} \]

\[H(s) = \frac{R_2}{R_1 + R_2} \cdot \frac{1 + R_1 C_1 s}{1 + \frac{R_1 R_2}{R_1 + R_2} (C_1 + C_2) s} \]

DC gain = \[\frac{R_2}{R_1 + R_2} \]
Channel-Equalization

Typical Channel Response w/o Equalization:

- Equalization at TX and RX needed to counter the effects of channel, properly decode signals.
- TX: FFE (Feed-Forward Equalizer)
- RX: DFE (Decision-Feedback Equalizer)

D. R. Stauffer et al., "High Speed Serdes Devices and Applications", Springer 2008
FFE Circuit Architecture

Typical Channel Response at Receiver with FFE at TX:

Sample 3-tap FFE Architecture:

- FFE taps selected to generate a filter with the inverse transfer-function as that of channel.
- Trade-off b/w signal amplitude at receiver and jitter.

D. R. Stauffer et al., "High Speed Serdes Devices and Applications", Springer 2008
DFE Circuit Architecture

Typical Channel Response at Receiver with DFE at RX:

Sample 5-tap DFE Architecture:

- DFE is needed in links with a high-baud rate to minimize signal amplification at high frequencies caused by channel jitter.
- Filter weights are selected dynamically in a feedback loop to maximize eye opening.

D. R. Stauffer et al., "High Speed Serdes Devices and Applications", Springer 2008
FFE vs. DFE

- **FFE**
 - Can mitigate the pre-cursor channel response in low-BW channels.
 - Can compensate ISI arising from transient TL loss over wide time-spans.

- **DFE**
 - Cannot equalize ISI arising from pre-cursor channel response.
 - Can only compensate ISI from a fixed time-span.

FFE + DFE

- Guarantees max. performance from the SerDes.
- Advantage:
 - DFE permits use of low-frequency de-emphasis at TX resulting in a larger received signal envelope, smaller signal/crosstalk ratio.
 - System capable of employing continuous adaptive equalization of its feedback taps to optimize performance.
Equalization Techniques

• CTLE (Continuous-Time Linear Equalizer) Basics
• FFE (Feed-Forward Equalizer) Basics
• DFE (Decision Feedback Equalizer) Basics
• More Complex Equalization
Continuous Time Linear Equalization

- Goal: To counteract the effects of the channel’s transfer function (s-domain)
- Accomplished via amplification
 - More amplification at operating frequency
 - Less amplification at $<<$ operating frequency (DC Gain)
 - Reduce higher frequency noise
Drawbacks of CTLE Design

• Drawbacks of RX CT Equalization:
 – Amplifying signal also amplifies noise + crosstalk (SNR stays same)
 – Trade-off: High Gain + Output Swing vs. Small Size + Low Power Consumption

• When designing CTLE, need to iterate in order to optimize on all of these ends

• Still need to utilize filtering for noise and crosstalk
Continuous Time Linear Equalizer (CTLE)

- **Pros**
 - Single block \rightarrow lower power consumption and smaller sizing
 - Easy to cancel precursor and more ISI

- **Cons**
 - Noise+Crosstalk amplified as well
 - Hard to tune
Continuous Time Linear Equalizer (CTLE)

• Active equalizer topology shown to right
• Differential amplifier with degeneration
 – Introduces an extra pole and zero
 – Total: One zero, two poles
• Transfer Function = Peaking Amplifier
Equations for CTLE (Derived from Circuit)

\[H(s) = \frac{g_m}{C_L} \cdot \frac{s + \frac{1}{R_D C_D}}{(s + \frac{g_m R_D + 1}{R_D C_D})} \cdot \frac{1}{s + \frac{1}{R_L C_L}} \]

\[\omega_z = \frac{1}{R_D C_D} \]

\[\omega_{p1} = \frac{g_m R_D + 1}{R_D C_D} \]

\[\omega_{p2} = \frac{1}{R_L C_L} \]

DC Gain = \[\frac{g_m R_L}{g_m R_D + 1} \]
CTLE Design Process

1) Choose DC Gain and Peaking Gain (use insertion loss curve)
2) Decide optimal poles and zero frequency placements
3) Determine load capacitance from next stage (CDR input)
4) Determine equalizer output swing
5) Calculate component parameters to meet above specs
6) Test and optimize as necessary (iterative process)
CTLE Transfer Function (Bode Plot)
Effects of CTLE (Eye Diagram)

• Eyes
 – Yellow = TX end
 – Green = Post-Channel
 – Red = Post-EQ
Precursors and Postcursors

Precursor

Main

Postcursors
Understanding FFE

• Pros
 – Simple to implement
 – Doesn’t amplify noise
 – Easily cancels precursors

• Cons
 – Signal Attenuated due to peak-power limitation (output swing limit)
 – Hard to tune taps
FFE Coefficient Calculation

• Need to calculate FFE coefficients such that convolution with channel results in solely the main cursor
 – $A = \text{channel coefficients}$
 – $b = \text{FFE coefficients}$
 – $c = \text{equalized response}$

\[
A \times b = c
\]

\[
\begin{bmatrix}
a_0 & a_{-1} & 0 & 0 & 0 \\
a_1 & a_0 & a_{-1} & 0 & 0 \\
a_2 & a_1 & a_0 & a_{-1} & 0 \\
a_3 & a_2 & a_1 & a_0 & a_{-1} \\
0 & a_3 & a_2 & a_1 & a_0
\end{bmatrix}
\times
\begin{bmatrix}
b_{-1} \\
b_0 \\
b_1 \\
b_2 \\
b_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
0
\end{bmatrix}
\]
FFE Coefficient Calculation
(Only precursor)

• When solely eliminating precursor, matrix becomes:
 – Only b_{-1} and b_0 matter to eliminate precursor
•Appending an extra zero at beginning in order to properly account for full sampled response
• A-matrix goes down to n amount of postcursors
 – Can match number with number of FFE coefficients
 – However, more postcursors \rightarrow more ISI eliminated

\[
A = \begin{bmatrix}
a_{-1} & 0 \\
a_0 & a_{-1} \\
a_1 & a_0 \\
a_2 & a_1 \\
a_3 & a_2 \\
a_4 & a_3 \\
\vdots & \vdots \\
0 & a_n
\end{bmatrix}
\]

\[
c = \begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]
Effects of FFE

Full FFE

Precursor Only
Actual FFE Design: Normalize Coefficients

• Why?
 – Output swing is limited by headroom of design
 – Extra taps \rightarrow reduction of cursor’s tap weight

• In order to account for limitations, currents must add up to equal output termination current, meaning that:

\[I \times \sum |b_i| = I \quad \Rightarrow \quad \sum |b_i| = 1 \]
Understanding the DFE

- Continuous-Time Transfer Function of Channel (s-domain):
 - Low Pass Filter
• Discrete-Time Transfer Function of the Channel (z-domain):

\[H_1(z) = 1 + a_1z^{-1} + a_2z^{-2} + a_3z^{-3} \]

\[x[n] \rightarrow H_1(z) = 1 + a_1x[n-1] + a_2x[n-2] + a_3x[n-3] \]
Simple DFE System

Diagram showing a simple DFE system with inputs and outputs labeled as X and Y, respectively. The diagram includes multiplications and delays labeled as D for each stage.
Understanding the DFE

• Pulse Response of Channel:
 – Top = Continuous Time Plot
 – Bottom = Sampled Plot
Pulse Response (Testbench)
Normalized Pulse Response

• Next, normalize the pulse response:
 – Set time of peak = n*T
 – Post cursors = Response(T*(n+1)),
 Response(T*(n+2)),
 Response(T*(n+3)), ...
Post Cursor Calculations

• Calculated Postcursors:

\[
\begin{align*}
 & Postcursor a_1 = 0.2605 \\
 & Postcursor a_2 = 0.104 \\
 & Postcursor a_3 = 0.0588 \\
 & Postcursor a_4 = 0.0387 \\
 & Postcursor a_5 = 0.0284
\end{align*}
\]
Understanding the DFE

- Objective: Negate the effects of the post-cursors \((a_1, a_2, a_3, \ldots)\) through feedback FIR filter and accurate sampling (decision circuit)
 - Pros:
 - No amplification of noise+crosstalk
 - Can make feedback filter adaptive
 - Cons:
 - Can only account for post-cursors (no pre-cursors)
 - Critical feedback timing path
DFE Tap Coefficients

- If channel causes postcursors a_1, a_2, a_3, etc.,...
- DFE tap coefficients must negate postcursors
- Thus, DFE tap coefficients $= \text{negative postcursors}$
Implementation of DFE

```verilog
//Verilog-AMS HDL for "ece546", "dfg_sampler" "verilogms"

#include "constants.vams"
#include "disciplines.vams"

module dfe_sampler (in, inbar, out, outbar, Dout, clk, rst);
input in, inbar, clk, rst;
output reg Dout;
output out, outbar;
electrical in, inbar, out, outbar;
logic clk, rst;

parameter real tap1 = 0;
parameter real tap2 = 0;
parameter real tap3 = 0;
parameter real tap4 = 0;
parameter real tap5 = 0;

reg[4:0] data_history;

always begin
  V(out) = slew(V(in)+tap1*(2*data_history[0]-1)+tap2*(2*data_history[1]-1)+tap3*(2*data_history[2]-1)+tap4*(2*data_history[3]-1)+tap5*(2*data_history[4]-1),le11, le11);
  V(outbar) = slew(V(inbar)-tap1*(2*data_history[0]-1)+tap2*(2*data_history[1]-1)+tap3*(2*data_history[2]-1)+tap4*(2*data_history[3]-1)+tap5*(2*data_history[4]-1),le11, le11);
end

always@(posedge(clk), rst) begin
  if(rst) begin
    data_history <= 5'b00000;
    Dout <= 1'b0;
  end
  else if(V(out) - V(outbar) > 0.2)
    Dout <= 1'b1;
  else if (V(out) - V(outbar) < -0.2)
    Dout <= 1'b0;
  data_history[4:0] = {data_history[3:0],Dout};
end
endmodule
```
Effects of DFE (Eye diagram)
MORE COMPLEX EQUALIZATION (SETUP)

• Full equalization setup with FFE + CTLE + DFE (in SERDES)
COMPLEX EQUALIZATION DESIGN PROCESS

1) Design CTLE to account for as much loss @ operating frequency
2) Design RX Driver Amp to account for remaining loss (~5-10 dB)
3) Analyze pulse response of channel+CTLE+RX Driver to calculate FFE coefficients (solely precursor) and test FFE behaviorally
4) Analyze pulse response again (no precursor this time) to determine postcursors for DFE coefficients and test DFE behaviorally